Probabilistic Graphical Models (I)

Hongxin Zhang
zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU
2015-03-31
Probabilistic Graphical Models

- Modeling many real-world problems => a large number of random variables
 - Dependences among variables may be used to reduce the size to encode the model (PCA ?), or
 - They may be the goal by themselves, that is, the idea is to understand the correlations among variables.
Modeling the domain

- Discrete random variables
 - Take 5 random binary variables \((A, B, C, D, E)\)
 - i.i.d. data from a multinomial distribution

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>~b</td>
<td>~c</td>
<td>~d</td>
<td>~e</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>~c</td>
<td>d</td>
<td>~e</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>~b</td>
<td>c</td>
<td>d</td>
<td>~e</td>
</tr>
</tbody>
</table>
Goals

- (Parameter) Learning: using training data, estimate the joint distribution
 - Which are the values $P(A, B, C, D, E)$?
 - ... and if there were one hundred binary variables? (Size of model certainly greater than number of atoms on Earth!)

- Inference: Given the distribution $P(A, B, C, D, E)$,
 - Belief updating: compute the probability of an event
 - What is the probability of $A=a$ given $E=e$?
 - Maximum a posteriori: compute the states of variables that maximize their probability.
 - Which state of A maximizes $P(A | E=e)$? Is it a or $\sim a$?
The unstructured approach

- To specify the joint distribution, there is an exponential number of values:

 \[p(a, b, c, d, e), p(a, b, c, d, \neg e), p(a, b, c, \neg d, e), \]
 \[p(a, b, c, \neg d, \neg e), p(a, b, \neg c, d, e), p(a, b, \neg c, d, \neg e), \]
 \[p(a, b, \neg c, \neg d, e), p(a, b, \neg c, \neg d, \neg e), \ldots \]

- We can compute the probability of events by:

 \[p(a) = \sum_{B,C,D,E} p(a, B, C, D, E) \]
 \[p(a|d, \neg e) = \frac{p(a, d, \neg e)}{p(d, \neg e)} = \frac{\sum_{B,C} p(a, B, C, d, \neg e)}{\sum_{A,B,C} p(A, B, C, d, \neg e)} \]

- There are exponentially many terms in the summations...
The naïve Bayesian approach

\[p(a, b) = p(a) p(b) \]

- Application: Email spanning
Bayesian Networks

- An arbitrary **joint distribution** $p(a, b, c)$ over three variables a, b, and c
 - the product rule of probability:
 \[
 p(a, b, c) = p(c \mid a, b) p(a, b) \\
 = p(c \mid a, b) p(b \mid a) p(a)
 \]

- General case: $p(x_1, x_2, \ldots, x_K)$
 \[
 p(x_1, \ldots, x_K) = p(x_K \mid x_1, \ldots, x_{K-1}) \cdots p(x_2 \mid x_1) p(x_1)
 \]
Not fully connected graph

- Joint distribution: \(p(x_1, x_2, \ldots, x_7) \)

\[
p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)
\]
General form

- For a graph with K nodes, the joint distribution is given by:

$$p(x) = \prod_{k=1}^{K} p(x_k|\text{pa}_k)$$

- where pa_k denotes the set of parents of x_k, and $x = \{x_1, \ldots, x_K\}$
Definitions

- A set of variables associated with nodes of a Directed Acyclic Graph (DAG).
- Markov condition (w.r.t. the DAG): each variable is independent of its non-descendants given its parents.
- For each variable (node), local probability distributions:
 - $P(A)$, $P(B|A=a)$, $P(B|A=a)$, $P(C|A=a)$, $P(C|A=\sim a)$, $P(D|b, c)$, $P(D|b, c)$, $P(D|b, c)$, $P(D|b, c)$; $P(D|b, c)$, $P(E|c)$, $P(E|c)$,
- All these values are precise.
Regression revisit: Polynomial Curve Fitting

\[t(x, w) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \ldots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x) \]

\[p(t, w) = p(w) \prod_{n=1}^{N} p(t_n|w) \]

\[t = h(x) \cdot w \]

\[w = (H^T H)^{-1} H^T t \]

Normal equation
Example: Polynomial regression

\[t(x, w) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \ldots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x) \]

\[p(t, w) = p(w) \prod_{n=1}^{N} p(t_n|w) \]
Example: Polynomial regression

\[t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \ldots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x) \]

\[p(t, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n|\mathbf{w}) \]
Example: Polynomial regression

\[t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \ldots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x) \]

\[p(t, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2) \]

the noise variance \(\sigma^2 \), and the hyperparameter \(\alpha \) representing the precision of the Gaussian prior over \(\mathbf{w} \)
Linear-Gaussian models

- Consider an arbitrary DAG over D variables in which node i represents a single continuous random variable x_i having a Gaussian distribution.

- The mean of this distribution is taken to be a linear combination of the states of its parent nodes pa_i of node i.

$$p(x_i|pa_i) = \mathcal{N} \left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right. \right)$$
Linear-Gaussian models

\[p(x_i | \text{pa}_i) = \mathcal{N} \left(x_i \left| \sum_{j \in \text{pa}_i} w_{ij}x_j + b_i, v_i \right. \right) \]

\[
\ln p(x) = \sum_{i=1}^{D} \ln p(x_i | \text{pa}_i)
\]

\[= - \sum_{i=1}^{D} \frac{1}{2v_i} \left(x_i - \sum_{j \in \text{pa}_i} w_{ij}x_j - b_i \right)^2 + \text{const} \]
Linear-Gaussian models

\[p(x_i|\text{pa}_i) = \mathcal{N}\left(x_i \left| \sum_{j \in \text{pa}_i} w_{ij} x_j + b_i, \nu_i \right. \right) \]

\[x_i = \sum_{j \in \text{pa}_i} w_{ij} x_j + b_i + \sqrt{\nu_i} \epsilon_i \]

\[\mathbb{E}[x_i] = \sum_{j \in \text{pa}_i} w_{ij} \mathbb{E}[x_j] + b_i \]

\[\text{cov}[x_i, x_j] = \mathbb{E}\left[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j]) \right] \]

\[= \mathbb{E}\left[(x_i - \mathbb{E}[x_i]) \left\{ \sum_{k \in \text{pa}_j} w_{jk} (x_k - \mathbb{E}[x_k]) + \sqrt{\nu_j} \epsilon_j \right\} \right] \]

\[= \sum_{k \in \text{pa}_j} w_{jk} \text{cov}[x_i, x_k] + I_{ij} \nu_j \]
Linear-Gaussian models

- **Case 1: no links in the graph**
 - The joint distribution:
 - $2D$ parameters and represents
 - D independent univariate Gaussian distributions.

- **Case 2: fully connected graph**
 - $D(D-1)/2 + D$ independent parameters

- **Case 3:**

\[
p(x_i | pa_i) = \mathcal{N} \left(x_i \mid \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right)
\]

\[
\mu = (b_1, b_2 + w_{21}b_1, b_3 + w_{32}b_2 + w_{32}w_{21}b_1)^T
\]

\[
\Sigma = \begin{pmatrix}
 v_1 & w_{21}v_1 & w_{32}w_{21}v_1 \\
 w_{21}v_1 & v_2 + w_{21}^2v_1 & w_{32}(v_2 + w_{21}^2v_1) \\
 w_{32}w_{21}v_1 & w_{32}(v_2 + w_{21}^2v_1) & v_3 + w_{32}^2(v_2 + w_{21}^2v_1)
\end{pmatrix}
\]
Conditional independence

- Three random variables: a, b, and c
 - a is conditionally independent of b given c iff
 \[P(a \mid b, c) = P(a \mid c) \]
 \[a \perp b \mid c \]
 - This can be re-written in following way
 \[P(a, b \mid c) = P(a \mid b, c) P(b \mid c) \]
 \[= P(a \mid c) P(b \mid c) \]
 The joint distribution of a and b factorizes into the product of the marginal distribution of a and ~b.
Simple example (1)

- **Joint distribution:**
 \[P(a, b, c) = P(a \mid c) P(b \mid c) P(c) \]

- **Condition on c:**
 \[P(a, b \mid c) = P(a, b, c) / P(c) = P(a \mid c) P(b \mid c) \]
 \[\implies a \independent b \mid c \]
Simple example (2)

- **Joint distribution:**
 \[P(a, b, c) = P(a) \cdot P(c | a) \cdot P(b | c) \]

- **Factorization:**
 \[
P(a, b) = \sum_c P(a, b, c) = P(a) \sum_c P(c | a)P(b | c)
 \]
 \[
 = P(a)P(b | a)
 \]

- **Condition on c:**
 \[
P(a, b | c) = \frac{P(a, b, c)}{P(c)} = \frac{P(a)P(c | a)P(b | c)}{P(c)}
 \]
 \[
 = P(a | c)P(b | c)
 \]

Bayesian Theorem
Simple example (3)

- **Joint distribution:**

 \[P(a, b, c) = P(a)P(b)P(c | a, b) \]

- **Factorization:**

 \[
 P(a, b) = \sum_c P(a, b, c) = P(a)P(b)\sum_c P(c | a, b) \\
 = P(a)P(b)
 \]

- **Condition on c:**

 \[
 P(a, b | c) = \frac{P(a, b, c)}{P(c)} = \frac{P(a)P(b)P(c | a, b)}{P(c)} \\
 \neq P(a | c)P(b | c)
 \]
Conditional independence

- Tail-to-Tail: yes
- Head-to-Tail: yes
- Head-to-Head: no
Markov condition

- We say that node y is a *descendant* of node x if there is a path from x to y in which each step of the path follows the directions of the arrows.
- If each variable is independent of its non-descendants given its parents, then:

$$
\begin{align*}
B & \perp (C, E) | A, \\
D & \perp (A, E) | (B, C), \\
E & \perp (A, B, D) | C.
\end{align*}
$$
D-separation

- All possible paths from any node in A to any node in B. Any such path is said to be *blocked* if it includes a node such that either
 - the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C
- If all paths are blocked, then A is said to be *d-separated* from B by C.
D-separation

- In graph (a), the path from \(a \) to \(b \) is not blocked by node \(c \)
- In graph (b), the path from \(a \) to \(b \) is blocked by node \(f \) and \(e \)
D-separation

- A particular directed graph represents a specific decomposition of a joint probability distribution into a product of conditional probabilities
- A directed graph is a filter
Markov blanket

- Joint distribution $p(x_1, \ldots, x_D)$ represented by a directed graph having D nodes

\[
p(x_i | x_{\{j \neq i\}}) = \frac{\int p(x_1, \ldots, x_D) \, dx_i}{\int p(x_1, \ldots, x_D) \, dx_i} = \frac{\prod_k p(x_k | pa_k)}{\int \prod_k p(x_k | pa_k) \, dx_i}
\]

- The set of nodes comprising the parents, the children and the co-parents is called the Markov blanket
Markov Random Fields

- Also known as a *Markov network* or an *undirected graphical model*

- Conditional independence properties:

 Conditional dependence exists if there exists a path that connects any node in A to any node in B.

 If there are no such paths, then the conditional independence property must hold.
Clique

- A subset of the nodes in a graph such that there exists a link between all pairs of nodes in the subset
 - In other words, the set of nodes in a clique is fully connected
 - Maximal clique …
 - A four-node undirected graph showing a clique (outlined in green) and a maximal clique (outlined in blue)
Potential function

- \(x_C \): the set of variables in that clique \(C \)
- The joint distribution is written as a product of potential functions \(\psi_C(x_C) \) over the maximal cliques of the graph

\[
p(x) = \frac{1}{Z} \prod_C \psi_C(x_C)
\]

- The quantity \(Z \), called the partition function, is a normalization constant

\[
Z = \sum_x \prod_C \psi_C(x_C)
\]

- Potential functions \(\psi_C(x_C) \) are strictly positive. Possible choice

\[
\psi_C(x_C) = \exp \{-E(x_C)\}
\]
Image de-noising

Bayes' Theorem
Bayes' Theorem
Bayes' Theorem
Bayes' Theorem
Relation to directed graphs

- **Joint distribution:**
 - Directed:
 \[
p(x) = p(x_1)p(x_2|x_1)p(x_3|x_2) \cdots p(x_N|x_{N-1})\]
 - Undirected:
 \[
p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2)\psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)\]
Relation to directed graphs

(a)

\[\psi_{1,2}(x_1, x_2) = p(x_1)p(x_2|x_1) \]
\[\psi_{2,3}(x_2, x_3) = p(x_3|x_2) \]
\[\vdots \]
\[\psi_{N-1,N}(x_{N-1}, x_N) = p(x_N|x_{N-1}) \]
Relation to directed graphs

- this process of ‘marrying the parents’ has become known as **moralization**, and the resulting undirected graph, after dropping the arrows, is called the **moral graph**.

\[p(x) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
Inference in Graphical Models

\[p(x, y) = p(x)p(y|x) \]

\[p(x|y) = \frac{p(y|x)p(x)}{p(y)} \]
Inference on a chain

\[p(x) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N) \]

\[p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(x) \]
Inference on a chain

\[p(x_n) = \frac{1}{Z} \]

\[
\begin{bmatrix}
\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \\
\sum_{x_2} \psi_{2,3}(x_2, x_3) \\
\sum_{x_1} \psi_{1,2}(x_1, x_2)
\end{bmatrix} \ldots
\begin{bmatrix}
\sum_{x_{N-1}} \psi_{N-1,N}(x_{N-1}, x_N)
\end{bmatrix}
\]

\[\mu_{\alpha}(x_n) \]

\[\mu_{\beta}(x_n) \]

(8.52)
Inference on a chain

Passing of local *messages* around on the graph

\[
p(x_n) = \frac{1}{Z} \left(\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_2} \psi_{2,3}(x_2, x_3) \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \right] \right)
\]

\[
\mu_\alpha(x_n)
\]

\[
\sum_{x_{n+1}} \psi_{n+1,n}(x_n, x_{n+1}) \cdots \left[\sum_{x_{N-1}} \psi_{N-1,N}(x_{N-1}, x_N) \right] \cdots.
\]

\[
(8.52)
\]

\[
p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n)
\]
Inference on a chain

Passing of local messages around on the graph

\[p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_\alpha(x_{n-1}). \]

\[\mu_\alpha(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \]
Inference on a chain

Passing of local *messages* around on the graph

\[
\mu_\beta(x_n) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_n) \left[\sum_{x_{n+2}} \cdots \right]
\]

\[
p(x_n) = \frac{1}{Z} \mu_\alpha(x_n) \mu_\beta(x_n) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_n) \mu_\beta(x_{n+1}).
\]
Inference on a chain

Passing of local *messages* around on the graph

\[
p(x_{n-1}, x_n) = \frac{1}{Z} \mu_\alpha(x_{n-1}) \psi_{n-1,n}(x_{n-1}, x_n) \mu_\beta(x_n)
\]
Tree

(a)

(b)

(c)
Factor graph

- the joint distribution over a set of variables in the form of a product of factors

\[p(x) = \prod_{s} f_s(x_s) \]

- where \(x_s \) denotes a subset of the variables
Factor graph

\[p(x) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3) \]
Factor graph

- an undirected graph => a factor graph
 - create variable nodes corresponding to the nodes in the original undirected graph
 - create additional factor nodes corresponding to the maximal cliques x_s
 - Multiple choices of f_g
(a) An undirected graph with a single clique potential $\psi(x_1, x_2, x_3)$.

(b) A factor graph with factor $f(x_1, x_2, x_3) = \psi(x_1, x_2, x_3)$ representing the same distribution as the undirected graph.

(c) A different factor graph representing the same distribution, whose factors satisfy $f_a(x_1, x_2, x_3)f_b(x_1, x_2) = \psi(x_1, x_2, x_3)$.
The sum-product algorithm

- The problem of finding the marginal $p(x)$ for particular variable node x

\[p(x) = \sum_{x \setminus x} p(x) \]

\[p(x) = \prod_{s \in \text{ne}(x)} F_s(x, X_s) \]
The sum-product algorithm

- The problem of finding the marginal $p(x)$ for particular variable node x

\[
p(x) = \prod_{s \in \text{ne}(x)} \left[\sum_{X_s} F_s(x, X_s) \right] \\
= \prod_{s \in \text{ne}(x)} \mu_{f_s \rightarrow x}(x).
\]

\[
\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s)
\]
The sum-product algorithm

- The problem of finding the marginal $p(x)$ for particular variable node x

\[\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s) \]
The sum-product algorithm

- The problem of finding the marginal $p(x)$ for particular variable node x

\[F_s(x, X_s) = f_s(x, x_1, \ldots, x_M)G_1(x_1, X_{s1}) \ldots G_M(x_M, X_{sM}) \]

\[\mu_{f_s \rightarrow x}(x) \equiv \sum_{X_s} F_s(x, X_s) \]
The sum-product algorithm

- The problem of finding the marginal $p(x)$ for particular variable node x

\[
\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{x_m}} G_m(x_m, X_{sm}) \right]
\]

\[
= \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \rightarrow f_s}(x_m) \quad (8.66)
\]

\[
\mu_{x_m \rightarrow f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm})
\]
Junction tree algorithm

- deal with graphs having loops

Algorithm:
- directed graph \Rightarrow undirected graph (moralization)
- The graph is triangulated
- join tree
- Junction tree
- a two-stage message passing algorithm, essentially equivalent to the sum-product algorithm
Graph inference example

- Computer-Generated Residential Building Layouts [SIG ASIA 2010]
The End

新浪微博: @浙大张宏鑫

微信公众号:

![QR Code]