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Abstract

This paper presents a novel interactive mesh deformation method that can achieve

various dynamic material effects, including elastic membrane and cloth effects. In our

framework, a mesh is encoded by some differential quantities based on edge length

and dihedral angle; and the deformation is formulated as a least square problem for

preserving the edge length and dihedral angle via the differential quantities. In order to

obtain anisotropic material effects, we further propose an edge weightingscheme based

on a user specified vector field. To avoid specifying the local transformations, we set up

an iterative scheme for solving the deformation. At last, several examples are presented

to show that our approach can interactively generate visually pleasing deformations.
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Introduction

The gradient domain methods [1, 2, 3] have shown to be efficient for preserving surface

details in mesh deformation and interpolation problems. Gradient domain methods capture

local shape information of the meshes by calculating the differential quantities. Because

of the ability of building an elegant connection between local detail information and the

global shape, gradient domain methods are further enhancedby several authors [4, 5] more

recently. Unfortunately, aforementioned methods only penalize isotropic surface details

distortions, and they cannot provide explicit length description. Therefore, they cannot

achieve deformations effects beyond membranes deformation, e.g. cloth.

In this paper we present a novel method of material aware meshdeformation. Different

from most previous work which measure distortion at vertices, we introduce an edge based

measure of distortion instead. The penalty of distortion can be amplified or alleviated ac-

cording to the edge direction and the user specified direction. Edge based scheme enables

the penalty of length stretch, and makes the cloth effect possible. To penalize bending, we

introduce quantities which reflect the changing of the dihedral angle of two triangles that

share an edge. Combining the above two distortion penalties with different intensity, rich

material effects can be generated intuitively. Since our distortion measure is non-linear in-

deed, we set up an iterative scheme to get deformation results by solving a sequence of

linear least square problems. At each iteration step, we explicitly estimate the local config-

uration based on previous result, then solve a linear equation with constant coefficients to
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reconstruct a new mesh.

The key contributions of our deformation algorithm are: (i)distortion measures of bend-

ing and stretching based on differential coordinates whichare defined on edges; and (ii)

a fast iterative scheme which enables interactive user manipulation and dynamic material

adjustment.

Related Work

Surface deformation is an attractive research topic in computer graphics and computer ani-

mation. Typical approaches are to design a geometric procedure which analogs human’s per-

ception directly, or to simulate a physical procedure whichpredicts real world phenomenon

accurately.

The earliergeometric based deformation techniques can be summarized as a subspace

embedding approach, such as free form deformation [6, 7], skeleton subspace deforma-

tion [8], or multi-resolution style methods [9, 10]. Globalvertex coordinates are encoded

in subspace, and deformed results are reconstructed forwardly according to users manipu-

lation. To achieve desired results, user can explicitly deform the subspace to approximate

shape. Surface properties, such as the penalty of resistingstretch cannot be specified. There-

fore the material effects are very difficult to achieve through such kind of techniques which

highly depend on user’s talent and experience.

The recent proposed gradient domain methods use the differential coordinate to encode
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the local shape information, and preserve surface details in lease square sense for defor-

mation [1, 2, 4, 11]. Volumetric details can be also measuredand preserved to void self-

intersection by constructing volumetric graph Laplacian [5]. The ideas of gradient domain

can be also applied to manipulating 2D shapes [12].

Our method is highly inspired by above work, and actually canbe viewed as an edge

based variant for providing material aware deformations. But different from recent proposed

ones [13, 14] which aim at controlling propagation manner oflocal transformations, our

approach tend to find out transformed differential quantities using an iterative optimization.

To our knowledge, there are two gradient domain methods which adopt iterative proce-

dure for mesh deformation in the literature. Sheffer et al. [15] propose a rotation invariant

shape representation, called pyramid coordinates. Their method updates vertex coordinates

according to a set of angles and lengths related to a vertex and its immediate neighbors. Au

et al. [16] utilize the surface orientation of the unknown deformed mesh as the Laplacian

differential coordinates for deformation computing. Their iterative procedure, therefore, up-

date face related quantities. However, both vertex and facebased methods mainly capture

geometric features related to surface curvature, hence mesh is always deformed in an elastic

membrane style.

Physical based deformation methods are proposed to deform objects according to phys-

ical laws. Pioneer work of this area is carried out by Terzoupols and his co-workers [17].

Later, many methods for both off-line and interactive simulation of deformable objects

are proposed, such as employing the boundary element method[18] or the finite element
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method [19]. In general, the whole simulation procedure is driven by a specified deforma-

tion energy, and is characterized by an integral equation varying in time. It is important

to choose specific methods to solve the integral equation andthe corresponding time step,

and other related parameters (e.g. damping coefficients). Mass-spring system is one of the

simplest computation model in physical based mesh deformation, especially in many cloth

effects simulation algorithms such as [20]. In [21], a complicated physical model is de-

scribed for fast clothing simulation, and adopts implicit integration to provide large time

steps. See [22] for a detailed survey on the physically basedmodels.

Unfortunately, the traditional treatments of physical based methods require complex

computational machinery thus prohibitive implementationcost. Though the data driven ap-

proach [23] can provide efficient simulation performance, it requires a huge amount of pre-

computation and storage cost. Discrete shells are rapidly adopted by the computer graphics

community for their visually convincing results [24]. Bridson et al. [25] propose edge based

quantities to simulate cloth dynamics. Both methods measurethe bending of triangle mesh

surface by using rigorous dihedral angle definition, while our method utilizes a novel differ-

ential quantity defined on edge to indicate the magnitude of bending. Therefore our method

leads to a simpler energy function for calculation.

Different from physical based formulation, our approach starts from geometric intuition

for surface editing applications, and simplifies the physical integral procedure into an itera-

tion scheme. Hence there is no mechanism of time-stamp in ourapproach.
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Distortion Measures

In gradient domain methods, distortion measures are designed to capture shape deformations

of a given mesh. According to this principle, local geometric quantities, such as angles and

lengths uniquely related to a topological primitive (include vertex, edge or triangle) and its

immediate neighbors, should be well preserved.

Vertex-based distortion energy

We first concisely review previous vertex-based approaches. LetM = (V,K) be a triangle

mesh, whereV = {vi ∈ R3|1 ≤ i ≤ n} describes the geometric positions of the vertices,

andK denotes the topological connectivity. We call the index setNi = {j|(i, j) ∈ K}

to be the 1-ring neighborhood of vertexi. Thedifferential coordinates of vertexi can be

formulated as:

δi = vi −
∑

j∈Ni

wijvj = Li(V ) (1)

wherewij can be either nonuniform [1] or uniform [2] weights, andLi is called theLapla-

cian operator at vertexi. The total local distortion measure for a deformation procedure is

given by a quadric energy term

E =
∑

i∈K

‖δ′i − Li(V
′)‖2 (2)

In Eq. (1), the deformed differential coordinatesδ′i are computed viaδ′i = Tiδi [1, 2, 5],

whereTi indicates the local transformation at vertexi. With a set of constraintsC(V ′) over
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meshM, new deformed vertex positionsV ′ can be obtained by the following least square

minimization:

min
V ′

E + C(V ′) (3)

Commonly,C(V ′) indicates soft position constraints at specific verticesj ∈ C, i.e.,C(V ′) =

∑

j∈C ‖v′
j − v̂j‖

2 with v̂j indicating constrained position.

Mesh details, in terms of the difference between center vertex and a linear combination

of its neighbors, are preserved by Eq.(3) during a deformation procedure. However, there

is no explicit edge length preserving strategy in previous methods. Hence they can only

generate elastic membrane effect, and they are difficult to achieve deformation style like

cloth. Moreover, previous vertex-based methods only provide isotropic distortion measure,

and are difficult to enforce anisotropic distortion penalty.

Edge-based distortion energy

Instead of encoding local information at vertices, we encode differential quantities at edges

{eij|(i, j) ∈ K}. Given an edgeeij, let vertexl andm be the third vertex in the two triangles

that shareeij respectively (see Fig. 1). We then compute the normal of edgeeij by

nij =
Alnl + Amnm

‖Alnl + Amnm‖
, (4)
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whereAl, Am andnl,nm are the areas and the normals of the two adjacent triangles respec-

tively. Finally, we have Laplacian-like quantities along the edgeeij:



















ρij = vi − vj = Lρ
ij(V ),

σij = pij − qij = Lσ
ij(V ),

(5)

with pij = αvi +(1−α)vj andqij = βvl +(1−β)vm. The coefficientsα andβ are chosen

to makeσij parallel to the edge normalnij. In Eq. (5),ρij is designed to control the edge

length, and the magnitude ofσij is related to the dihedral angle of two adjacent triangles.

Similar to vertex based methods, we have the following two energy terms to measure

total local distortions, i.e., local stretch and bending respectively:



















Eρ =
∑

(i,j)∈K

∥

∥

∥ρ′

ij − Lρ
ij(V

′)
∥

∥

∥

2
,

Eσ =
∑

(i,j)∈K

∥

∥

∥σ′

ij − Lσ
ij(V

′)
∥

∥

∥

2
.

(6)

Hereρ′

ij andσ′

ij are transformed from the original ones byTij, i.e.,ρ′

ij = Tijρij andσ′

ij =

Tijσij. To generate a deformed meshM′ = (V ′, K), we come to solve the following

optimization problem in least square sense:

min
V ′

λEρ + µEσ + C(V ′). (7)

In the above equation,λ andµ are two weights for length preserving and bending penalty

respectively.
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Potential energy

Classical geometric based methods have no sense to express global force controls when ma-

nipulating surfaces. However, it is very easy to extend our method for global force controls.

Especially, to mimic gravity force which is related to the height of the object, an optional

potential energy term can be added into Eq.(7)

Eg =
∑

i

< g,vi >, (8)

whereg is a vector representing the direction and the magnitude of gravity. We finally have

min
V ′

λEρ + µEσ + Eg + C(V ′). (9)

Iterative Deformation Procedure

In this section, we will show a general framework for mesh deformation based on the

formulation above. We first present an iterative procedure which tends to predict correct

Laplacian-like quantities, and solve the mesh in the weighted least square sense. Then we

describe how to tailor our framework to be suitable for providing physical plausible effects.

Algorithm

Basically, Eq. (3) and (9) are ill-posed since bothTij andv′

i are unknown. Direct translation

between the local transformations and the global coordinates involves non-linear rotation

computation. Therefore, predicting appropriate local transformations plays an important
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role in gradient domain methods. Most of the previous ones calculate the local transforma-

tion for each vertex from handles whose transformations aregiven by users. In literature, lo-

cal transformation propagations [1, 5, 26], linear rotation approximation [2], and two passes

updating [4] are proposed to build smooth distribution of local transformation over surfaces.

Alternatively, we try to avoid explicitly computing the local transformationTij. Based

on this motivation, we design an iterative algorithm to predict transformed differential quan-

tities. While the surface details are well preserved becauseof the total distortion measure,

the desirable global shapes are ensured by fairly transformed quantity predicting.

Our iterative deformation is an E-M style algorithm. That is, given an initial configura-

tion and constraints, we iteratively update implicit parameters and explicit vertex positions,

until a termination condition is satisfied. Precisely, the two sub-steps at thek-th iteration

are:

Estimation step. Predict desired edge-based Laplacian quantities by



















ρk+1
ij = ‖ρ0

ij‖l
k
ij,

σk+1
ij = ‖σ0

ij‖n
k
ij,

(10)

with lkij = (vk
i − vk

j )/‖v
k
i − vk

j ‖. Here and in the following, upper subscriptsk and

k + 1 represent the numbers of iteration.

Measure step. We update vertex positions by minimizing the following distortion measure

min
V k+1

λEk+1
ρ + µEk+1

σ + Ek+1
g + C(V k+1). (11)
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HereEk+1
ρ andEk+1

σ are simply quadric functions inV k+1



















Ek+1
ρ =

∑

(i,j)∈K

∥

∥

∥ρk+1
ij − Lρ

ij(V
k+1)

∥

∥

∥

2
,

Ek+1
σ =

∑

(i,j)∈K

∥

∥

∥σk+1
ij − Lσ

ij(V
k+1)

∥

∥

∥

2
.

(12)

Hence solving the above quadratic minimization problem (i.e. Eq. (11)) results in a

sparse linear systemAk+1V k+1 = bk+1.

It is worth noting that the Hesse-Matrix (the second partialderivatives) ofEρ andEσ are

constant. Because the Hesse-Matrix ofEg is always zero, the potential energy contributes to

the linear equations on the right sidebk+1 only. In most cases, we fix the position constraints,

i.e.,C(V k+1) ≡ C(V 0). It follows that the coefficient matrixAk+1 of the linear equation is

fixed during the iteration. Thus the LU matrix decompositioncan be carried out once as a

pre-computing step to achieve interactive frame rate (see Table 1).

Pseudo material effects

Although our deformation framework is purely a geometric one, it maintains strong physical

intuition. First of all, the iterative update procedure canbe an analogue to those real world

deformation. After specific parts of a deformable object aredragged to new positions, the

deformation is gradually propagated to their neighborhoods within several iteration steps.

And the final result is obtained when the deformed object becomes static.

Another important observation is that the two global coefficients λ and µ in Eq. (7)

can stand for pseudo material properties. By combining length and dihedral angle penalty
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with differentλ andµ, user can specify various deformation behavior to the triangle mesh.

Largerλ can enhance the performance of length preserving. Hence we can provide cloth

effects rather than elastic membrane deformation. The coefficient µ stands for stiffness

which indicates how hard to bend an object. With smallerλ and largerµ, dihedral angle

penalty dominates the deformation results which are similar to elastic thin shells.

Notice that the least square minimization formulation Eq. (7) is made up of quadric

terms defined on edges. To more precisely emphasize or alleviate the penalty of distortion,

one practical way is to directly weight each term by a scalar value to change its proportion

in Eq. (7). In other words, we can formulate a deformation procedure in a weighted least

square sense by modifying Eq. (7).

Anisotropic deformation property is very useful for some special fabric with anisotropic

structure. Since our distortion measures are edge based, the anisotropic effect can be easily

achieved as follows. Given a vector field~f(V ) over meshM, the intensity of the distortion

at edgeeij can be weighted by

κij =

∣

∣

∣

〈

~fi + ~fj,vi − vj

〉
∣

∣

∣

∥

∥

∥

~fi + ~fj

∥

∥

∥ · ‖vi − vj‖
. (13)

In our implementation we adopt the method proposed in [27] togenerate vector fields. Once

κij has been computed, we revise the total distortion measures as:



















Ek+1
ρ =

∑

(i,j)∈K κij

∥

∥

∥ρk+1
ij − Lρ

ij(V
k+1)

∥

∥

∥

2
,

Ek+1
σ =

∑

(i,j)∈K κij

∥

∥

∥σk+1
ij − Lσ

ij(V
k+1)

∥

∥

∥

2
.

(14)
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Dynamical adjustment strategy

Under some circumstance, designers may want to adjust pseudo materials dynamically for

intervening in the deformation procedure. However, according to the above algorithm de-

scription, the coefficient matrix will be updated after tuning related coefficients. Therefore,

LU decomposition have to be performed again. Although the back substitution is very fast,

the cost of LU decomposition is still quite expensive for models with more than 10K ver-

tices.

To avoid this inconvenience, an alternative way can be applied to varying the material

properties at runtime. The key observation is that there is no penalization if we set the

penalty term to zero in Eq. (12) at the beginning of each step.It is equivalent to setting

ρk+1
ij = Lρ

ij(V
k) or σk+1

ij = Lσ
ij(V

k) explicitly. So parametersζ and ξ in the following

equation can determine the intensity of distortion penalty:



















ρk+1
ij = (1 − ζ)Lρ

ij(V
k) + ζ‖ρ0

ij‖l
k
ij,

σk+1
ij = (1 − ξ)Lσ

ij(V
k) + ξ‖σ0

ij‖n
k
ij.

(15)

In our experience, it is appropriate to setζ, ξ ∈ [0, 1]. Modifying parametersζ andξ will not

affect the coefficient matrix of the sparse linear system. Sowe can adjust material effects

on the fly, which helps users to manipulate deformable objects efficiently.
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Model # vertices LU (sec) back-sub (sec) frame-rate (sec/fr)

Tube 1,410 0.050 0.009 0.030

Plane 10,201 0.510 0.065 0.190

Rabbit 20,001 1.400 0.150 0.270

Octopus 23,898 1.500 0.180 0.300

Armadillo 30,002 4.100 0.400 0.950

Table 1: Statics and timing

Results and Discussion

Figs. 2-6 show several deformation results of various models by our prototype system. Our

system enables mesh deformation procedures at an interactive rate. And users can feel like

manipulating real objects in it, although our iterative mesh deformation engine is purely

geometric based.

Performance statistics are listed in Table 1 for all examples in this paper. In our imple-

mentation, we adopt the UMF package as the linear solver. Thefifth column of Table 1 indi-

cates the average frame-rate of our interactive system. Foreach frame, the major computing

consumption of our system comprises user interface response, back substitution, normal

updating and model displaying. The time consumption of a deformation session depends

on two factors: the frame-rate which indicates computationcost of each iteration and the

number of total iterationsN to reach stable results.N is an important factor but difficult
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to quantify, for it varies significantly depending on several factors such as the shape of the

model, and the locations of the constraints. For all experimented models in this paper, our

deformation engine outputs stable results within around 15iterations. Therefore, users can

always obtain satisfying results at an interactive rate.

Fig. 2(a) and 2(b) illustrate deforming a planar mesh by using different combinations

of coefficientsλ, µ, ζ andξ. In this example, we fix only 4 corners of the mesh, and drag

the central vertex as an additional position constraint fordeformation. We set smallerλ

or ζ to attain elastic membrane style deformations, while larger λ or ζ result in cloth style

deformations. Comparisons of dynamic adjustment coefficients ζ and ξ demonstrated in

Fig. 2(b) indicate that they can achieve similar function toλ andµ. When a vector field

is assigned (cf. Fig. 2(c)), the anisotropic variant of our deformation algorithm provides

desired direction controls.

Fig. 3 and 4 show the results of twist operation. Different from several previous meth-

ods [1, 26], we need not to design specific propagations for rotation or other geometric

quantities. They are predicted naturally by the iteration procedure. Notice that the surface

details or high frequency features can be well preserved in our deformation method.

In Fig. 5, a pseudo cloth deformation example is exhibited byadding the optional gravity

term. The consequent sub-images, indicating the iterationprocedure, provide strong phys-

ical sense. In this example, we only constrain several central points of a square mesh. To

demonstrate the power of our method, several other deformation results with their original

poses are arranged in Fig. 6. All of them are designed in seconds by a novice user of our
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prototype system.

Conclusions

In this paper, we presented a novel approach to deforming triangular meshes. Our tech-

niques provide pseudo material effects with interactive performance. In our approach, we

aim at using edge based differential quantities to capture the local shape information of

meshes. Therefore we can easily penalize bending and preserve edge length when the shape

is deformed. Moreover, based on our distortion measure, an iterative scheme is proposed to

generate visual pleasant results by solving a sequence of the linear least square problems.

During such an iteration procedure, various deformed shapecan be created by tuning two

global material factors. We achieved anisotropic materialeffects by weighting the edge dis-

tortion penalty with the dot product of the edge and specifieddirection. In addition, local

distortion penalty of each edge can be dynamically adjustedon the fly.

In summary, our techniques provide the users with a simple and intuitive interface to

manipulating the mesh objects in physical plausible sense.In a few cases, our deformation

algorithm may not converge to a stable state when there are multiple configurations satisfy-

ing the user provided constraints. For example, in Fig. 3, specific pose of right handle part

may cause unstable results since in real world there are morethan one possible deformation

ways with identical constraints. We will seek practical strategies to address this issue. It

is also interesting to explore non-linear mesh interpolation methods using our edge based
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differential quantities.
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Figure 1: Illustration of computing edge based Laplacian-like quantities.
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λ = 0 λ = 5e-6 λ = 1e-4
(a) Effects byλ (µ = 1, ζ = 1, ξ = 1)

ξ = 0.9 ξ = 0.5 ξ = 0.1

ζ = 0.1 ζ = 0.5 ζ = 0.9

(b) Effects byζ andξ(λ = 1e-4, µ = 1)

λ = 0 λ = 5e-6 λ = 5e-6
(c) Anisotropic effects by vector field (µ = 1, ζ = 1, ξ = 1)

Figure 2: Illustration of various deformation effects on a planar mesh patch.
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(a) (b)

(c) (d)

Figure 3: Iterative twisting a simple tube model withλ = 0, µ = 1, ξ = ζ = 1. (a) is the

original model. (b)-(d) illustrate results of the first, the5-th and the 10-th (final) iteration,

respectively.
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Figure 4: Twisting the head of rabbit so as it can look at itself with λ = 0, µ = 1, ξ = ζ = 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: A deformation sequence of pseudo cloth. (λ = 1e-3, µ = 1, ξ = ζ = 1)
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(a) Octopus (b) λ = 0, µ = 1 (c) λ = 1e-4, µ = 1

(d) Armadillo (e) λ = 0, µ = 1

Figure 6: Deformation Zoo. In all examplesξ = ζ = 1.
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