德国康斯坦茨大学Oliver Deussen教授参观实验室

12月10日,德国康斯坦茨大学Oliver Deussen教授到访VAG实验室,并做了题为“Graphics, Artistic Rendering and the Interesting Role of Physics”的主题报告。

在这次报告中,Oliver教授首先概述了康士坦茨大学的图形可视化小组的工作。然后将抽象的视觉通过建模和可视化计算的定量方法进行表现。康士坦茨大学的图形可视化小组的大部分工作都集中在模仿传统的绘画和绘画技术,在一个虚拟的画布上模拟油漆。Oliver教授系统叙述了喷涂机器人e-david。通过e-david,可以使用视觉反馈机制自动创建不同的媒体和各种风格的绘画。Oliver教授同时与在场同学讨论了这个过程中的创意,并将报告了在未来实现艺术自由和高层次的绘画风格。

Poemage: Visualizing the Sonic Topology of a Poem

论文:Poemage: Visualizing the Sonic Topology of  a Poem

作者:Nina McCurdy, Julie Lein, Katharine Coles, Miriah Meyer

会议:TVCG 2015

Poemage是可视化与抒发万千情感的诗歌紧密结合的产物。它用诗歌一样浪漫的表达方式将诗歌韵律的拓扑结构展现在我们面前。

继续阅读 =>

VA^2: A Visual Analytics Approach for // Evaluating Visual Analytics Applications

论文:VA^2: A Visual Analytics Approach for // Evaluating Visual Analytics Applications

作者:Tanja Blascheck, Markus John, Kuno Kurzhals, Steffen Koch, Thomas Ertl

发表会议:VAST 2015
本文提出一个用于展示和分析“用户如何使用可视化分析系统”的高度交互可视化的环境,途径是分析用户在可视分析过程中产生的thinking aloud, interaction, and eye movement数据。

继续阅读 =>

VAG 2015 第六届小组全明星阵容

经过一周紧锣密鼓的预处理及投票,第六届VAG小组全明星阵容正式出炉!(此处应该有掌声)

学术大帝:

第一名:吴斐然;

没什么好说的,按publication积分得到。教父和论文水平和他的PS技术一样高超。

  继续阅读 =>

记VAG小组北大行

12月10日,VAG小组一行人来到北京大学,参观北大袁晓如老师的北京大学可视化与可视分析研究小组。

现场,袁老师及其学生和VAG小组一行就可视化领域发展及前沿,小组日常,投稿准备事宜以及北京游玩路线推荐(笑)等事宜进行了交流。两个小组的技术骨干展开了热烈的学术探讨。

继续阅读 =>

HOLA: Human-like Orthogonal Network Layout

论文:HOLA: Human-like Orthogonal Network Layout

作者:Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow

发表会议:TVCG 2015

这篇文章设计了一种计算正交网络布局的自动化算法。重点在于,使用这种算法得到的布局能与用户手工绘制得到的结果在结构、布局上保持相似,使其更贴近用户的审美、认知观念。

继续阅读 =>

德国慕尼黑工业大学Rüdiger Westermann教授来VAG实验室交流访问

11月27日,由陈为老师主持,来自德国慕尼黑工业大学的Rüdiger Westermann教授主讲的学术报告于CAD&CG国家重点实验室402会议室召开。

Rüdiger Westermann教授的主要研究方向包括科学可视化,基于物理模型的模拟和实时计算机图形学等。 继续阅读 =>

MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering

论文:MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering

作者:Tatiana von Landesberger, Felix Brodkorb, Philipp Roskosch, Natalia Andrienko, Gennady Andrienko, and Andreas Kerren

发表会议:TVCG2015

了解人类移动的规律对于政策制定和城市规划有着至关重要的作用。移动数据集纪录了人们在不同时刻出现的位置以及人们在不同地点之间的移动流。分析移动数据的困难点在于比较不同时刻的空间位置(spatial situations)以及了解空间位置随时间的变化。传统的流可视化方法会造成大量的杂乱现象,同时现代的方法不支持长时间段下的分析复杂的移动数据。因此,作者提出了一种结合基于时间和空间的简化和可视分析的方法解决了以上问题。

继续阅读 =>

唯心主义观下的可视化–Monadic Exploration: Seeing the Whole Through Its Parts

人类置身于大量数据之中,这些数据包括社交数据中的照片集、每年读过的图书、写过的博客或微博等。对于这些数据,人们不仅希望能看到自己感兴趣数据的详细内容,而且还希望能了解这部分数据所在数据集合的上下文结构。比如说,在看某人的个人信息的同时,还想知道这个人都有哪些朋友,这样可以更全面地了解这个人的情况。从在线社区当中调查发现,从用户已知的知识出发探索数据其实比我们熟知的原则—overview first–更有效。面对大尺度的数据,绘制数据的整体视图往往非常困难,另外,用户也不需要了解全局数据。
受社会学家Bruno Latour的启发,论文从可视化的角度重新解释monad概念。论文提出了一种在复杂关系数据中探索数据的新思想和可视化方法。在此基础上,论文设计了一种探索关系数据空间的交互工具,此工具不仅包含个体视图而且包含总体结构视图。

继续阅读 =>

Refinery: Visual Exploration of Large, Heterogeneous Networks through Associative Browsing

论文:Refinery: Visual Exploration of Large, Heterogeneous Networks through Associative Browsing

作者:S. Kairam , N. H. Riche , S. Drucker , R. Fernandez2 , and J. Heer

发表会议:EuroVis 2105

这篇文章提出了一种基于关联浏览的大规模异构网络可视探索的技术。浏览策略是电子书合集导航中的常用策略。关联浏览则是指以收集特定主题或是一般性知识为目的,按照环境线索不断迭代,最终完成探索目标的浏览过程。

继续阅读 =>

第 10 页,共 33 页« 最新...89101112...2030...最旧 »