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Nonedge-Specific Adaptive Scheme for
Highly Robust Blind Motion Deblurring

of Natural Imagess
Chao Wang, Yong Yue, Feng Dong, Yubo Tao, Xiangyin Ma,

Gordon Clapworthy, Hai Lin, and Xujiong Ye

Abstract— Blind motion deblurring estimates a sharp image
from a motion blurred image without the knowledge of the blur
kernel. Although significant progress has been made on tackling
this problem, existing methods, when applied to highly diverse
natural images, are still far from stable. This paper focuses on
the robustness of blind motion deblurring methods toward image
diversity—a critical problem that has been previously neglected
for years. We classify the existing methods into two schemes
and analyze their robustness using an image set consisting of
1.2 million natural images. The first scheme is edge-specific, as
it relies on the detection and prediction of large-scale step edges.
This scheme is sensitive to the diversity of the image edges
in natural images. The second scheme is nonedge-specific and
explores various image statistics, such as the prior distributions.
This scheme is sensitive to statistical variation over different
images. Based on the analysis, we address the robustness by
proposing a novel nonedge-specific adaptive scheme (NEAS),
which features a new prior that is adaptive to the variety of
textures in natural images. By comparing the performance of
NEAS against the existing methods on a very large image set,
we demonstrate its advance beyond the state-of-the-art.

Index Terms— Blind deconvolution, image restoration,
maximum a posteriori estimation.

I. INTRODUCTION

RECOVERING a sharp image from a motion blurred
image without the knowledge of its blur kernel is

called blind motion deblurring. This is an interesting problem
in many applications, including video surveillance, medical
imaging and consumer photography, to name but a few.

One of the critical challenges of blind motion deblurring is
that it is severely ill-posed - the number of unknowns is much
greater than the number of available measurements. Given a
blurred image, we need to work out its sharp version and the
blur kernel. Although significant progress has been made in
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the last few years [1]–[15], the latest techniques are still not
very robust, especially in the face of highly diverse natural
images. Most of the existing methods have been tested only
on very small sets of natural images. In fact, some algorithms
are able to produce satisfactory results only on a small number
of selected images. The poor robustness has severely hindered
the applicability of the deblurring techniques to real-world
applications.

Since many aspects of blind motion deblurring have
remained unclear until recently [16]–[18], technical robustness
to highly diverse natural images has not yet received sufficient
attention within the image processing community. This work
is designed to address the robustness issue by revealing the
key principles associated with the robustness of blind motion
deblurring to extremely diverse natural images. An in-depth
analysis of recent techniques has been carried out, both exper-
imentally and theoretically, based on which a novel method
is proposed; this has been found to outperform the existing
methods. Notably, the analysis and evaluation has involved
the use of 1.2 million natural images from ImageNet [19].

It was generally considered that the image sparse derivative
prior favored natural images. The sparse derivative prior
suggests that the distribution of gradients in natural images
is sharply peaked at zero and relatively heavy-tailed, which
deviates greatly from standard Gaussian distributions. How-
ever, Levin et al. [16] found that the sparse prior actually
favors blurred images instead of the latent sharp one, which
makes the classical maximum-a-posteriori (MAP) estimation
produce a dense kernel, rather than the true kernel [16].

We categorize existing methods into edge-specific and non-
edge specific schemes.

The edge-specific scheme relies on the efficient detection
or prediction of large-scale step edges (LSEDs) [11], [13],
[15], [17], [18], [20]–[22].

1) Detection-based methods [11], [13], [15], [20] assume
that sharp explanations (i.e., the sharp version of an
input blurred image) are favored by the sparse prior
for LSEDs. In other words, the detection of LSEDs can
lead to the generation of a sharp version of the input
blurred image. However, as will be shown in this paper,
this assumption holds only at a few small windows
around the LSEDs. This fails to guarantee robust kernel
estimation.

2) Prediction-based methods adopt sharpening filters [17],
[18], [21], [23] or the inverse Radon transform [22] to
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restore LSEDs. However, they only work well only for
images with simple textures and often fail to handle
highly textured images. This is because highly textured
images can exhibit a wide spread of edges, beyond the
capability of edge prediction.

The non-edge specific scheme, on the other hand, is not
designed to carry out deblurring based on the detection or
prediction of LSEDs, so it avoids the limitations of the edge
specific scheme. There are two main approaches.

1) Adopting image measurements to favor sharp explana-
tions [24]. As will be demonstrated in this paper, such
measurements work only for a very small number of
natural images. We will further demonstrate that finding
a measurement robust to millions of natural images is
almost impossible.

2) Marginalizing the sparse prior distribution [9], [25].
Levin et al. [16] proved that this approach leads to
the true solution under the condition that the image
size is much larger than the kernel size. Although it
has a sound theoretical foundation, we find that its
performance is very unstable, mainly due to the variation
of the sparse priors over different images. For example,
a sparse prior distribution learned from highly structured
images [9] may work very poorly on simply structured
images.

In short, the performance of the edge-specific scheme is
greatly limited by its inability to recover a wide variety
of image edges. On the other hand, the non-edge specific
scheme suffers from the statistical variations to be found in
natural images. This leads to poor robustness towards image
diversity.

To address these problems, this paper proposes a novel
non-edge specific adaptive scheme (NEAS) for blind motion
deblurring. While NEAS belongs to the non-edge specific
scheme, it is designed to deal with statistical variations of
images and increases the robustness by adopting an adaptive
approach. Consequently, NEAS overcomes the sensitivity to
the variation of image edges or to the statistical variation of
natural images associated with other methods.

NEAS is implemented through a novel prior that combines
LSED prediction and prior distribution marginalization. The
former provides an adaptive term to guarantee the robustness
to statistical variation of natural images, while the latter offers
a good initial value and a regularization term to guarantee the
robustness to diverse image edges.

NEAS works very well on a very wide variety of images.
Our experiments have shown that it outperforms existing meth-
ods on the standard dataset of Levin et al. and a huge image
set built based on 1.2 million natural images in ImageNet.
Notably, this superior performance was observed consistently
on many different categories of natural images during our
experiments.

In summary, the contributions of this paper are as follows.

1) It reveals that the robustness to natural image diversity
is a significant problem for blind motion deblurring
through in-depth analysis and experiments (Sections III
and VI).

2) It identifies the source of sensitivity to natural image
diversity in the existing methods and hence explains the
cause of this poor robustness (Section III).

3) Based on this analysis, it proposes a novel adaptive
scheme (i.e. NEAS) and demonstrates that it outper-
forms the state of the art by performing experiment on
a huge set of natural images exhibiting wide diversity
(Section IV and V).

The remainder of the paper is organized as follows.
Section II describes related work, and Section III describes
the problems associated with existing methods. NEAS is
described in Sections IV and V, while Section VI presents
the experimental results. Section VII discusses the limitations
of NEAS, and Section VIII draws the final conclusions.

II. RELATED WORK

Blind motion deblurring is an interesting subject to the
image processing community, but many existing methods
suffer from poor robustness towards the wide diversity to
be found in natural images. Often, these methods have been
subjected to relatively light testing in which the evaluation con-
siders only experimental images or involves images numbering
only in the dozens. We argue that a truly robust method should
undergo rigorous evaluation using a much more extensive
set of images which reflects the full diversity of form and
content to be found in natural images. However, this robustness
issue has not yet received much attention from the research
community.

This section provides a brief review of the blind motion
deblurring techniques related to NEAS. For a more com-
prehensive literature survey in this area, see [6], [7]. By
convention, the blurring process is modeled as:

y = k ⊗ x + n (1)

where y is the observed blurred image, k is the blur kernel, x
is the latent sharp image, n is the image noise, and ⊗ denotes
the convolution operator.

Traditional methods cast blind motion deblurring into
the maximum-a-posteriori (MAP) framework, which seeks
a pair (x∗, k∗) that maximizes the likelihood p(x, k|y) ∝
p(y|x, k)p(x)p(k), in which the likelihood term p(y|x, k) is
the data fitting term, and p(x) and p(k) are the priors of the
image x and kernel k, respectively. More specifically, this can
be expressed as follows:

(x∗, k∗) = arg min
(x,k)

{
1

2σ 2
n

||k ⊗ x − y||2 + ρ(x) + ρ(k)

}
(2)

where σn is the standard deviation of noise n. Equation (2)
holds for Gaussian noise. The first term is the data fitting
term from (1), the second term ρ(x) = − log p(x) and the
third term ρ(k) = − log p(k) are the energies of image x and
kernel k respectively.

ρ(x) can be expressed in terms of either Hyper-Laplacian
[26], [27], Mixture of Gaussians [9] or using more complex
forms to characterize high-dimensional properties [28], [29].
For natural images, ρ(x) is sparse, i.e. the distribution of
the gradients in natural images is sharply peaked at zero
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and relatively heavy-tailed, which is heavily deviated from
standard Gaussian distributions. ρ(k) can be either a uniform
prior to cover Gaussian kernels according to [16] or a more
sparse prior to model trajectory-like kernels according to
[9], [20].

Equation (2) is generally solved by an iterative optimization
that alternates between refinement of the blur kernel k and
restoration of the image x until the convergence is reached.

It has been pointed out by [9], [16] that the solution for (2)
is a blurred image rather than a sharp one, no matter whether
ρ(k) is uniform [16] or sparse [9]. This is because a sparse
image prior favors blurred images, which means that a blurred
image has lower energy than its sharp version. In fact, the
global optimum solution of (2) is actually a blurred image, and
the sharp version corresponds only to a local optimum. This
increases the difficulty in obtaining the sharp image through
optimization. We refer to this as MAP failure in this paper.

A. Edge Specific Scheme

To remedy the MAP failure, the edge specific scheme
relies on the detection and prediction of large-scale step edges
(LSED).

LSED detection-based methods [13], [15], [20] assume that
sharp explanations are favored by (2) around step edges (i.e.
sharp edges have lower energy than their blurred versions in
(2)). However this assumption holds only for a few small
windows around LSED.

The LSED prediction-based methods [11], [17], [18], [22]
firstly restore sharp step edges and then use them to estimate
a good initial kernel, which traps the optimization of (2) into
the local minimum corresponding to the sharp solution.

The most commonly used approach to restore step edges is
the shock filter: xt+1 = xt − sign(�xt)||∇xt ||dt with �, ∇
and dt denoting the Laplacian operator, gradient operator and
the time step, respectively.

Since sharpening filters that includes the shock filter can
only restore step edges, the LSED prediction-based methods
cannot handle images in which the number of LSEDs is small,
e.g. highly textured images. Xu et al. [18] use a gradient map
to retain LSEDs by excluding narrow edges. However, their
method is not robust as it fails to exclude a variety of types
of edge to guarantee robust kernel estimation.

B. Nonedge Specific Scheme

The non-edge specific scheme does not rely on the recovery
of one specific kind of edge. This consequently avoids the
weakness exhibited by the edge specific scheme. One approach
is to seek an image measurement that favors sharp explanations
[24] (i.e. sharper images achieve lower measurement scores).
But it is extremely hard for a measurement to work well
for thousands of natural images, let alone for millions of
examples.

A more robust solution [9], [25] is the marginalization
method, which solves k by maximizing p(k|y). This can be

achieved through marginalizing the sparse distribution of x :

k∗ = arg max
k

p(k|y) = arg max
k

∫
p(x, k|y)dx

= arg max
k

∫
p(y|x, k)p(x)p(k)dx. (3)

It is been proved in [16] that (3) leads to the true solution
under the condition that the size of x is much larger than the
size of k according to Bayesian estimation theory. However,
this is based on the assumption that the prior p(x) is the same
for all natural images. In fact, the deviation of p(x) among
natural images leads to significant performance variation of
the marginalization method over different natural images.

C. Novelty

The NEAS proposed in this paper is an elegant combina-
tion of the marginalization method and the LSED prediction
method. NEAS inherits the advantages of the non-edge specific
scheme since it does not rely on the recovery of specific image
edges. Meanwhile, NEAS adopts a novel adaptive prior, lead-
ing to the capability of handling the variation of sparse image
priors that exists in natural images in an adaptive manner.
Consequently, NEAS achieves a high degree of robustness and
a good performance across a wide variety of natural images.

Notably, this paper focuses entirely on the issue of algo-
rithm robustness to image diversity. Other issues such as
blur formulation and optimization are not at the center of
this research. And only spatially uniform blurs are consid-
ered in this paper. Space-variant blur models can be found
in [21], [23], [30], [31].

III. ANALYSIS

This section analyzes the fundamental causes of poor
robustness of the existing blind motion deblurring techniques.
We will identify the source of their sensitivity to the diversity
of natural images.

The analysis is based on experiments carried out on a
huge image set, ImageNet [19], which offers a comprehensive
coverage of natural images from the real world. It features 12
subtrees, containing a total of 1.2 million high quality images
spread over 5247 categories.

We use the Kullback–Leibler (KL) distance to quantify the
difference of derivative distributions between natural images.
Since a sparse image prior concerns the distribution of deriv-
atives, KL distance is an important measure to assess the
priors. Based on the KL distance, we quantize all the images
from ImageNet into 20 category bins according to their KL
distances to the model image in Fig. 1(a); the centroid image
of each bin is shown in Fig. 2. Analysis has been performed
on the images under this categorization.

The experiments needed to artificially blur all of the
1.2 million images from ImageNet using different blur kernels,
creating pairs of blurred and sharp images. Generating blurred
images using artificial kernels is a common practice in much
blind motion deblurring research [16]. Since the true motion
blur kernel is unknown, different artificial kernels are often
used to mimic the real motion blur. Our analysis involved



WANG et al.: NEAS FOR HIGHLY ROBUST BLIND MOTION DEBLURRING 887

(a)

0.5 1.0 1.5 2.0
0

0.04

0.08

0.12

0.16

KL distance to a model image

R
at

io

(b)

Fig. 1. (a) Model image of complex textures. (b) Distribution of the KL
distance between the derivative distribution of each image in ImageNet and
that of the model image in (a). We quantify the KL distance in 20 bins.

the use of different blur kernels, including those illustrated in
Fig. 9(b) and Fig. 5(b).

Briefly, four key findings are revealed by the analysis. The
first confirms an observation by Levin et al. [16], but with
much more extensive testing; the other three are original. The
remainder of this section will provide detailed analysis towards
these findings, followed by an illustration of their impact on
the robustness of existing methods.

Key Findings 1 and 2 target the edge specific scheme,
including LSED detection [13], [15], [20] or prediction [11],
[17], [18], [22].

A. Key Finding 1

A sparse prior favors sharp explanations only in a few small
windows of natural images.

This finding implies the MAP failure, i.e. a sparse prior does
not favor the sharp version of the blurred image. To illustrate
this on millions of images, we conducted two experiments.

Our first experiment is designed to compare the energy
between the artificially blurred and sharp image pairs using
a sparse prior. The blur kernel is shown in Fig. 9(b). For
the sparse image prior, we employ the Hyper-Laplacian prior
as in [16]: ρ(x) = ∑

γ, j ‖ fγ, j (x)‖α where fγ, j (x) denotes
the output of fγ ⊗ x at pixel j . fγ has two components
in horizontal and vertical directions, i.e. fγ = { fh , fv } =
{[1,−1], [1,−1]T }, and α = 0.6.

Among the 1.2 million images, we find that only 317 sharp
images have lower energy than the corresponding blurred
images, accounting for only 0.0264% of the total. All of these
317 images are composed mainly of step edges, as shown in
Fig. 3.

In the second experiment, we assess the sparse prior ρ(x)
within differently sized local windows in a natural image and
observe how many of them favor the sharp version. Fig. 4(a)
shows the average percentage of the windows sized at 25×25
that favor the sharp versions within the 20 category bins. It
shows that this percentage is quite small for highly textured
images (< 0.15%). Further, the blurred versions are favored
almost at all windows (> 99.99%) if 45 × 45 windows are
used in the experiment.

LSED detection-based methods [13], [15], [20] in the edge
specific scheme assume that sharp explanations are favored by
(2) around LSEDs. However, both of the experiments above
show that this assumption holds only for a few small windows

of natural images. This finding leads to the conclusion that
LSED detection-based methods are far from being robust to
natural images.

B. Key Finding 2

The number of LSEDs available within a natural image is
usually insufficient for a robust kernel estimation.

This finding is broken down into 2 sub questions.

1) How many edges are required for accurate kernel esti-
mation?

2) How many LSEDs can be recovered from a natural
image?

To answer the first question, our experiment estimates the
kernels from the artificially blurred images (Fig. 5(b) shows
the true kernel). Then both of the estimated and true kernels
are used to recover the sharp image version, allowing for the
assessment of the quality of the estimated kernels.

More specifically, we randomly select 100 blurred and sharp
pairs from each bin of the entire image set and estimate their
kernels using large gradient values in a least square manner
as in [17]. Based on the estimated kernel, the sharp images
are recovered using the fast sparse deconvolution method [27]
with the default parameters. To assess the accuracy of the
estimated kernels, we follow Levin et al. [16] by using the sum
of squared differences (SSD) ratio between the deconvolution
error with the estimated kernel and the deconvolution error
with the true kernel.

Figure 5(a) shows the SSD ratio against the ratio between
the number of gradient values and the kernel size. Empirically,
SSD ratios below 3 are regarded as visually acceptable [16].
The figure shows that the number of gradients needs to double
the kernel size in order to reach a satisfactory estimation
(SSD<=3). Figure 5(b) shows two results with different num-
bers of gradient values, in which the right image (SSD = 852,
recovered by using gradients that double the kernel size)
contains less ringing artifacts than the left (SSD = 1247,
recovered by using gradients sized equivalently to the kernel).

The answer to the second sub-question is divided into 2
cases, depending upon whether the LSEDs are isolated [22]
or not [17], [18].

1) The number of isolated LSEDs is low in natural images.
Figure 6(a) shows the average numbers of LSEDs
detected by [22]. This is particularly true for highly
textured images, with many such examples having fewer
than 500 isolated LSEDs. One example is shown in
Fig. 6(b).

2) For non-isolated LSEDs, generally we are able to
recover only one specific type of LSED, i.e., the LSEDs
with a size larger than the blur kernel [18], using
sharpening filters out of the 7 types of edges of natural
images classified by [32], as shown in Fig. 7.

The blur kernel used in this experiment is shown in
Fig. 9(b) (sized 45 × 45). The step edges are computed

by (1/L)
√∑

l cos(2θl)2 + ∑
l sin(2θl)2, following the work

of [33]. θl ∈ [0, π] denotes the orientation of the edge, and
L denotes the number of the edges. Only edges with a large
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Fig. 2. Centroid images of 20 quantized category bins in Fig. 1(b). The KL distances increase from top to bottom and left to right.

Fig. 3. Examples for which sharp images are favored by the sparse derivative prior. These images are mainly composed of step edges.
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Fig. 4. (a) Average ratio of windows in which the sharp explanation is
favored. (b) Simply textured example containing many windows (marked in
red) in which the sharp explanation is favored by the sparse prior. (c) Complex
textured example containing few windows in which the sharp explanation is
favored by the sparse prior.
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Fig. 5. (a) SSD ratios as a function of the number of gradient values adopted
for kernel estimation. (b) Testing blurred example together with a kernel,
the result (SSD = 1247) estimated using r2 gradient values, and the result
(SSD = 852) estimated using 2r2 gradient values, with r denoting the width
of the blur kernel. The close-up views reveal the quality of the estimated
kernels.

metric (i.e. greater than 0.5) are retained. Finally, we exclude
narrow edges to obtain LSEDs using the gradient map [18]
gm(yi) = ‖∑

γ, j∈	(i) fγ, j (y)‖/(∑γ, j∈	(i) ‖ fγ, j (y)‖ + 0.5)
where 	(i) denotes the neighborhood window of pixel i , and
fγ, j (y) denotes the output of fγ ⊗ y at pixel j . This process
uses a threshold of 0.5 for gm .

Fig. 8(a) shows the average number of detected LSEDs in
the 20 category bins. One such example is given in Fig. 8(b),
which shows that the method works sufficiently well.

By putting the answers to these two sub-questions together,
we can see that natural images, especially those that are highly
textured, often do not have sufficient LSEDs to support a
satisfactory recovery of blur kernels at normal sizes (e.g.,
45 × 45).
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Fig. 6. (a) Average numbers of the detected isolated LSED using the method
in [22], for the 20 quantized category bins. (b) Highly textured example, which
contains no isolated LSED for [22].

(a) (b) (c) (d) (e) (f) (g)

Fig. 7. (a)–(g) sharp edges, the blurred edges, and the sharpened edges by
the shock filter for seven kinds of natural edges. From (a) to (g) are step,
concave slope, convex slope, roof, valley, staircase, and peak edges. Only the
step edge is accurately recovered. Notice that the height of the peak edge
becomes smaller after being sharpened.

The LSED prediction-based methods in the edge specific
scheme attempt to restore sharp step edges by using the
inverse Radon Transform [22] or deterministic sharpening
filters [17], [18] before applying the restored sharp edges for
kernel estimation.

For the Radon Transform approach [22], the LSEDs should
be isolated. Our statistics have shown that a normal sized
kernel (e.g. 45 × 45) cannot be accurately estimated due
to the lack of LSEDs in many natural images.

For the approach by [17], [18] adopting the sharpening filter,
non-isolated LSEDs are allowed. However, as shown above,
the types and sizes of recoverable edges are very limited.
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Fig. 8. (a) Average numbers of the detected LSED for the 20 quantized
category bins, using our detection method. (b) Example to show the accuracy
of our detection method. The LSED are marked in red.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Two failure examples for the LSED prediction methods [17], [18]. The
top images demonstrate that complex textured images might have insufficient
large step edges. The bottom examples show that extremely simple images
cannot provide sufficient edges. (a) and (e) Sharp images. (b) and (f) Blurred
images together with the blur kernel. (c) and (g) Results by Cho et al. [17].
(d) and (h) Results by Xu et al. [18].

Including other types of edges in kernel estimation might
totally damage the result [18].

We have tested the LSED-prediction based methods on
highly textured images in the first three category bins of
ImageNet using the method of [17] and found that the failure
(SSD>3, an example illustrated in Fig. 9(c)) is associated with
17.45% of the total. It has also been observed that the number
of LSEDs in an extremely simple image is also small (i.e. only
hundreds of non-zero gradients) hence is insufficient to recover
kernels at normal sizes.

Key Finding 2 suggests that LSED-prediction based meth-
ods are not able to handle a considerable proportion of the
images in ImageNet, so they are deemed not to be robust.

By considering Key Findings 1 and 2 together, we draw the
conclusion that the edge-specific scheme is sensitive to image
diversity due to an insufficient number of recoverable LSEDs.

Xu et al. [18] have proposed a gradient map to exclude
narrow edges in order to retain only step edges. However, their
method cannot exclude unwanted edges in order to guarantee
robustness, as shown in Fig. 9(d).

Key Finding 3 and 4 target the non-edge specific scheme,
which resorts to image measurement [24] or marginalization
of image distribution [9], [25] to favor sharp explanations.

C. Key Finding 3

Finding a robust measurement that favors sharp explanations
for diverse natural images is nearly impossible.

Krishnan et al. [24] found a normalized sparsity
measurement of gradients l1/ l2 (this is not a prior
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Fig. 10. (a) Ratios of the 1.2 million images for which l1/ l2 works, for
each bin. (b) Result from the method using l1/ l2 [24] for the blurred image
shown in Fig. 9(b).

because
∫

ex p(−l1/ l2) = ∞) that favors sharp images.
l p denotes the p-norm on the gradients and l1/ l2 =∑

γ, j ‖ fγ, j (x)‖/
√∑

γ, j ‖ fγ, j (x)‖2. This measurement works
well for Levin et al.’s 32 image dataset [16].

However, our work has found out that this measurement
works poorly on images within ImageNet. By comparing the
blurred (via kernel Fig. 9(b)) and sharp image pairs in l1/ l2,
we find that the sharp version is favored in 110,107 images,
accounting for only 9.18% of the total. Figure 10(a) gives
the percentage of the images in which l1/ l2 works well in
each bin. It is clear that l1/ l2 is apt to fail for highly textured
images. Figure 10(b) shows the result of a failure.

One question thus arises: is there a robust measurement con-
sistently favoring sharp images? In fact, this question can be
seen as a dimensionality reduction and classification problem.
Finding such a measurement is equivalent to projecting the
image vector down to a single dimension while maximizing
the separation of the sharp images from their blurred versions.
This problem is known as Fisher’s discriminant in Machine
Learning. The projection to one dimension leads to consider-
able loss of information. The classes that are well separated
in the original high-dimensional space might become strongly
overlapping. Finding such a robust measurement for extremely
diverse natural images is nearly impossible.

To illustrate this, we use the blur kernel in Fig. 9(b) at
various sizes, including 5 × 5, 9 × 9, 13 × 13, 17 × 17,
21 × 21 together with noise of a standard deviation of 0.01
to synthesize the blurred versions artificially. 10,000 sharp
images in ImageNet with their blurred versions are used as
the training set, and both the linear and non-linear projections
are tested.

For linear projection, we adopted Fisher’s linear discrimi-
nant [34] to solve for the measurement, and found that only
61.2% of the images could be correctly classified. Hence,
a linear robust measurement does not exist. For nonlinear
projection, we adopted the kernel Fisher discriminant [34].
Among the kernel functions [34], the radial basis function
produced the best results: 64.7% of all the images could be
correctly classified. This reveals that it is nearly impossible
for image measurements to remedy the MAP failure.

These experimental results support Key Finding 3.

D. Key Finding 4

Sparse gradient priors vary greatly among natural images.
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To illustrate the diversity among natural images, we measure
the KL distances between the derivative distribution of the
images in ImageNet and that of a model image shown in
Fig. 1(a). This results in a heavy-tailed distribution, whose
kurtosis measurement equals 6.65, as shown in Fig. 1(b).
We also find that the KL distance increases when the image
texture becomes simpler. For simple man-made scenes which
consist of only a few step edges, the KL distances are quite
large, as demonstrated by the centroid images in Fig. 2. All
these observations demonstrate a broad diversity of derivative
distributions among the images.

The marginalization methods learn a sparse distribution
prior from a single highly textured model image [9], [25].
However, applying the prior learned from a single image to
highly diverse natural images leads to significant variation of
performance over different natural images.

To illustrate this, we carried out an experiment by applying
the estimated kernels to artificially blurred images and subse-
quently comparing the SSD errors using the true sharp images.

The images involved included 100 randomly selected
blurred and sharp image pairs from all the category bins of
ImageNet. We used the blur kernel in Fig. 9(b), together
with Gaussian noise at a standard deviation of 0.01. The
marginalization method from [25] was used to solve for the
kernels. The sparse non-blind deconvolution method in [26]
with its default parameters was used to deblur the images.

Figure 11(a) shows the average SSD errors. Since the sparse
image prior is often trained from a highly structured image [9],
[25], it works poorly for other types of image. Figure 11(b)
provides a failure example owing to the significant differences
in priors.

Key Finding 3 and 4 suggest that the non-edge specific
scheme is sensitive to image diversity in natural images.

The theoretical and experimental analysis above demon-
strates that the difficulties in image edge recovery lie in the
diversity of image edges and the prediction of only specific
edges leads to poor robustness in deblurring. Furthermore, due
to the diversity of natural images, the sparse priors learned
from certain images may not be applicable to others.

IV. PROPOSED METHOD: NEAS

We address the problems mentioned above by proposing a
non-edge specific adaptive scheme (NEAS). NEAS is based on
the marginalization method [25], which is non-edge specific,
and employs a prior that is adaptive to individual images. Our
experiments have shown that this novel prior is able to improve
the robustness of blind motion deblurring significantly - see
Section VI.

This section firstly proves that an adaptive prior in its
theoretical form should lead to the true solution of deblurring.
Then we show how to formulate the adaptive prior and how to
apply it to the energy function in an iterative and multiscale
manner to allow for a traceable solution.

A. Adaptive Prior and True Solution

Ideally, an adaptive prior would be a Gaussian centered
around the true sharp image x∗: 1√

2πσR
ex p(− 1

2σ 2
R
‖x − x∗‖2).
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Fig. 11. (a) Average SSD errors of the results by the marginalization method
[25], for all the 20 quantized category bins. (b) Sharp version, blurred version,
and the deblurred version of a failure example for the marginalization method
[25] due to large prior variance.

This prior is adaptive since it is regularized by each image x∗.
By using this prior, the marginalization method produces the
true solution. This can be proved as follows.

If we integrate x using (3), we can express p(y|k) analyti-
cally and obtain a Gaussian

Y ∼ 1√
2πσY

ex p(− 1

2σ 2
Y

‖Y − K X∗‖2) (4)

where Y , X∗, K denote the Fourier transforms of y, x∗
and k respectively, and σ 2

Y = σ 2
R‖K‖2 + σ 2

n . By assuming
a uniform prior on k as [25], we have arg maxk p(k|y) =
arg maxk p(y|k). So maximizing (4) is equivalent to maxi-
mizing (3). Since (4) is maximized when K X∗ = Y , the
marginalization method produces the true solution K = Y/X∗.

However, we cannot use the Gaussian prior
1√

2πσR
ex p(− 1

2σ 2
R
‖x − x∗‖2) to obtain the true kernel as

practically we do not know the final target x∗.

B. Two-Component Prior for the Marginalization Method

To overcome the problem, we adopt a two-component sparse
prior p(x):

p(x) = pS(x)pR(x) (5)

where pS(x) is the sparse derivative prior, and pR(x) is the
adaptive prior.

The adaptive prior pR(x) uses the result xl from LSED
prediction-based methods [17] to approximate the true sharp
image x∗. It is assumed to be in Gaussian form centered
on the predicted LSEDs in the gradient domain: pR(x) =

1√
2πσR

ex p(−(1)(2σ 2
R)

∑
γ ‖ fγ (x) − M ◦ fγ (xl)‖2) where M

denotes the mask of LSED and ◦ represents the element-
wise multiplication operator. The LSEDs (i.e. mask M) are
identified using the method presented under Key Finding 2 in
Section III.

pS(x) is added to stop the constraints from disappear-
ing. pR(x) disappears in highly structured images, in which
there are few LSEDs (i.e. M becomes 0). As mentioned
earlier, the existing marginalization methods [9], [25] apply
a single sparse distribution pS(x) to all images, which is
not robust. By using the novel adaptive prior in (5), the
results are pulled towards individual images by the prior
pR(x). Then our new marginalization method solves for k by
arg maxk

∫
p(y|x, k)pR(x)pS(x)p(k)dx .
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C. Two-Component Prior for LSED Prediction-Based Method

An inherent problem in (5) is that xl might be inaccurate
because LSED prediction-based methods are edge specific,
which violates the motivation of NEAS. This is particularly
true for highly structured images. The limitations of LSED
prediction-based methods compromise the advantages of the
adaptive prior. To obtain an accurate xl , we integrate the
adaptive prior of (5) into the LSED prediction-based methods
while assuming pR(x) to be a Gaussian centered on xm which
is the result of the marginalization method. Then the energy
function of the LSED prediction-based method becomes:

1

2σ 2
n

‖k ⊗ x − y‖2 + 1

2σ 2
R

×
∑
γ

‖ fγ (x) − M ◦ fγ (xm)‖2 + ρ(x) + ρ(k). (6)

Obviously, pR(x) acts as a regularization term to pull the result
of (6) towards xm in order to produce an accurate result xl .

D. Iteration:

In a nutshell, NEAS works as an iterative process that
alternates between the marginalization method and the LSED
prediction-based method. The former provides a good initial
value and a regularization term for the latter. The latter
provides an adaptive prior for the former. In this manner,
the marginalization method and the LSED prediction based
method are regularized by each other. The adaptive prior in (5)
provides a simple way to combine these two leading methods
in the framework of NEAS. Figure 12 demonstrates the impact
of the adaptive prior.

The enhanced robustness in NEAS can be explained from
the perspective of energy minimization.

Essentially, the marginalization method provides a better
initial value and an energy constraint which allow the LSED
prediction-based method to adaptively cope with image diver-
sity. It is known from [16] that a sharp solution corresponds to
a local minimum instead of a global minimum of the energy
function in (2). Hence, we aim to converge at the desired local
minimum instead of at the global minimum.

To achieve this, we need to place the initial value within a
small neighborhood of the local minimum for the true sharp
solution and hence allow the local-minimum based method to
converge at the desired position. NEAS adopts the result of
the marginalization method as the initial value.

The initial values of the traditional LSED prediction-
based methods are obtained from the shock filters [17],
[18]. They are edge sensitive and can be very far from
the true solution. This is particularly true for images with
complex textures. As shown in Fig. 13, the better initial
value from the marginalization methods improves the result
significantly.

Also, through the designed iteration, the results of the
marginalization are used as a constraint to prevent the LSED
prediction-based method from drifting away from the true
solution in (6). Such a drift occurs very frequently in LSED
prediction-based methods due to inaccurately recovered nar-
row edges [18]. The new constraint allows the sharp solution

(a) (b) (c) (d)

Fig. 12. (a) and (b) Results by the marginalization method, not using and
using our adaptive prior, respectively, for the blurred image in Fig. 11(b).
(c) and (d) Results by the marginalization method, not using and using our
adaptive prior, respectively, for the blurred image in Fig. 9(b).

to remain as a good local minimum. Figure 13(g) demonstrates
the impact of the energy constraint.

Algorithm 1 shows the basic iteration process of NEAS.

E. Multiscale Scheme

In practice, we adopt a multi-scale approach to refine both
k and x from coarse to fine. At each scale, we perform the
iteration process illustrated in Algorithm 1.

The purpose of following the multiscale scheme is to
ensure satisfactory results from the marginalization method.
In fact, performing the marginalization method at the full
image scale sometimes fails to provide a good initial value
and energy constraint owing to the image diversity. But we
have observed that the marginalization method can achieve
extremely good results at coarse scales even if the estimated
kernel at the full scale is inaccurate. This is because the
down-sampling smoothes out the error in the kernel estima-
tion, leading to a smaller deconvolution error at the coarse
scales.

To illustrate this, we take Fig. 13(b) as an example.
Figure 13(h) shows the SSD error at each scale. At the coarsest
layer, the result is nearly identical to the true solution (per-
pixel SSD error<0.001) and the SSD gap grows with the
increase of image resolution.

The joint prior (5) improves the robustness of the marginal-
ization method from coarse to fine, producing a much better
result, as shown in Fig. 13(g, h). This demonstrates that NEAS
can handle challenging examples beyond the capabilities of
both the marginalization and the LSED prediction based
methods.

V. IMPLEMENTATION DETAILS

Here we give the details of our implementation of the
marginalization and LSED prediction based method in NEAS.

A. Marginalization Method

In the marginalization method, we assume the prior in (5)
on x , a uniform prior on k and a Gaussian prior on image
noise n, obtaining

p(x, k|y) ∝ p(y|x, k)pS(x)pR(x)

∝ pS(x)ex p(− 1

2σ 2
n
(y − k ⊗ x)2)

× ex p(− 1

2σ 2
R

∑
γ

( fγ (x) − M ◦ fγ (xl))
2). (7)
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Fig. 13. Impact of a good initial value and our energy constraint. (a) Sharp image. (b) Blurred image with the blur kernel. (c) Result from the LSED
prediction-based method [17]. (d) Result from the LSED prediction-based method [18]. References [17] and [18] initialize the value using a sharpening filter.
(e) Result from the marginalization method [25]. (f) Result from LSED prediction-based method with the image in (e) as an initial value. Note that the kernel
has a similar shape to that of the true kernel, but contains too much noise which cannot be removed using a simple threshold method. (g) Result from our
NEAS, which takes the image in (d) as an initial value together with our energy constraint. (h) Average per-pixel SSD errors at each scale for the results
from the marginalization method (blue line) and our NEAS (red line).

Due to the non-convex sparse prior pS(x), there is no
closed-form solution to arg maxk

∫
p(x, k|y)dx . We adopt

Levin et al.’s EM optimization [25] to solve for k.
In the E-step, a Gaussian distribution q(x) is built using

the variational free energy strategy to approximate p(x |y, k)
to solve for the mean image and the covariance. The M-
step solves for the best kernel given the mean image and the
covariance. Since every step improves log p(y|k) [25], this
algorithm produces very satisfactory results. For the sparse
prior pS(x), Levin et al. [25] adopt a mixture of J Gaussians∑J

j=1
π j√
2πσ j

ex p(− 1
2σ 2

j

∑
γ ‖ fγ (x)‖2) with π j denoting the

weight for the j th component. For more details about the EM
algorithm, refer to [25].

Our work is built on the implementation of [25]. The main
modification lies at the integration of the novel adaptive prior
in (5). Algorithm 1 gives the detailed steps and mathematical
equations.

B. LSED Prediction-Based Method

In the LSED prediction-based method, the large step edges
are firstly sharpened by the shock filter as in [17], and then
the energy function:

1

2σ 2
n

‖k ⊗ x − y‖2 + 1

2σ 2
R

∑
γ

‖ fγ (x) − M ◦ fγ (xm)‖2

+
∑
γ

‖ fγ (x)‖α + ‖k‖α (8)

is optimized by iteratively updating x and k. Note the last two
terms are the Hyper-Laplacian priors of the image and kernel,

respectively. With fixed k, Equation (8) can be simplified to:

1

2σ 2
n

‖k ⊗ x − y‖2 + 1

2σ 2
R

∑
γ

‖ fγ (x) − M ◦ fγ (xm)‖2

+
∑
γ

‖ fγ (x)‖α (9)

which can be efficiently optimized using a lookup table [27].
By fixing x , Equation (8) is written as 1

2σ 2
n
‖k⊗x−y‖2+‖k‖α

which can be easily solved by using the IRLS method [26].

VI. EXPERIMENTS

We compare NEAS with five leading methods - Fergus et al.
[9], Levin et al. [25], Krishnan et al. [24], Cho et al. [17]
and Xu et al. [18]. The first two of these are marginalization
methods, while [24] is based on the measure l1/ l2. All three
methods belong to the non-edge specific scheme. The other
two methods [17], [18] are LSED prediction-based methods,
which belong to the edge specific scheme.

The proper way to compare the robustness of blind motion
deblurring methods to image diversity is to perform them on
a huge dataset containing millions of images. However, many
leading approaches are computationally prohibitive at such a
large scale. As a reference, it would take about 22 years on
a 2.66 GHz Intel Xeon CPU to deblur 1 million images with
a small kernel of 35 × 35 pixels, using the efficient marginal-
ization method of Levin et al. [25], while the marginalization
method from Fergus et al. [9] is even 10 times slower.

To make the experiment feasible, we randomly select
20 images from each of the category bins in Fig. 1 in order to
cover the image diversity, thus obtaining 400 sharp images.
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Algorithm 1 Implementation of NEAS
The marginalization method: iterating 1, 2 and 3

for five times
1. Update weights: Wγ (i, i) = ∑

j (ωi,γ , j /σ
2
j ) with

ωi,γ , jo =
(

π jo

σ jo
ex p(

−E(‖ fi,γ ‖2)

2σ 2
jo

)

)/
⎛
⎝∑

j

π j

σ j
ex p

(−E(‖ fi,γ (x)‖2)

2σ 2
j

)⎞
⎠

2. Update C and xm : C(i, i) = 1/Ax(i, i) and Ax xm = bx

with Ax = 1
σ 2

n
T T

k Tk + ∑
γ T T

fγ
(Wγ + 1

σ 2
R
)T fγ and

bx = 1
σ 2

n
T T

k y + 1
σ 2

R
diag(VM)

∑
γ (T T

fγ
fγ (xl)) where Tk ,

T fγ and VM denotes the block Toeplitz matrixes of k,
fγ and M , and diag() produces a diagonal matrix.

3. Update k: solve mink
1
2 kT Akk − b

T
k k s.t . k ≥ 0 with

Ak(i1, i2) = ∑
i xm(i + i1)xm(i + i2) + C(i + i1, i + i2)

and bk(i1) = ∑
i (xm(i + i1)y(i))

LSED prediction-based method: iterating 4, 5 and 6
for five times

4. Sharpen the LSED of xm using the shock filter as in [17]:
xm = xm − sign(�xm)

∑
γ || fγ (xm)||dt with �

denoting the
Laplacian operator and dt = 0.8.

5. Update xl :
minx

1
2σ 2

n
‖k⊗x−y‖2+ 1

2σ 2
R

∑
γ ‖ fγ (x)−M◦ fγ (xm)‖2+∑

γ ‖ fγ (x)‖α

6. Update k: mink
1

2σ 2
n
‖k ⊗ x − y‖2 + ‖k‖α

We blur each image using the four blur kernels shown in
Fig. 14(c) with noise created at a standard deviation of 0.01.
These kernels are selected from related work [18], [35] with
sizes ranging from 25×25 to 45×45. Consequently, we obtain
a large testing dataset which includes 1600 blurred images
with ground truth. Deblurring this dataset still takes several
months of computing time for most of the current leading
methods [9], [24], [25].

Apart from using our large testing dataset, we have also
tested these approaches on Levin et al.’s dataset which contains
only 32 blurred images. Some methods produce good results
on Levin et al.’s small dataset but work poorly on our large
testing dataset. We have further tested these approaches on
many challenging examples with large blur kernels that span
up to 100 pixels in width or height.

In our experiments, the standard deviation σn of image noise
is set to 0.01. We adaptively set the standard deviation of
pR(x) as σR = 10σn . The Matlab implementation takes about
5 minutes to estimate a 35 ×35 kernel for a 300 ×300 image.

A. Results on Levin et al.’s Dataset

For fairness, we make a quantitative comparison between
NEAS against the leading methods by looking into the exper-
imental results from the published papers.
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Fig. 14. Quantitative results by Xu et al. [18], Cho et al. [17], Fergus et al.
[9], Levin et al. [25], Krishnan et al. [24], and our method. (a) Cumulative
histogram of error ratios for Levin et al.’s dataset, including 32 images.
(b) Cumulative histogram of error ratios for our large dataset, which includes
1600 images. (c) Ground truth kernels for our large dataset.

Following [16], [25], we measure the SSD ratio between
the deconvolution results with the estimated and ground-truth
kernels. Figure 14(a) plots the cumulative histogram of error
ratios. Empirically, error ratios below 3 are visually plausible.
All the methods produce good results with success rates over
60%. It shows that our SSD ratios are always below 2, which
is better than those from the other approaches.

B. Results from Large Synthesized Dataset

Using the executable files or Matlab codes available online,
we have tried to adjust the algorithm parameters to obtain
the best quantitative results of [9], [17], [18], [24], [25] on
our large testing dataset. Figure 14(b) plots the cumulative
histogram of error ratios.

Xu et al.’s method slightly outperforms the method of
Levin et al., while the methods of Cho et al. and Fergus et al.
have similar performance. Although Krishnan et al.’s method
produces nice results on Levin et al.’s small dataset, its
performance on our large data set is very unreliable, which
verifies the observation in Section III that l1/ l2 is not a robust
measure for blind motion deblurring. A large margin can be
observed between our method and the others.

Figure 15 shows the results on four different images.
Figures 15(a) and (b) are two images containing many large
step edges. The methods of Cho et al. and Xu et al. produce
nice results, but those of Fergus et al. and Levin et al. cannot
estimate the trajectory shapes of the kernels since their priors
are not robust.

Figure 15(c) and (d) are two images composed of various
edges. The methods of Cho et al. and Xu et al. are unreliable
as there are insufficient large step edges. The results by
Fergus et al. and Levin et al. are much better, though they
are still not quite accurate.

In comparison, the results of NEAS on these four diverse
images are all very satisfactory. More results are included in
the supplementary materials.

C. Examples With Large Blur Kernels

Figures 16(a) and (b) are two blurred images [18] mainly
composed of step edges. The kernel sizes are 95 × 95 pixels
and 55 × 105 pixels, respectively. The large blurs are beyond
the capability of the methods of Fergus et al. and Levin et al.
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(a) (b) (c) (d)

Fig. 15. Comparison on four images in our large dataset. From top to bottom are the sharp images, the blurred images, the results by Xu et al. [18],
Cho et al. [17], Fergus et al. [9], Levin et al. [25], Krishnan et al. [24], and by our method. (a) and (b) Two images containing many large step edges. (c) and
(d) Two images, which lack step edges.

Although the methods of Krishnan et al. and Cho et al.
can estimate the trajectory shapes of the kernels, the results
have many artifacts, which demonstrates the inaccuracy of
the kernel estimation. In contrast, both NEAS and Xu et al.’s
method produce nice results.

Figures 16(c) and (d) are two highly textured images with
few step edges. The kernel sizes are 65×65 pixels and 55×55
pixels, respectively. The methods of Cho et al., Xu et al. and
Krishnan et al. are all unreliable. Though the results by Fergus
et al. and Levin et al. are much better, they are still inaccurate.

In comparison, the results from NEAS are very satisfactory.
More examples can be found in the supplementary materials.

VII. LIMITATIONS

The experiments on the large dataset reveal a limitation of
NEAS - it fails to handle extremely simple images. Figure 17
gives such an example. None of the methods in our experi-
ments is able to produce nice results for this example, since the
lack of edges makes the kernel estimation unreliable. However,
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(a) (b) (c) (d)

Fig. 16. Comparison on four images with quite large kernels. From top to bottom are the blurred images, the results by Xu et al. [18], Cho et al. [17],
Fergus et al. [9], Levin et al. [25], Krishnan et al. [24], and by our method. (a) and (b) Two images, which contain many large step edges. (c) and (d) Two
images, which lack step edges.

(a) (b) (c) (d)

Fig. 17. Results for the extremely simple image in Fig. 9(b). None of the methods in our comparison produces an accurate kernel. The results by
(a) Fergus et al. [9], (b) Levin et al. [25], (c) Krishnan et al. [24], and (d) our result. The results by Cho et al. [17] and Xu et al. [18] are shown in
Fig. 9(c) and (d).

this type of image accounts for less than 0.02% of the total
images in ImageNet.

Also, like most other blind motion deblurring methods,
we do not consider common photographic artifacts, such

as over- and under-exposed regions, non-Gaussian noise
and non-linear tone scale. Incorporating these factors into
blind motion deblurring will be interesting to our future
work.
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VIII. CONCLUSION

Blind motion deblurring is a chronic inverse problem in the
image processing community. This paper discusses a critical
issue in current methods - their robustness to image diversity,
which has been neglected for many years. In fact, this is a
serious problem for some algorithms, although high quality
results have been reported for experiments on a small number
of standard testing data sets.

We conclude that the sources of the sensitivity to image
diversity in many of the existing methods originate from
the failure to handle edge variation and statistical variation.
Further, we have revealed that using statistics adaptively is
the key to enhancing the robustness. Based on this principle,
NEAS is proposed as a novel blind motion deblurring method.
Experiments on a large set of images have shown that it
produces high-quality results.
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