User Tools

Site Tools


Most Cited Deep Learning Papers


  • Unordered List ItemDermatologist-level classification of skin cancer with deep neural networks (2017), A. Esteva et al. [html]
  • Weakly supervised object localization with multi-fold multiple instance learning (2017), R. Gokberk et al. [pdf]
  • Brain tumor segmentation with deep neural networks (2017), M. Havaei et al. [pdf]
  • Professor Forcing: A New Algorithm for Training Recurrent Networks (2016), A. Lamb et al. [pdf]
  • Adversarially learned inference (2016), V. Dumoulin et al. [web][pdf]
  • Understanding convolutional neural networks (2016), J. Koushik [pdf]
  • Taking the human out of the loop: A review of bayesian optimization (2016), B. Shahriari et al. [pdf]
  • Adaptive computation time for recurrent neural networks (2016), A. Graves [pdf]
  • Densely connected convolutional networks (2016), G. Huang et al. [pdf]
  • Continuous deep q-learning with model-based acceleration (2016), S. Gu et al. [pdf]
  • A thorough examination of the cnn/daily mail reading comprehension task (2016), D. Chen et al. [pdf]
  • Achieving open vocabulary neural machine translation with hybrid word-character models, M. Luong and C. Manning. [pdf]
  • Very Deep Convolutional Networks for Natural Language Processing (2016), A. Conneau et al. [pdf]
  • Bag of tricks for efficient text classification (2016), A. Joulin et al. [pdf]
  • Efficient piecewise training of deep structured models for semantic segmentation (2016), G. Lin et al. [pdf]
  • Learning to compose neural networks for question answering (2016), J. Andreas et al. [pdf]
  • Perceptual losses for real-time style transfer and super-resolution (2016), J. Johnson et al. [pdf]
  • Reading text in the wild with convolutional neural networks (2016), M. Jaderberg et al. [pdf]
  • What makes for effective detection proposals? (2016), J. Hosang et al. [pdf]
  • Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks (2016), S. Bell et al. [pdf].
  • Instance-aware semantic segmentation via multi-task network cascades (2016), J. Dai et al. [pdf]
  • Conditional image generation with pixelcnn decoders (2016), A. van den Oord et al. [pdf]
  • Deep networks with stochastic depth (2016), G. Huang et al., [pdf]
  • Generative Short Term Stochastic Gibbs Networks 2016), I. Lenz et al. [pdf]


  • Unordered List ItemSpatial transformer network (2015), M. Jaderberg et al., [pdf]
  • Ask your neurons: A neural-based approach to answering questions about images (2015), M. Malinowski et al. [pdf]
  • Exploring models and data for image question answering (2015), M. Ren et al. [pdf]
  • Are you talking to a machine? dataset and methods for multilingual image question (2015), H. Gao et al. [pdf]
  • Mind's eye: A recurrent visual representation for image caption generation (2015), X. Chen and C. Zitnick. [pdf]
  • From captions to visual concepts and back (2015), H. Fang et al. [pdf].
  • Towards AI-complete question answering: A set of prerequisite toy tasks (2015), J. Weston et al. [pdf]
  • Ask me anything: Dynamic memory networks for natural language processing (2015), A. Kumar et al. [pdf]
  • Unsupervised learning of video representations using LSTMs (2015), N. Srivastava et al. [pdf]
  • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding (2015), S. Han et al. [pdf]
  • Improved semantic representations from tree-structured long short-term memory networks (2015), K. Tai et al. [pdf]
  • Character-aware neural language models (2015), Y. Kim et al. [pdf]
  • Grammar as a foreign language (2015), O. Vinyals et al. [pdf]
  • Trust Region Policy Optimization (2015), J. Schulman et al. [pdf]
  • Beyond short snippents: Deep networks for video classification (2015) [pdf]
  • Learning Deconvolution Network for Semantic Segmentation (2015), H. Noh et al. [pdf]
  • Learning spatiotemporal features with 3d convolutional networks (2015), D. Tran et al. [pdf]
  • Understanding neural networks through deep visualization (2015), J. Yosinski et al. [pdf]
  • An Empirical Exploration of Recurrent Network Architectures (2015), R. Jozefowicz et al. [pdf]
  • Training very deep networks (2015), R. Srivastava et al. [pdf]
  • Deep generative image models using a laplacian pyramid of adversarial networks (2015), E.Denton et al. [pdf]
  • Gated Feedback Recurrent Neural Networks (2015), J. Chung et al. [pdf]
  • Fast and accurate deep network learning by exponential linear units (ELUS) (2015), D. Clevert et al. [pdf]
  • Pointer networks (2015), O. Vinyals et al. [pdf]
  • Visualizing and Understanding Recurrent Networks (2015), A. Karpathy et al. [pdf]
  • Attention-based models for speech recognition (2015), J. Chorowski et al. [pdf]
  • End-to-end memory networks (2015), S. Sukbaatar et al. [pdf]
  • Describing videos by exploiting temporal structure (2015), L. Yao et al. [pdf]
  • A neural conversational model (2015), O. Vinyals and Q. Le. [pdf]

2014 or earlier

  • Unordered List ItemLearning a Deep Convolutional Network for Image Super-Resolution (2014, C. Dong et al. [pdf]
  • Recurrent models of visual attention (2014), V. Mnih et al. [pdf]
  • Empirical evaluation of gated recurrent neural networks on sequence modeling (2014), J. Chung et al. [pdf]
  • Addressing the rare word problem in neural machine translation (2014), M. Luong et al. [pdf]
  • On the properties of neural machine translation: Encoder-decoder approaches (2014), K. Cho et. al.
  • Recurrent neural network regularization (2014), W. Zaremba et al. [pdf]
  • Intriguing properties of neural networks (2014), C. Szegedy et al. [pdf]
  • Towards end-to-end speech recognition with recurrent neural networks (2014), A. Graves and N. Jaitly. [pdf]
  • Scalable object detection using deep neural networks (2014), D. Erhan et al. [pdf]
  • On the importance of initialization and momentum in deep learning (2013), I. Sutskever et al. [pdf]
  • Regularization of neural networks using dropconnect (2013), L. Wan et al. [pdf]
  • Learning Hierarchical Features for Scene Labeling (2013), C. Farabet et al. [pdf]
  • Linguistic Regularities in Continuous Space Word Representations (2013), T. Mikolov et al. [pdf]
  • Large scale distributed deep networks (2012), J. Dean et al. [pdf]
cp/2011.txt · Last modified: 2023/08/19 21:02 (external edit)