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Abstract

This paper presents a novel interactive mesh deformation method thatldamea
various dynamic material effects, including elastic membrane and cloth effaatar
framework, a mesh is encoded by some differential quantities based enlatigh
and dihedral angle; and the deformation is formulated as a least squénerprfor
preserving the edge length and dihedral angle via the differential quantitierder to
obtain anisotropic material effects, we further propose an edge weigitirgne based
on a user specified vector field. To avoid specifying the local transtiong we set up
an iterative scheme for solving the deformation. At last, several examg@sesented

to show that our approach can interactively generate visually pleasiogmsions.
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| ntroduction

The gradient domain methods [1, 2, 3] have shown to be effié@npreserving surface
details in mesh deformation and interpolation problemsadiant domain methods capture
local shape information of the meshes by calculating thiemihtial quantities. Because
of the ability of building an elegant connection betweenalagetail information and the
global shape, gradient domain methods are further enhdncseveral authors [4, 5] more
recently. Unfortunately, aforementioned methods onlyatiea isotropic surface details
distortions, and they cannot provide explicit length dgdimm. Therefore, they cannot
achieve deformations effects beyond membranes deformatig. cloth.

In this paper we present a novel method of material aware ohefgiimation. Different
from most previous work which measure distortion at vegjaee introduce an edge based
measure of distortion instead. The penalty of distortiom lsa amplified or alleviated ac-
cording to the edge direction and the user specified dinectmige based scheme enables
the penalty of length stretch, and makes the cloth effectiptes To penalize bending, we
introduce quantities which reflect the changing of the diakdngle of two triangles that
share an edge. Combining the above two distortion penaltigsdifferent intensity, rich
material effects can be generated intuitively. Since osttodiion measure is non-linear in-
deed, we set up an iterative scheme to get deformation selsylsolving a sequence of
linear least square problems. At each iteration step, whkogtkpestimate the local config-

uration based on previous result, then solve a linear eguatith constant coefficients to



reconstruct a new mesh.

The key contributions of our deformation algorithm ared{gtortion measures of bend-
ing and stretching based on differential coordinates wiaiehdefined on edges; and (ii)
a fast iterative scheme which enables interactive userpuéation and dynamic material

adjustment.

Related Work

Surface deformation is an attractive research topic in agergraphics and computer ani-
mation. Typical approaches are to design a geometric puweachich analogs human’s per-
ception directly, or to simulate a physical procedure whigddicts real world phenomenon
accurately.

The earliergeometric based deformation techniques can be summarized as a subspace
embedding approach, such as free form deformation [6, Ble&kn subspace deforma-
tion [8], or multi-resolution style methods [9, 10]. Globadrtex coordinates are encoded
in subspace, and deformed results are reconstructed fdijnaccording to users manipu-
lation. To achieve desired results, user can explicitlydefthe subspace to approximate
shape. Surface properties, such as the penalty of ressdtetgh cannot be specified. There-
fore the material effects are very difficult to achieve tlgbwsuch kind of techniques which
highly depend on user’s talent and experience.

The recent proposed gradient domain methods use the diff@reoordinate to encode



the local shape information, and preserve surface detailsase square sense for defor-
mation [1, 2, 4, 11]. Volumetric details can be also measuaredi preserved to void self-
intersection by constructing volumetric graph Laplaciah [The ideas of gradient domain
can be also applied to manipulating 2D shapes [12].

Our method is highly inspired by above work, and actually barviewed as an edge
based variant for providing material aware deformationd.d#fterent from recent proposed
ones [13, 14] which aim at controlling propagation mannelochl transformations, our
approach tend to find out transformed differential quaggitising an iterative optimization.

To our knowledge, there are two gradient domain methodsivwéuilopt iterative proce-
dure for mesh deformation in the literature. Sheffer etE] propose a rotation invariant
shape representation, called pyramid coordinates. Thetinad updates vertex coordinates
according to a set of angles and lengths related to a verteksammediate neighbors. Au
et al. [16] utilize the surface orientation of the unknowricdmed mesh as the Laplacian
differential coordinates for deformation computing. Thegrative procedure, therefore, up-
date face related quantities. However, both vertex andlfased methods mainly capture
geometric features related to surface curvature, henck imasvays deformed in an elastic
membrane style.

Physical based deformation methods are proposed to deform objects according to phys-
ical laws. Pioneer work of this area is carried out by Terzisiand his co-workers [17].
Later, many methods for both off-line and interactive siatioin of deformable objects
are proposed, such as employing the boundary element mgtBbdr the finite element
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method [19]. In general, the whole simulation procedureriget by a specified deforma-
tion energy, and is characterized by an integral equatioging in time. It is important
to choose specific methods to solve the integral equatiortrendorresponding time step,
and other related parameters (e.g. damping coefficientassMpring system is one of the
simplest computation model in physical based mesh defawmagspecially in many cloth
effects simulation algorithms such as [20]. In [21], a coegied physical model is de-
scribed for fast clothing simulation, and adopts impliciteigration to provide large time
steps. See [22] for a detailed survey on the physically basmEls.

Unfortunately, the traditional treatments of physical dthsnethods require complex
computational machinery thus prohibitive implementatost. Though the data driven ap-
proach [23] can provide efficient simulation performantegquires a huge amount of pre-
computation and storage cost. Discrete shells are rapittiptad by the computer graphics
community for their visually convincing results [24]. Briis et al. [25] propose edge based
quantities to simulate cloth dynamics. Both methods measarbending of triangle mesh
surface by using rigorous dihedral angle definition, while method utilizes a novel differ-
ential quantity defined on edge to indicate the magnitudesntimg. Therefore our method
leads to a simpler energy function for calculation.

Different from physical based formulation, our approadrtstfrom geometric intuition
for surface editing applications, and simplifies the phgfsictegral procedure into an itera-

tion scheme. Hence there is no mechanism of time-stamp iapgnoach.



Distortion M easures

In gradient domain methods, distortion measures are dedigrcapture shape deformations

of a given mesh. According to this principle, local geontetpiantities, such as angles and

lengths uniquely related to a topological primitive (indduvertex, edge or triangle) and its

immediate neighbors, should be well preserved.

Vertex-based distortion energy

We first concisely review previous vertex-based approadtetsM = (V, K) be a triangle

mesh, wherd” = {v; € R*|1 < i < n} describes the geometric positions of the vertices,

and K denotes the topological connectivity. We call the indexSet= {j|(i,j) € K}
to be the 1-ring neighborhood of vertéx The differential coordinates of vertex: can be
formulated as:

52‘ =V; — Z wijvj = EZ(V) (1)

JEN;

wherew;; can be either nonuniform [1] or uniform [2] weights, addis called theLapla-
cian operator at vertex:. The total local distortion measure for a deformation pduce is

given by a quadric energy term

E=>Y" 06— (V)| (2)

€K
In Eg. (1), the deformed differential coordinat&sare computed via; = T;9; [1, 2, 5],

whereT; indicates the local transformation at verteXVith a set of constraint§(1’) over



mesh.M, new deformed vertex positiols’ can be obtained by the following least square
minimization:

Ir‘l/i/n E+C(V") (3)
Commonly,C (V") indicates soft position constraints at specific verticesC, i.e.,C(V’) =
Y jec V5 — ¥,]|? with ¥; indicating constrained position.

Mesh details, in terms of the difference between centeexerhd a linear combination
of its neighbors, are preserved by Eq.(3) during a defoongtrocedure. However, there
is no explicit edge length preserving strategy in previowthods. Hence they can only
generate elastic membrane effect, and they are difficulckoesie deformation style like
cloth. Moreover, previous vertex-based methods only pi@isotropic distortion measure,

and are difficult to enforce anisotropic distortion penalty

Edge-based distortion energy

Instead of encoding local information at vertices, we eratdifferential quantities at edges
{e;;|(7,7) € K}. Given an edge;;, let vertexl andm be the third vertex in the two triangles

that share;; respectively (see Fig. 1). We then compute the normal of egdsy

Amy + A,ny,

A, + Ay )




whereA,;, A,, andn,, n,, are the areas and the normals of the two adjacent trianglpsce

tively. Finally, we have Laplacian-like quantities alotgtedge;;:

= vi—v. = [P
pij = vi—v; = LLV), )
oij = Py—dij = LIV),
with p;; = av;+(1—a)v; andq;; = Bv;+ (1 —3)v.,. The coefficientsy andj are chosen
to makeo;; parallel to the edge normal;;. In Eq. (5),p;; is designed to control the edge
length, and the magnitude of; is related to the dihedral angle of two adjacent triangles.
Similar to vertex based methods, we have the following twergy terms to measure
total local distortions, i.e., local stretch and bendingpextively:

2
Ep = Z(i,j)eK )

P;j - ‘ij (V)

2 ©)

E, = Yajex]|

Ugj - E%(V’)

Herep;; ando;; are transformed from the original ones By, i.e., pi; = T;;p;; ando;; =
T;jo;;. To generate a deformed medi’ = (V', K'), we come to solve the following

optimization problem in least square sense:
H‘l/i/n AE, + pE, +C(V'). (7)

In the above equation\ andy are two weights for length preserving and bending penalty

respectively.



Potential energy

Classical geometric based methods have no sense to expybakfgkce controls when ma-
nipulating surfaces. However, it is very easy to extend oetthwd for global force controls.
Especially, to mimic gravity force which is related to thedig of the object, an optional

potential energy term can be added into Eq.(7)

Eg:Z<g7Vi >, (8)
whereg is a vector representing the direction and the magnitudeavfity. We finally have

min \E, + jE, + By + C(V'). 9)

|ter ative Defor mation Procedure

In this section, we will show a general framework for meshodefation based on the
formulation above. We first present an iterative procedunelwtends to predict correct
Laplacian-like quantities, and solve the mesh in the weidgi¢ast square sense. Then we

describe how to tailor our framework to be suitable for pdawy physical plausible effects.

Algorithm

Basically, Eq. (3) and (9) are ill-posed since b@thandv; are unknown. Direct translation
between the local transformations and the global coordgatvolves non-linear rotation
computation. Therefore, predicting appropriate locahgfarmations plays an important
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role in gradient domain methods. Most of the previous onézutae the local transforma-
tion for each vertex from handles whose transformationgiaen by users. In literature, lo-
cal transformation propagations [1, 5, 26], linear rotatpproximation [2], and two passes
updating [4] are proposed to build smooth distribution @flldransformation over surfaces.

Alternatively, we try to avoid explicitly computing the lactransformatior?;;. Based
on this motivation, we design an iterative algorithm to peettansformed differential quan-
tities. While the surface details are well preserved becafiiee total distortion measure,
the desirable global shapes are ensured by fairly trangfdopantity predicting.

Our iterative deformation is an E-M style algorithm. Thatgs/en an initial configura-
tion and constraints, we iteratively update implicit paetens and explicit vertex positions,
until a termination condition is satisfied. Precisely, thw sub-steps at the-th iteration

are:

Estimation step. Predict desired edge-based Laplacian quantities by

k+1 0 |11k
Pij = sz‘jlej;

(10)
ot = [lof;lnk;,

with 17, = (v} — v¥)/|[v} — v}||. Here and in the following, upper subscriiteind

i J—

k + 1 represent the numbers of iteration.

Measure step. We update vertex positions by minimizing the following digton measure

3}}}} )\Ell;Jrl + ILLE§+1 + E;chl —I—C(VkJrl). (11)
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Here E}*! and E}*" are simply quadric functions i+

2
)

pZ+1 _ EZ(Vk+1)

ERL = > G,j)eK
p (i,5)€ (12)

2

okl _ L:tifj(vk—i-l)H

E;H_l - Z(i,j)GK ‘ ij
Hence solving the above quadratic minimization problem (Eg. (11)) results in a

sparse linear systept*+11/k+1 — pr+1,

Itis worth noting that the Hesse-Matrix (the second padeaivatives) of£, and £, are
constant. Because the Hesse-Matrixpfis always zero, the potential energy contributes to
the linear equations on the right sitfe’! only. In most cases, we fix the position constraints,
i.e.,C(VkHL) = C (V). It follows that the coefficient matrixi**! of the linear equation is
fixed during the iteration. Thus the LU matrix decompositt@m be carried out once as a

pre-computing step to achieve interactive frame rate (a&éeTL).

Pseudo material effects

Although our deformation framework is purely a geometrie dhmaintains strong physical
intuition. First of all, the iterative update procedure d¢@nan analogue to those real world
deformation. After specific parts of a deformable objectdmyged to new positions, the
deformation is gradually propagated to their neighborisomdhin several iteration steps.
And the final result is obtained when the deformed object imssostatic.

Another important observation is that the two global coadfits A and ;. in EqQ. (7)

can stand for pseudo material properties. By combining keagtl dihedral angle penalty
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with different A andy, user can specify various deformation behavior to the gteamesh.
Larger A can enhance the performance of length preserving. Hencemwerovide cloth
effects rather than elastic membrane deformation. Theficmeft 1 stands for stiffness
which indicates how hard to bend an object. With smallemnd largeru, dihedral angle
penalty dominates the deformation results which are siolalastic thin shells.

Notice that the least square minimization formulation EA).i6 made up of quadric
terms defined on edges. To more precisely emphasize oraitevie penalty of distortion,
one practical way is to directly weight each term by a scaddwerto change its proportion
in Eq. (7). In other words, we can formulate a deformatiorcpdure in a weighted least
square sense by modifying Eq. (7).

Anisotropic deformation property is very useful for someapl fabric with anisotropic
structure. Since our distortion measures are edge basednibotropic effect can be easily
achieved as follows. Given a vector findV) over meshM, the intensity of the distortion

at edgez;; can be weighted by

[(fi+ i vi—v3)l
fit G| v = vill

(13)

’fij =

In our implementation we adopt the method proposed in [2@Etwerate vector fields. Once
ki; has been computed, we revise the total distortion measares a

2
k1 _ =
Ep - Z(iJ)EK Rij )

pitt — L0 (V)

(14)
2
Ef“ = Z(z’,j)eK’%’j :

ot — Lg (Ve
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Dynamical adjustment strategy

Under some circumstance, designers may want to adjust pseaterials dynamically for

intervening in the deformation procedure. However, adogrdo the above algorithm de-
scription, the coefficient matrix will be updated after togirelated coefficients. Therefore,
LU decomposition have to be performed again. Although trek Isaibstitution is very fast,

the cost of LU decomposition is still quite expensive for mlsdwith more than 10K ver-

tices.

To avoid this inconvenience, an alternative way can be agpb varying the material
properties at runtime. The key observation is that thereoip@nalization if we set the
penalty term to zero in Eq. (12) at the beginning of each stefs equivalent to setting
pitt = L5(VF) or of™ = Lg(V*) explicitly. So parameters and¢ in the following

equation can determine the intensity of distortion penalty

P = (L= QLL(VR) + CllpY Ik,

ot = (1=LG(VF) +Ellof nf;.

ij

(15)

In our experience, it is appropriate to get € [0, 1]. Modifying parameterg and¢ will not
affect the coefficient matrix of the sparse linear systemw8aan adjust material effects

on the fly, which helps users to manipulate deformable obgeiticiently.
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Model # vertices LU (sec) back-sub (sec) frame-rate (sec/fr)
Tube 1,410 0.050 0.009 0.030
Plane 10,201  0.510 0.065 0.190
Rabbit 20,001 1.400 0.150 0.270
Octopus 23,898 1.500 0.180 0.300
Armadillo 30,002 4.100 0.400 0.950

Table 1. Statics and timing

Results and Discussion

Figs. 2-6 show several deformation results of various nmsbglour prototype system. Our
system enables mesh deformation procedures at an interaate. And users can feel like
manipulating real objects in it, although our iterative meeformation engine is purely
geometric based.

Performance statistics are listed in Table 1 for all exaspiehis paper. In our imple-
mentation, we adopt the UMF package as the linear solverfitheolumn of Table 1 indi-
cates the average frame-rate of our interactive systemeder frame, the major computing
consumption of our system comprises user interface respdrak substitution, normal
updating and model displaying. The time consumption of awmeftion session depends
on two factors: the frame-rate which indicates computatiost of each iteration and the

number of total iterationsV to reach stable resultsV is an important factor but difficult

14



to quantify, for it varies significantly depending on seVéaators such as the shape of the
model, and the locations of the constraints. For all expenited models in this paper, our
deformation engine outputs stable results within aroundetations. Therefore, users can
always obtain satisfying results at an interactive rate.

Fig. 2(a) and 2(b) illustrate deforming a planar mesh by gisiifferent combinations
of coefficients), i, ¢ and&. In this example, we fix only 4 corners of the mesh, and drag
the central vertex as an additional position constraintdigfiormation. We set smalley
or ( to attain elastic membrane style deformations, while la’ger ¢ result in cloth style
deformations. Comparisons of dynamic adjustment coeffisi€rand ¢ demonstrated in
Fig. 2(b) indicate that they can achieve similar functiomtand .. When a vector field
is assigned (cf. Fig. 2(c)), the anisotropic variant of oafodmation algorithm provides
desired direction controls.

Fig. 3 and 4 show the results of twist operation. Differentirseveral previous meth-
ods [1, 26], we need not to design specific propagations f@atiom or other geometric
quantities. They are predicted naturally by the iteratioocpdure. Notice that the surface
details or high frequency features can be well preservedimeformation method.

In Fig. 5, a pseudo cloth deformation example is exhibiteddying the optional gravity
term. The consequent sub-images, indicating the itergtionedure, provide strong phys-
ical sense. In this example, we only constrain several aeptints of a square mesh. To
demonstrate the power of our method, several other def@medsults with their original
poses are arranged in Fig. 6. All of them are designed in skscby a novice user of our
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prototype system.

Conclusions

In this paper, we presented a novel approach to deformiaggtlar meshes. Our tech-
niques provide pseudo material effects with interactivdguenance. In our approach, we
aim at using edge based differential quantities to captueeldcal shape information of
meshes. Therefore we can easily penalize bending and peesdge length when the shape
is deformed. Moreover, based on our distortion measurdgeaative scheme is proposed to
generate visual pleasant results by solving a sequence ¢ihtar least square problems.
During such an iteration procedure, various deformed skapebe created by tuning two
global material factors. We achieved anisotropic matefigicts by weighting the edge dis-
tortion penalty with the dot product of the edge and specffiieeiction. In addition, local
distortion penalty of each edge can be dynamically adjustetthe fly.

In summary, our techniques provide the users with a simpteiatuitive interface to
manipulating the mesh objects in physical plausible seimsa.few cases, our deformation
algorithm may not converge to a stable state when there altghawconfigurations satisfy-
ing the user provided constraints. For example, in Fig. 8c#ig pose of right handle part
may cause unstable results since in real world there are tin@neone possible deformation
ways with identical constraints. We will seek practicabstgies to address this issue. It

is also interesting to explore non-linear mesh interpofatnethods using our edge based
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differential quantities.
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Figure 1: lllustration of computing edge based Laplaci&a-juantities.
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A=0 A = 5e-6 A= le-4
(a) Effectsbyr (u =1, =1,£ =1)

£E=09 £E=0.5
(=0.1 ¢(=0.5
(b) Effects by¢ andé(\ = le-4 = 1)

A=0 )\ =5e-6 A = 5e-6
(c) Anisotropic effects by vector fielqu(=1,{ = 1,£ = 1)

Figure 2: lllustration of various deformation effects onlanar mesh patch.
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() (d)
Figure 3: Iterative twisting a simple tube model with= 0, = 1, = ( = 1. (a) is the

original model. (b)-(d) illustrate results of the first, theh and the 10-th (final) iteration,

respectively.

23



Figure 4: Twisting the head of rabbit so as it can look atfitsgh A =0, u =1, £ =( = 1.

e
PP

Figure 5: A deformation sequence of pseudo cloth—=(1le-3u=1,{ =(=1)
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(a) Octopus B)yA=0,u=1 ) A=1ledpu=1

(d) Armadillo erx=0u=1

Figure 6: Deformation Zoo. In all examplés= ( = 1.
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