
SweepCanvas:
Sketch-based 3D Prototyping on an RGB-D Image

Yuwei Li
ShanghaiTech University

Shanghai, China
liyw@shanghaitech.edu.cn

Xi Luo
ShanghaiTech University

Shanghai, China
luoxi@shanghaitech.edu.cn

Youyi Zheng∗
State Key Lab of CAD&CG,

Zhejiang University
Hangzhou, China

zyy@cad.zju.edu.cn

Pengfei Xu
Shenzhen University

Shenzhen, China
pengfeixu.cg@gmail.com

Hongbo Fu
City University of Hong Kong

Hong Kong
hongbofu@cityu.edu.hk

Figure 1. Our SweepCanvas system allows artists to quickly create 3D prototype models using a sketch-based interface on top of an RGB-D image as
context. The left and right examples were created within 30 and 60 minutes, respectively, by a user with a short training period. Left and middle right
are the original images overlaid with 3D models.

ABSTRACT
The creation of 3D contents still remains one of the most cru-
cial problems for the emerging applications such as 3D print-
ing and Augmented Reality. In Augmented Reality, how to
create virtual contents that seamlessly overlay with the re-
al environment is a key problem for human-computer inter-
action and many subsequent applications. In this paper, we
present a sketch-based interactive tool, which we term Sweep-
Canvas, for rapid exploratory 3D modeling on top of an RGB-
D image. Our aim is to offer end-users a simple yet efficient
way to quickly create 3D models on an image. We develop a
novel sketch-based modeling interface, which takes a pair of
user strokes as input and instantly generates a curved 3D sur-
face by sweeping one stroke along the other. A key enabler
of our system is an optimization procedure that extracts pairs
of spatial planes from the context to position and sweep the
strokes. We demonstrate the effectiveness and power of our
∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST’17, Oct. 22–25, 2017, Quebec City, Canada

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.475/123_4

modeling system on various RGB-D data sets and validate the
use cases via a pilot study.

Author Keywords
Sketch-based modeling, modeling in context, swept surfaces

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces - Interaction styles, User-centered design; I.3.8 [Com-
puter Graphics]: Application

INTRODUCTION
3D modeling is an important research topic in both the graph-
ics and HCI fields. The well-adopted 3D modeling tools like
Maya and Blender support powerful and general-purpose 3D
modeling from scratch. However, the modeling process often
requires tedious labor and professional skills. On the other
hand, there is a high demand for 3D modeling tools geared
towards normal users, in particular for the emerging appli-
cations of 3D printing and augmented reality (AR). One of
the common tasks here is to design 3D virtual objects that
can tightly or loosely fit into the real world. The tradition-
al 3D modeling software becomes even more awkward for
such tasks, since the contextual information of the real world
is ignored during the modeling process and thus proper in-
teraction between virtual and real-world objects have to be
achieved in additional steps.

http://dx.doi.org/10.475/123_4

The idea of creating 3D contents on top of existing media
is not new and often called as modeling in context [57, 31].
Color images remain one of the most popular visual media
for such a task, since the real world can be easily acquired as
a color image using a standard color camera. However, the
resulting images are flat and have no associated depth infor-
mation. Thus a prior step, which often requires user interven-
tion, for recovering a certain level of 3D information from
images is usually needed before such images can be used as a
context for 3D modeling. We use RGB-D images, since they
are easy to acquire by consumer-level depth sensors and can
offer additional depth hues, largely saving us from the process
of image-based 3D reconstruction.

Although RGB-D images offer us additional depth informa-
tion, they do not naturally provide us a high-level understand-
ing of the underlying image or a design space for 3D model-
ing. To address theses problems, we allow users to quick-
ly express their high-level ideas via sketches, and present a
sketch-based system for 3D modeling in the context of a re-
al scene, represented as an RGB-D image (see examples in
Figure 1). We focus on early stages of exploratory designs,
where the creation of precise 3D models is not a requirement.

We exploit planar structures of the underlying 3D scene.
However, unlike previous in-context 3D sketching systems
[43, 65], which generate mainly planar canvases, our method
creates a richer set of non-planar surfaces, by employing
sketch-based modeling of swept surfaces (Figure 2). Hence,
unlike traditional sketching systems, we let the user sketch
a pair of strokes each time to create a 3D surface or surface
part, which we term as a sweep-canvas (s-canvas for short).

A 2D stroke has infinite possibilities for 3D embedding. A
key enabler of our system is an optimization procedure which
quickly locates a 3D plane for each of the stroke pair and an-
chors the optimal 3D positions to sweep the strokes. To find
optimal 3D planes, we first reduce the search space by as-
suming that each of the two strokes lies on some supporting
planes which can be extracted from the existing context. To
further eliminate undesired results, we enforce a set of reg-
ularizers including orthogonality, parallelism, and in-context
alignments. Finally, we propose a set of candidate 3D planes
to the user for confirmation and selection if needed.

Our main contribution is thus an effective sketch-based in-
context modeling system, which is capable of quickly pro-
ducing conceptual 3D models atop an RGB-D image for pro-
totyping studies. Along with it, we also present a plane ex-
traction algorithm for RGB-D images and an optimization al-
gorithm for automatic inference of 3D strokes from pairs of
2D strokes. We evaluate our system on various RGB-D data
sets captured with Microsoft Kinect and conduct a pilot user
study of 10 participants with diverse backgrounds to use our
system. The study shows that our system is very easy to use,
feasible to novice users, and powerful in quick creation of 3D
prototypes overlaid with existing context.

RELATED WORK
Our work is closely related to the researches on sketch-based
modeling and interpretation. Below we review the most rele-

(d) (e) (f)

(a) (b) (c)

Figure 2. Basic swept surfaces created by pairs of profile strokes (red)
and trajectory strokes (blue). (f) is derived using the same strokes in (e)
with symmetry enforced.

vant works in the area of sketch interpretation, 3D sketching,
in-context modeling, and 3D modeling with RGB-D.

Sketch interpretation. In the past decades, a heavy body of
research works have been devoted in the areas of sketch-based
shape retrieval [14, 61] and interpretation [10, 48, 49]. S-
ketches have also been extensively exploited for 3D modeling
due to its nature of flexibility. The famous Teddy system [23]
is perhaps one of the pioneer works in sketch-based freefor-
m 3D modeling, with the follow-up works including [53, 40,
37, 59], whose target is to interactively create freeform 3D
shapes by properly interpreting user sketches. Instead of cre-
ating 3D shape on the fly, various sketch-based modeling sys-
tems take as input a complete sketch and analytically analyze
individual strokes [33, 7, 41, 60], geometric relations among
strokes [18, 54], or network of 3D curves [45] to extract 3D
models. Please refer to the work of [39] for an excellent sur-
vey on sketch-based modeling. Our work is different from
the existing sketch-based 3D modeling techniques at least in
two aspects. First, instead of creating watertight models or
parts, we intend to create and assemble a collection of swept
surfaces for 3D prototyping, in a spirit of the Paper3D sys-
tem [42], which provides a multi-touch interface for assem-
bling complex 3D scenes from a collection of developable
surfaces. Second, our approach heavily exploits in-context
information to help create and position 3D surfaces.

3D sketching. Limited by the input devices or media, most s-
ketching and modeling systems are essentially 2D [44]. Thus,
in parallel to the set of works on sketch-based modeling, there
is a line of researches which focus on directly mapping 2D s-
ketches into 3D. Studies on lifting 2D sketches into 3D have
been explored in the systems such as Mental Canvas [13],
iLoveSketch [1], and EverybodyLoveSketch [2]. These sys-
tems exploit pre-anchored 3D planes to lift the 2D strokes
into 3D. Schmidt et al. [46] use scaffold lines for analyti-
cal drawing in 3D. A recent work of SketchingWithHand an-
chors 3D planes by human hand for sketching hand-holdable
objects [29]. The TiltBrush [19] by Google offers a substan-
tially different input by allowing users to directly draw in the
3D space using the 3D tracking devices. In our work, the
back-projection of 2D strokes to 3D is an intermediate step.
The projected strokes will later serve as profile and trajecto-
ry curves to create our final 3D surfaces. Nevertheless, in the
decoration period, the user can draw sketches over the created

surfaces to author 3D sketches on top. Hence, 3D sketching
can be a by-product of our pipeline.

Modeling in context. A design process typically involves
conducting studies on prior art. Sketching on top of exist-
ing visual contents could largely inspire such design process-
es [27]. 3D sketching systems such as 3D6B [28], Sketch-
ing Reality [7], Insitu [43], SecondSkin [11], and SmartCan-
vas [65] are created in the line of such workflows. Favreau
et al. [16] exploit estimated orientations from an underly-
ing point cloud to reconstruct line drawings. Lau et al. [31]
further physically fabricate the modeled object on a single
photograph. Gannon et al. [17] enable a direct modeling and
fabrication work flow leveraging human skins, and Huo et al.
[21] use Google Tango to create simple 3D shapes on top of a
video by performing sketch-and-inflate operations, mimick-
ing a mixed-reality experience. A recent work of 3-sweep [6]
allows users to interactively create swept surfaces on top of
an RGB image. However, since their focus is on 3D recon-
struction of image objects, their method cannot create objects
which do not exist in the input image. Unlike previous sys-
tems such as SecondSkin [11], SmartCanvas [65], and Insitu
[43], which require as input either a complete 3D model, a
set of pre-defined 3D planes or computed point cloud, our
input is a single unstructured RGB-D image, which is light-
weighted, realistic, and easier to acquire.

Modeling with RGB-D. As RGB-D images offer us addi-
tional information about depth, they have been widely ex-
ploited for various tasks like 3D reconstruction [25, 52, 51,
63], object detection [56], and image understanding [50]. Our
method creates 3D models on top of an RGB-D image. How-
ever, as a key difference, our focus is not on object or scene
reconstruction but creating new models which do not exist in
the image by exploiting contextual information. Hence, our
setting is more tightly tied to applications like augmented re-
ality. A recent work of [38] introduces a method for real-time
snapping of 3D models into real scenes captured by depth
cameras. They also exploit the underlying linear features of
RGB-D images. However, the framework settings and the
main goals are very different between their method and ours.
We exploit planar structures to lift 2D strokes into 3D while
their focus is on the extraction of edge and plane constraints
for 3D snapping.

BASIC NOTIONS
We begin with the introduction of a few basic notions. The
basic 3D elements that constitute our system are swept sur-
faces, each created from a pair of user strokes. Like in any
conceptual sketching systems, we allow further decoration
and painting operations on the generated surfaces. Hence we
term such a basic swept surface as a sweep-canvas, and s-
canvas for short.

In mathematics, given two 3D curves c1(u) and c2(v), a
swept surface is the surface generated by moving curve c1(u)
along curve c2(v). Curve c1(u) may be rotated and scaled.
More precisely, for each v in the domain of curve c2(v), curve
c1(u) is moved to the point c2(v), possibly with rotation and
scaling. Therefore, as v changes from 0 to 1, the transformed
curve c1(u) sweeps out a surface and hence the name swept

Figure 3. Our user interface consists of two main panels: a sketching
panel where the user sketches on top of an RGB-D image to create s-
canvases and a candidate panel where best-ranked candidate s-canvases
are listed. The red and blue polygons are the supporting planes for the
profile and trajectory strokes, respectively.

surface. Under this definition, curves c1(u) and c2(v) are re-
ferred to as the profile curve and trajectory curve, respective-
ly. In modeling systems such as AutoCAD, SKETCH [62],
SketchUp [58] and Pushpull++ [32], swept surfaces are cre-
ated by sweeping a base 3D profile curve along a 3D path
(trajectory) curve, whereas the path curve is normally a pre-
defined straight line. In contrast, we take 2D curve strokes as
input and infer their 3D positions using the context informa-
tion from a given RGB-D image. Figure 2 illustrates a few
basic swept surfaces supported by our system. In our imple-
mentation, rotation but not scaling is allowed for the profile
curve. To the best of our knowledge, it is for the first time
that the creation of such swept surfaces using casual sketches
on top of an RGB-D image is introduced.

USER INTERFACE
Given these notions, we now unfold the design of our system.
Our user interface (Figure 3) contains two panels: a main
window for 3D modeling via sketching over an RGB-D image
and a candidates selection panel constituted of a set of sub-
windows.

Sketching. By default the user enters the sketching mode
where s/he can sketch over a pre-captured RGB-D image us-
ing either a mouse or a touch pen. Our system takes as input a
pair of strokes, namely a profile stroke and a trajectory stroke.
We assume both strokes lie on some unknown spatial planes,
and the first stroke is a profile stroke, followed by the second
one as a trajectory stroke. During the user draws the trajectory
stroke, our system automatically creates an s-canvas and re-
turns it to the user. One or multiple candidate s-canvases will
show up in the sub-windows on the right panel for the user’s
selection in case the desired one is not in the main sketch-
ing window. Drawing multiple profile strokes ie enabled by
pressing the ‘ctrl’ key. Although the suggestive interface has
been seen in the previous works like Chateau [22], Chateau
does not exploit contextual information nor could it create
swept surfaces aimed for AR applications.

To create a new s-canvas, the user can repeat the above pro-
cess, or first select an existing stroke or its part as a profile
stroke and then draw a new trajectory stroke (Figure 4 (a) and
(b)). S/he can also make use of two existing strokes (Figure

4 (c)), or draw the profile stroke directly on top of an ex-
isting canvas, followed by a trajectory stroke (Figure 4 (d)).
Creating new canvases by reusing existing strokes provides a
smooth modeling process since a new canvas typically shares
relations with the existing ones.

Viewing. The user can change the view of the scene to get a
clear sense of the created 3D contents and continue to draw
in that view (Figure 6). Change of views is enabled with ro-
tation, zooming, and panning using a track-ball implemen-
tation. To seamlessly integrate with sketching and avoid te-
dious mode switching, the rotation is continuously enabled
with the right mouse button across different modes while the
left mouse button is mainly used for sketching, editing, paint-
ing, etc. In cases of a stylus or a touch pen, the features relat-
ed to the right mouse button are enabled by pressing a button
either directly on the device or on a keyboard.

Auxiliary operations. Our system allows a set of auxiliary
operations to enrich and smooth the modeling process, name-
ly, editing, painting & coloring, and plane manipulation.

In the editing mode, the user can edit the shape of an exist-
ing s-canvas in two ways. First, the user can re-sketch either
the profile or the trajectory strokes of the s-canvas (Figure 5
(a)). Second, the user can cut the s-canvas by sketching. For
example, the user can sketch a long stroke to cut a part of an
s-canvas or draw a closed stroke to cut out a hole from the
canvas (Figure 5 (b)). The user can also erase using a paint-
ing interface or delete an s-canvas (see in the accompanying
video). Additionally, copy and paste operations are supported
with keyboard shortcuts as ‘ctrl + c’ and ‘ctrl+v’.

The user can enter the decoration mode to either color an s-
canvas or draw decoration strokes on the s-canvas to add de-
tails, like in a 2D illustration system. Figure 5 (c) shows an
example of painting. All the user-drawn strokes are project-
ed onto the 3D s-canvases by ray-casting. The user can also
erase or delete any painted strokes. In the coloring submode,
the user can color the s-canvas and decoration strokes using a
standard color palette interface.

To increase the flexibility of our framework, our system al-
lows the user to manually specify and manipulate a 3D plane
to serve as supporting plane for the profile or trajectory stroke.
More specifically, the user can click on the image to select an
existing plane (those extracted) and then translate or rotate

(a) (b) (c) (d)
Figure 4. Various cases to create new s-canvases: (a) and (b) reuse an
existing (red) profile stroke or its part; (c) select two existing strokes
(yellow); (d) draw a profile stroke on an existing canvas and draw a new
trajectory stroke.

(a) (b) (c)

Figure 5. Auxiliary operations: (a) edit a profile or trajectory stroke to
edit an existing s-canvas; (b) cutting; (c) painting and coloring.

(a) (b)
Figure 6. Plane manipulation operation: an existing plane in the context
can be transformed in space (a) for creating a new s-canvas (b).

the plane to a desired position for stroke drawing. See Figure
6 for an example.

ALGORITHM
The input to our system is a single RGB-D image captured
by a consumer-level depth sensor, Microsoft Kinect V1 in our
case. Alternative RGB + depth sensors can also be used. We
first perform structure analysis on the underlying scene to ex-
tract a set of dominant planes from the RGB-D data. These
planes will serve as reference planes for the user strokes.
Then, a set of image features such as corner points and edges
are consolidated with the depth data to get a set of localized
3D features. We use these features to help position and create
the s-canvases. Then in a key stage, our algorithm selects a
candidate plane for each of the profile and trajectory strokes
via an MRF (Markov Random Field) labeling process, and
optimizes their positions by analyzing stroke-to-context rela-
tions.

Plane extraction
Our algorithm assumes that the user-drawn strokes lie on
some spatial planes. To find these planes, we first analyze
the RGB-D data to get a set of candidate planes. Each pix-
el u(x, y) of the RGB-D image comes with a color rgb and a
depth value d. A straightforward method to get a set of planes
from the depth data is to run RANSAC [47] directly on the
input. We find that such methods do not always return clean
results (see Figure 10 (b)). Although alternative sophisticated
plane extraction algorithms might be applied here (e.g., [24,
35]), we find the following simple strategy works very well
throughout our experiments.

Our goal is to identify the main planar regions from the RGB-
D data. Hence we first compute the normal for each pixel
data. A direct method to compute normal is to simply use
the neighboring pixels (left, right, up, bottom) and compute
their vector cross product with respect to u(x, y) [66]. This,
however, is erroneous since the captured data using Kinect
V1 is usually very noisy. We resort to a method similar to
[20]. Specifically, given each point, we find all points in a
sphere with radii r (r = 7 pixels in our implementation) and

fit these points with a best plane using RANSAC. We use the
plane normal as the normal for that point. As a consequence,
points lying on planar regions get consistent normals while
points lying on the boundaries might get incorrect estima-
tions, which are thus ignored in our later clustering process
(Figure 7 (c)).

(a) (b) (c)
Figure 7. 3D plane extraction. (a) Input RGB-D data. (b) Clustered
patches. (c) Extracted planes.

We run meanshift [8] on the RGB-D data coupled with the
computed normal, where each data point is now denoted as
u(x, y) = (r, g, b, d, nx, ny, nz). This gives us a set of patch-
es, where the points with similar colors and normals are clus-
tered (Figure 7 (c)). We then run RANSAC on the generated
patches of these regions to fit planes one by one. Once a
plane is extracted we remove the associated points and run
the RANSAC on the rest. The iteration stops when a new-
ly fitted plane does not contain a sufficient number of points
(5% of the points in our experiments). This process return-
s a cleaner set of planes, compared to a direct RANSAC as
shown in Figure 10.

3D feature consolidation
Sketching new contents atop existing context amounts to ex-
ploiting in-context relations. For example, when the user
draws a side holder along the chair seat or an arm attaching
to the chair seat and chair back, the drawing strokes should
be aligned or attached to the 3D features such as edges and
corners of the chair (see Figure 9). Thus we should extract
the key features from the RGB-D data to help the positioning
of 2D strokes in 3D. We introduce the term attachments to
accommodate such stroke-to-context alignment and find the
following three types of attachments are particularly useful
to interpret the user’s intention: attatch to an existing planar
face, a 3D edge or a 3D corner point.

As we already have planes in hand, we only need to detect the
3D edges and 3D corner points from the RGB-D data. Edge
detection and corner detection are two fundamental problems
in computer vision and have been heavily studied in 2D [12].

Figure 8. 3D feature consolidation. Left: 2D image features (edges and
corners). Right: 3D features extracted by consolidating the 2D features
with the depth data. We also include the intersecting line segments and
corners of the existing planes.

However, relatively few of research works have focused on
the case of an RGB-D image. A direct detection of these
features in the RGB space will disregard any captured depth
information and lead to a redundant set of features (e.g., the
texture edges in Figure 8 (Left)). An intuition on extracting
edges from depth data is to first compute 3D planes and the
edges are naturally their intersections [24, 4]. In the follow-
ing, we design a viable solution particularly tailored for our
system, which bears the similar idea of model fitting [24] for
edge estimation using depth.

We first detect the edge and corner features in 2D. We then
consolidate these features in 3D to yield a set of 3D edges and
corners. In particular, we examine the 2D edges and corner
points detected using standard vision techniques [3, 12] with
the extracted 3D planes. As shown in Figure 7, a plane in our
case is bounded by the convex hull of its associated points.
For a 2D edge, we consider it as a 3D edge if it agrees with
one of the boundary line segments of any plane in Ω. We
examine the proximity in both direction and position between
the 2D edge and the plane boundary line segments. Similarly,
for a 2D corner point, we tag it as a 3D corner point if it lies
in a local window (size of 20 pixels) of any 3D corner points
of the detected planes in Ω. The filtering process leads us to
a much cleaner set of 3D features. Figure 8 (Right) shows an
example of detected 3D edges and corner points in the dining
room example. Although the detected 3D corners and edges
might still contain noisy estimation, especially in image parts
which have inaccurate depth data due to their large distance
away from the camera, we find it to be sufficiently clean and
helpful in our subsequent canvas creation algorithm.

s-Canvas creation
We now detail our canvas creation algorithm. As mentioned
before, we assume that the profile stroke and the trajectory
stroke both lie on some unknown spatial planes. These s-
patial planes can be the existing planes in the context or the
planes that are parallel to the existing planes. The parallelis-
m assumption boosts the creation of s-canvases not limited to
the existing planes as such restriction may significantly limit
the space of s-canvas creation.

Note that the parallelism assumption has been exploited in the
work of [65], where they also assume the user-drawn strokes
lie on some planes parallel to existing planes. However, as a
key difference, we do not exhaustively sample a dense set of
parallel planes pre-hand to look for the best ones. In contrast,
we decouple the process by separating the plane orientation
estimation from the plane position estimation, i.e., we first
determine plane normals and then plane positions. Such de-
coupling not only reduces the search space (thus enabling us a
full exploration of the search space), but also avoids the post-
optimization process required to precisely locate the planes
with respect to the context as required in [65]. We show next
how this strategy benefits our canvas generation algorithm.

Plane orientation selection. Let us denote the set of planes
extracted from the previous section as Ω = {p1, p2, ..., pn}.
Our task is to select for the profile stroke sp and the trajectory
stroke st supporting planes pi and pj , respectively, such that
the strokes sp and st lie on some planes that are parallel to pi

and pj , respectively. A simple local strategy could easily lead
to undesired results as the strokes are frequently overlapping
with multiple planes (e.g., the ground plane and the walls, see
in supplemental material for an example). To overcome this,
we free the space to explore a larger set of possible planes
while coupling the strokes with the underlying depth data.
Essentially, this results in an MRF labeling problem, which
can be formulated as the following minimization problem:

argmin
{i,j}

Ei,j :={λpEU (sp → pi) + λtEU (st → pj)

+ λsEB(sp → pi, st → pj)},
(1)

with i, j ∈ {1, 2, ..., n}. We define the unary and binary terms
to score the selection.

The unary term is based on the observation that when in ac-
tion straight lines and in-plane strokes are usually preferred
by the user. In practice, we measure the following three fac-
tors: how likely a drawn stroke lies inside a plane and how
likely a drawn stroke approximates a straight line. The unary
term, in general cases, is defined as:

EU (s→ p) = ψ(s | p)⊗ η(s), (2)

where ψ(s | p) is the likelihood of a stroke s lying on the
plane p, defined as e−τ(s|p)

2/2σ2
p with τ(s | p) denoting the

portion of the stroke points which are inside the plane p (for
a closed stroke, we measure the overlap region (in terms of
area) between the stroke and the plane in 2D). σp is set to
0.45. η(s) is a delta function whose value depends on both
sp and st. In specific, it takes the value of 0.5 if both strokes
approximate a straight line (to favor in-plane straight lines)
and 1 otherwise.

The binary term is defined to avoid selecting nearly parallel
planes, which will cause undesired sweeping results, while
on the other hand to encourage the selection of planes which
are approximately orthogonal. We define it as follows:

EB(sp → pi, st → pj) = e−θ
2
i,j/2σ

2
t , (3)

where θi,j is the angle (with the range from 0 to π/2) between
planes pi and pj , and σt is set to π/4 to enforce the binary
term to favor a pair of planes which are orthogonal to each
other.

In our experiments, we set λp = 3, λt = 1 and λs = 2, to
emphasize the fidelity of the profile stroke drawn by the user.
This is based on the observation that a profile stroke typically
will have more direct relations to the existing context than a
trajectory stroke (recall our assumption that the profile stroke
shall lie on some existing plane.) To avoid cases when there is
no desired plane in the context, we add the following case in
our implementation: if a user stroke s approximate a straight
line (examined in 3D), we add a plane which is orthogonal to
s as a candidate plane.

The above labeling problem can be effectively solved via
graph cut [30]. We observe that the variable space is small
(2 in our case, i.e., the two strokes). Hence a complete enu-
meration only leads to a time complexity of O(n2), with n
the number of extracted planes.

(a) (b) (c)3d edge

Figure 9. Various snapping cases enabled in our system: (a) snap to
edge, (b) snap to point, and (c) snap to face.

Plane localization. The above process gives us a pair of
planes (one profile plane and one trajectory plane, c.f. the
red and blue planes in Figure 3), which exist in the context.
The actual positions of these two planes can deviate by some
offsets along the normal directions (recall our the parallelism
assumption). Our next task is thus to locate the spatial po-
sitions of the two planes by finding the correct offsets. The
key here is to derive some useful cues from the user-drawn
strokes to localize the plane positions. To this end, we ana-
lyze the stroke attachments to the existing context.

We find that the following attachment analysis is essential
in locating the final planes. First, the intersection point be-
tween the profile stroke and the trajectory stroke often indi-
cates the start position of the sweeping. Second, the start and
end points of the strokes are often attaching to some planes,
edges, or corner points in the image when the user draws in
the context.

Essentially, our goal is to find some attaching point of the
strokes to the RGB-D data that the profile and trajectory
planes should pass through. Let us denote the set of 3D fea-
tures extracted in the previous process as z (Section 5.2). Our
analysis operates subsequently, and examines the following
types of attachments in order, to locate the points. The first is
to examine if the intersection point between the profile and
trajectory strokes coincides with some corner point or lies
on some edge. The intersection point is found as the nearest
point of the profile stroke to the trajectory stroke. We search
in a local window of 20 pixels of the intersection point in the
RGB-D data and set the corner point with the least depth w.r.t.
the current viewing direction in z as the 3D location for both
the profile and trajectory planes. If such a corner point is not
found, we continue to search for the attachment of the two
strokes with the existing 3D edges. If any stroke is aligned
or partially aligned with an existing 3D edge in z, we set the
projected point on the 3D edge as the attachment for the two
planes. Finally, if none of the above cases is found, we set the
attachment as the most front point in the local window w.r.t.
the current viewing direction.

Candidates ranking. The selection process results in a set of
pairs of planes with their selection costs computed according
to Equation 1. We rank them according to their scores and
push them into the candidate panel for the user to select in
case the desired result is not in the main window. We filter
out plane pairs which will lead to similar s-canvases, by elim-
inating all plane pairs which have similar orientations to the
previously selected plane pairs. Figure 3 shows an example
of pushed canvases in the candidate views.

In-context snapping. The above process gives us a swept
surface created from two planar strokes. To facilitate more

(a) (b)

(c) (d)
Figure 10. Evaluation of two plane extraction methods. (a) Planes ex-
tracted with our method. Because of the visualization, the yellow plane
at the right side of the chair is correct but looks not, similar for the rest
of the planes far away. (b) Planes extracted using RANSAC. (c) Planes
extracted with the method by Monszpart et al. [35]. (d) The target ex-
ample to draw.

fluent drawing experience, our system supports stroke snap-
ping to existing context in the following three cases. Firstly, if
the current profile stroke moves close to an existing canvas or
3D plane, we inform the user possible snapping by highlight-
ing the plane (in green in Figure 9 (c)). Secondly, if the 3D
position of the current sweeping stroke end point is in close
proximity to an existing 3D corner point or 3D edge (both in
the RGB-D context or in the created s-canvases), we high-
light the corresponding point (in yellow in Figure 9 (b)) for
snapping. Please see various cases of snapping in action in
the accompanying video.

EXPERIMENTS
We tested our framework on various scenes captured by
Kinect. We focus on man-made scenes where planar struc-
tures are ubiquitous.

Exemplar scenes. The scenes we collected include exam-
ples like a computer room in a university, desktop workplace,
street halls, coffee room, kitchen, laboratory, etc. (Figure 11).
They span a typical set of scenes in man-made environments.
Most of the scene data came from online resources, including
but not limited to NYU depth v2 [36], Berkeley B3DO [26],
and RGB-D datasets from [9]. We also captured some using
our Kinect V1 device.

Statistics. Figure 11 shows examples created using our sys-
tem. In general, our system is capable of creating models
with regular or isotropically curved shapes such as furniture,
toys, and other shapes in man-made environments, which are
constituted of primitive-shaped parts (see in the supplemen-
tal material for more results). Our system currently does not
support shapes with anisotropic scaled parts, e.g., a shell.

Table 1 indicates the numbers of canvases and the total time
for the examples in Figure 11. On average it took an approxi-
mate time of 5 ∼ 20 minutes to create each example, includ-
ing the idling time. All examples were created on a Laptop

Stat. truck Chn style piano kitchen console hallway
#canvas 21 26 31 48 48 73

time (min) 6 8 15 15 29 32
Table 1. Statistics recorded for the examples in Figure 11.

Evaluation of plane extraction methods
Our Method Monszpart et al. RANSAC Manual Plane-Specification

Figure 12. Comparison statistics of our plane extraction method against
RANSAC, the method by Monszpart et al. [35], and manual plane-
specification. Planes and example scene are shown in Figure 10. The
error bars show the standard errors of the mean (SEM) of the numbers
among different users. Bars with hatching lines indicate the results of
Dunnett test where there was a significant difference between the speci-
fied technique and our technique in the given criteria.

with an Intel(R) Core(TM) i7-2620M 2.7GHz CPU and 8GB
RAM.

Evaluation. We evaluated various algorithmic components
of our system. We first compared our plane extraction al-
gorithm with the standard RANSAC method [47] and the
method by Monszpart et al. [35]. Note that we are not
claiming a better general method towards plan extraction. So
we focused our evaluation on how the modeling performance
would change if we use the planes from the alternative meth-
ods. We asked 8 users (3 with 3D modeling experience and
5 with no modeling experience) to experiment with the chair
scene example shown in Figure 10. They were asked to draw
the same example using the planes extracted with (1) our
method, (2) RANSAC [47], (3) the method of [35], and (4)
manual selection. Note the manual selection process mim-
ics the previous baseline modeling interfaces as in Google S-
ketchUp [58], AutoCAD, and SKETCH [62], which use man-
ual or predefined planes to anchor swept surfaces. We imple-
mented by allowing the user to manually select two planes
for both profile and trajectory strokes each time to create a
shape part. We disable any automatic inferring and snapping
features in this mode. The user has to manually translate and
rotate the plane to a desired position and then draw a profile
or trajectory stroke to sweep a surface.

We ran a Latin square test with the 4 methods and 8 people
and recorded the operation statistics for both settings and all
users. These statistics included the total number of created
s-canvases, the numbers of various standard operations per-
formed (e.g., view changes, undo, candidate selection, plane
manipulation, canvas transformation, edits, etc.), and the total
time used to create each result. Figure 12 shows the compar-
ison results with the numbers averaged over the 8 users. The
bars with hatched lines show statistically significant results of
a Dunnett test. The tests were conducted as multiple compar-
isons, in which our method was compared with all other three
techniques.

Figure 11. Various 3D conceptual models created using our system. Our system is capable of quickly anchoring desired s-canvases on top of the given
contexts. Most of the examples were sketched within 20 minutes.

It is not surprising that compared to our method RANSAC
needed a much longer time and more undo operations to cre-
ate the desired results due to the redundant and undesirable set
of planes extracted, resulting in frequent incorrect inferences.
Similarly a longer time was recorded for the manual plane
specification (c.f. a baseline approach), since the users had
to position the planes first, which is a time-consuming pro-
cess. It is interesting to note that the time for manual plane s-
election is even less than that for RANSAC, possibly because
the erroneous planes in RANSAC frequently led to undesired
surfaces (e.g., the chair arm) and the users thus had to rotate
views and redraw several times in order to get a reasonable
result. Still the change of views is dependent on individual
perspectives, resulting in relatively large variance among the
users.

The statistics for ours and the method of Monszpart et al. [35]
were similar given that the generated planes were both simi-
lar and clean. Indeed, at regions with large noise where the
depth sensor got very unstable estimates, our method might
not perform as good as Monszpart et al. [35] (see Figure 10),
since their method implicitly enforces a set of regularities in
the plane arrangements (e.g., angles, symmetries) while our
method does not. Yet, such regulations might lead to errors
(e.g., the planes generated around the leg part of the black ta-
ble are not correct in Figure 10). Nevertheless, our method is
much simpler and ran a magnitude of 5 times faster. We al-
so conducted a set of experiments comparing the three algo-
rithms with the ground truth planes obtained manually (Fig-

(a) (b)

Figure 13. Ground truth planes for scenes in Figure 7 and Figure 10,
respectively.

Scene Method Mean (SD) Precision Recall

Stair
RANSAC
Monszpart

Ours

4.01◦(2.10◦)
3.16◦(3.64◦)
2.87◦ (3.77◦)

14.28%
44.44%
50.00%

66.67%
91.67%
92.39%

Chair
RANSAC
Monszpart

Ours

4.73◦(5.40◦)
2.00◦(2.39◦)
2.61◦(3.01◦)

33.33%
25.00%
62.50%

67.18%
90.62%
90.60%

Table 2. We compare the relative angles between the normals of planes
extracted from different algorithms and ground truth planes. “Mean
(SD)” means the mean and standard deviation of absolute difference of
relative angles. We were interested in how relative planes were success-
fully extracted perfectly, using 1◦as a reference. Many points were sam-
pled in those extracted planes. A point can be known as recalled, if it is
close to its relative ground truth plane (distance < 5e−4). The percent-
age of the method of Monszpart et al. in column 4 is lower because their
method fitted many false positive planes around the sofa. Many points
were sampled in those extracted planes.

ure 13). The error measures agree with our visual findings
(Table 2).

PILOT STUDY
To further evaluate our system, we conducted a pilot study
on a small group of 10 participants, whose background were
quite diverse. Among them, 3 people (called as experienced
users for short) were experienced users in 3D modeling, 4
people (i.e., beginners) had preliminary experience in 3D
modeling and sketching, and 3 people (novice users) had no
drawing or modeling experience at all. Most of them were
graduate students from universities, who were majored in
computer science, social media, and digital art. The partici-
pants were provided with professional Wacom graphic tablets
(without display panels) and traditional mouse devices. We
did not enforce a stylus input since many of our participants
were not familiar with a stylus input. Two participants who
had previous experience in sketching chose to use the tablet,
while the others mainly used a mouse for sketching. We
found our system is sufficiently robust to tolerate imprecise
input from a mouse. This is mainly because our system im-
plicitly smooths the user sketches (see in our accompanying
video).

Training. For all the participants, we first briefed them and
trained their skills on using our system. We showed them a
video demonstrating all instructions on how to create various
basic s-canvas, how to create a new s-canvas by reusing ex-
isting s-canvases, and how to use auxiliary operations such as
editing, painting, plane manipulation, etc.. After the tutorial,
they had a 10-minute free practicing time, during which they
were free to try out our software and ask questions.

Next, we designed three particular tasks for them to explore.

Task i. In the first task, we asked them to draw two simple
examples, as shown in Figure 14 (a) and (b).

Task ii. In the second task, we asked them to draw two rel-
atively more complex examples, as shown in Figure 14 (c)
and (d). In this task, both the model complexity and the aux-
iliary operations/contextual information required for creating
the model increase.

Task iii. In the third task, each participant was invited to draw
free examples on top of a given scene. A total of 10 scenes
were given to them in this task.

(a) (b)

(c) (d)

Figure 14. Exemplar reference models used in Task i (a), (b) and Task ii
(c), (d) of our pilot study.

Experienced Beginner Novice
Task i

Task ii

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

canvas #

-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6

undo #
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

candidate
selection #

0

10

20

30

40

50

60

70

1 2 3 4 5 6

view change #
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

plane
selection #

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

time (m)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

canvas #

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6

undo #

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

candidate
selection #

0

10

20

30

40

50

60

70

1 2 3 4 5 6

view change #
-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6

plane
selection #

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

time (m)

Figure 15. Statistics for the pilot study of Task i and Task ii. Each task
contains two examples, corresponding to the four examples in Figure 14.
The error bars shows the SEM of the numbers among different users.
Note novice users could learn our tool fairly fast compared to experi-
enced 3D modeling users.

Statistics. Figure 15 shows the statistics of the averaged num-
bers of operations and time for Tasks i and ii. The six bins
on each operation contains the statistics for the two exam-
ples in each task (3 bins per example). It can be observed
that, as the example complexity increased, the time required
to mimic each example increased, roughly linearly. Again,
all examples took a rough time of 5 ∼ 15 minutes to finish,
even for novice users who had no experience in 3D modeling
at all. More importantly, the candidate selection operation
kept at a small ratio throughout all the experiments, indicat-
ing the robustness of our system. We also observe that the
auxiliary “plane manipulation” operation was rarely used and
performed mainly for creating floating surfaces such as the
ones shown in Figures 6 and 14 (c). Some non-experienced
users utilized this operation for creating the smoke extractor
in Figure 14 (d). The undo operation was more frequently
used by non-experienced users and the beginners, since their
drawings were in many cases imprecise but they tended to
have more willing to draw well, thus resulting in such higher
numbers of the undo operation.

We also designed a standard user study questionnaire for
them to fill out once they had finished the study. We found
that most of the participants were able to quickly learn how
to use our system, and found our system convenient to use
and the interface simple and clean. 6 of the users who had
previous experience in 3D modeling thought that our system
offered a very intuitive and creative way to create 3D model-
s on top of an image, perhaps one among the simplest. They
commented that the candidate selection interface could some-
how disturb the modeling process as it required switching
back and forth. Nevertheless, the user study shows that this
process was kept at a low ratio during the modeling process.
Please refer to the supplemental material for more examples
drawn by these participants.

DISCUSSION AND LIMITATIONS
Context utilization. Our approach largely leverages the con-
text to anchor the drawn strokes. The context being used is

Figure 16. Representative models created by our participants in Task iii.

mainly the identified 3D attachments. For example, when cre-
ating a bookcase (Figure 1), chair arm (Figure 9), gas filter
(Figure 14), or ladder (Figure 16), frequently, the strokes are
snapped to the 3D planes, edges/corners as well as the depth
data itself (for local positioning). Once some parts are an-
chored, the rest of the parts can be created by utilizing the al-
ready created parts for better positioning. The extent to which
the existing context is used largely depends on how many re-
lations the created parts share with the context. We observe
that the users with professional design skills tended to draw
parts that bear more relations to the existing context, such as
ladders, bridges, wall-to-wall tubes, etc., while non-skilled
users tended to draw simpler cases such as lamps, bookcases,
etc. and paid less attention to the context.

Extension to photographs and videos. Our pipeline uses
RGB-D images as our main media for contextual inference
and the subsequent modeling. It can be naturally adapted to
other simpler types of media such as a single photograph and
a video if augmented with depth information. In a single pho-
tograph, there are multiple ways to acquire the necessary 3D
information for instance using a depth inference algorithm
[34] or a set of extracted boxes [64]. For a video, the state-of-
the-art SFM and SLAM techniques [55, 15] can be utilized
to construct a dense point cloud from the sequential images.
Please see our accompanying video for such an example of
modeling-in-video. 3D models or environments [62] is an-
other choice but might exclude the user from an experience
of modeling in “reality”. Alternatively, one could also lever-
age a simple box case as in [65] as a start, however, such
simple initialization could depart the user from utilizing the
context information thus limit the creation capacity.

Expressiveness. Our tool mainly aims for quick and easy 3D
prototyping. In this work, we have focused its usage on mod-
eling furniture-level objects in indoor scenes due to the acqui-
sition capability of consumer-level depth sensors. While the
resulting models are relatively low-resolution, the high ex-
pressiveness of our tool can be easily seen from the examples
and it is thus useful for concept design.

More detailed modeling features such as profile/trajectory
stroke editing, surface sculpting, extrusion, sharping, could
be easily integrated into our tool set. Alternatively we may
enrich details by retrieval-based approaches (e.g., [5]). Yet,
the more challenging thing is to create arbitrary spatial curved
surfaces such as tree branches, for which we hope to explore
more in the future by utilizing the contextual information.

Limitations. Our system requires two user input strokes to
create a 3D s-canvas. In general cases, the drawn strokes lead
to desired results. However, there are occasions when the two
strokes fail to span a desired s-canvas. This happens when
the direction of drawn strokes is almost parallel to the view-
ing direction, leading to effects such as foreshortening. Our
system will omit such long projection as it is undesirable. Ad-
ditionally, failure cases are also possible when a desired 3D
supporting plane does not exist in the context nor can it be
added by our algorithm (e.g., a floating cuboid). In such cas-
es, the user needs to perform the auxiliary operation of “plane
manipulation” to manually create such a 3D plane. Our sys-
tem currently only exploits planar structure of the underlying
scenes. More complex relationship such as repetition, spac-
ing, or curved surfaces are not considered. Although they
can be extended in general, however, extracting such infor-
mation from low-accuracy depth data could be an overhead.
We leave this for future work. Finally, our system currently
does not support the scaling of the profile stroke hence it can
not create shapes such as a tobacco pipe. Advanced editing
interfaces such as those profile editing tools in convention-
al CAD systems could be implemented to accomplish such
tasks. However, for simplicity and compactness, we do not
include them in our system.

CONCLUSION AND FUTURE WORK
In conclusion, we have presented a sketch-based modeling
tool for novice users, aimed at fast 3D prototyping on top of
images or videos (RGB-D images in our case). We formu-
late the modeling task as creating swept surfaces (s-canvases)
from two 3D strokes drawn by the user, where the strokes
are embedded into a pair of 3D planes. Our tool is intuitive,
easy-to-use for end users, and effective in creating a diverse
set of surfaces in man-made environments. Our system large-
ly exploits the RGB-D information in the context and lever-
ages planar structure analysis to help anchor the user drawn
strokes into 3D to create swept surfaces. The core of our for-
mulation is an MRF-based optimization procedure to quickly
locate 3D planes from the context for the two strokes. Our
method supports interactive conceptual modeling by instantly
optimize the created 3D model on-the-fly and returns it to the
user in accordance with the drawing strokes, enforced with a
set of shape regulators such as in-context snapping, orthog-
onal enforcement, symmetry etc. In the future, we plan to
experiment with more different media such as single images
or videos. On the other hand, we believe that such conceptual
modeling tools can be naturally adapted to other applications
in VR and AR, which is our future work.

ACKNOWLEDGEMENTS
We thank all reviewers for their valuable comments. This
work was supported in part by the National Natural Science
Foundation of China NO. 61502306, NO. 61602310, the Chi-
na Young 1000 Talents Program, Shenzhen Innovation Pro-
gram NO. JCYJ20170302154106666, and the grants from
the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (Project No. CityU11300615, C-
ityU11204014, CityU113513).

REFERENCES
1. Bae, S.-H., Balakrishnan, R., and Singh, K. Ilovesketch:

As-natural-as-possible sketching system for creating 3d
curve models. In UIST ’08 (2008), 151–160.

2. Bae, S.-H., Balakrishnan, R., and Singh, K.
Everybodylovessketch: 3d sketching for a broader
audience. In UIST ’09 (2009), 59–68.

3. Canny, J. A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine
intelligence, 6 (1986), 679–698.

4. Casarrubias-Vargas, H., Petrilli-Barceló, A., and
Bayro-Corrochano, E. Fast edge detection in rgb-d
images. In Iberoamerican Congress on Pattern
Recognition, Springer (2014), 868–875.

5. Chaudhuri, S., and Koltun, V. Data-driven suggestions
for creativity support in 3d modeling. ACM Transactions
on Graphics (TOG) 29, 6 (2010), 183.

6. Chen, T., Zhu, Z., Shamir, A., Hu, S.-M., and Cohen-Or,
D. 3-sweep: Extracting editable objects from a single
photo. ACM Trans. Graph. 32, 6 (Nov. 2013),
195:1–195:10.

7. Chen, X., Kang, S. B., Xu, Y.-Q., Dorsey, J., and Shum,
H.-Y. Sketching reality: Realistic interpretation of
architectural designs. ACM Trans. Graph. 27, 2 (May
2008), 11:1–11:15.

8. Cheng, Y. Mean shift, mode seeking, and clustering.
IEEE transactions on pattern analysis and machine
intelligence 17, 8 (1995), 790–799.

9. Choi, S., Zhou, Q.-Y., Miller, S., and Koltun, V. A large
dataset of object scans. arXiv:1602.02481 (2016).

10. Cooper, M. Line Drawing Interpretation.
Springer-Verlag London, 2008.

11. De Paoli, C., and Singh, K. Secondskin: Sketch-based
construction of layered 3d models. ACM Trans. Graph.
34, 4 (July 2015), 126:1–126:10.

12. Dollár, P., and Zitnick, C. L. Fast edge detection using
structured forests. IEEE transactions on pattern analysis
and machine intelligence 37, 8 (2015), 1558–1570.

13. Dorsey, J., Xu, S., Smedresman, G., Rushmeier, H., and
McMillan, L. The mental canvas: A tool for conceptual
architectural design and analysis. In PG ’07 (2007).

14. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and
Alexa, M. Sketch-based shape retrieval. ACM Trans.
Graph. 31, 4 (July 2012), 31:1–31:10.

15. Engel, J., Koltun, V., and Cremers, D. Direct sparse
odometry. In arXiv:1607.02565 (July 2016).

16. Favreau, J.-D., Lafarge, F., and Bousseau, A. Line
drawing interpretation in a multi-view context. In CVPR
(2015).

17. Gannon, M., Grossman, T., and Fitzmaurice, G. Tactum:
a skin-centric approach to digital design and fabrication.
In CHI ’15 (2015), 1779–1788.

18. Gingold, Y., Igarashi, T., and Zorin, D. Structured
annotations for 2D-to-3D modeling. ACM Transactions
on Graphics (TOG) 28, 5 (2009), 148.

19. Google, Inc. Tilt brush. 2015.

20. Holz, D., Holzer, S., Rusu, R. B., and Behnke, S.
Real-time plane segmentation using rgb-d cameras. In
Robot Soccer World Cup, Springer (2011), 306–317.

21. Huo, K., Vinayak, and Ramani, K. Window-shaping: 3d
design ideation in mixed reality. In SUI ’16 (2016),
189–189.

22. Igarashi, T., and Hughes, J. F. A suggestive interface for
3d drawing. In UIST ’01 (2001), 173–181.

23. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: A
sketching interface for 3d freeform design. In
SIGGRAPH ’99 (1999), 409–416.

24. Isack, H., and Boykov, Y. Energy-based geometric
multi-model fitting. Int. J. Comput. Vision 97, 2 (Apr.
2012), 123–147.

25. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., et al. Kinectfusion: real-time
3d reconstruction and interaction using a moving depth
camera. In UIST ’11 (2011), 559–568.

26. Janoch, A., Karayev, S., Jia, Y., Barron, J. T., Fritz, M.,
Saenko, K., and Darrell, T. A category-level 3d object
dataset: Putting the kinect to work. In Consumer Depth
Cameras for Computer Vision. Springer, 2013, 141–165.

27. Jones, W., and Sagoo, N. Architects’ Sketchbooks.
Thames and Hudson, 2011.

28. Kallio, K. 3D6B Editor: Projective 3D Sketching with
Line-Based Rendering. In Eurographics Workshop on
Sketch-Based Interfaces and Modeling (2005).

29. Kim, Y., and Bae, S.-H. Sketchingwithhands: 3d
sketching handheld products with first-person hand
posture. In UIST ’16 (2016), 797–808.

30. Kolmogorov, V., and Zabih, R. What energy functions
can be minimized via graph cuts? In ECCV ’02 (2002),
65–81.

31. Lau, M., Saul, G., Mitani, J., and Igarashi, T.
Modeling-in-context: User design of complementary
objects with a single photo. In Proc. SBIM (2010),
17–24.

32. Lipp, M., Wonka, P., and Müller, P. Pushpull++. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 130.

33. Lipson, H., and Shpitalni, M. Optimization-based
reconstruction of a 3d object from a single freehand line
drawing. In ACM SIGGRAPH 2007 courses, ACM
(2007), 45.

34. Liu, F., Shen, C., Lin, G., and Reid, I. Learning depth
from single monocular images using deep convolutional
neural fields. IEEE transactions on pattern analysis and
machine intelligence 38, 10 (2016), 2024–2039.

35. Monszpart, A., Mellado, N., Brostow, G. J., and Mitra,
N. J. Rapter: Rebuilding man-made scenes with regular
arrangements of planes. ACM Trans. Graph. 34, 4 (July
2015), 103:1–103:12.

36. Nathan Silberman, Derek Hoiem, P. K., and Fergus, R.
Indoor segmentation and support inference from rgbd
images. In ECCV (2012).

37. Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M.
FiberMesh: Designing freeform surfaces with 3D
curves. ACM Transactions on Graphics 26, 3 (2007),
article no. 41.

38. Nuernberger, B., Ofek, E., Benko, H., and Wilson, A. D.
Snaptoreality: Aligning augmented reality to the real
world. In CHI ’16 (2016), 1233–1244.

39. Olsen, L., Samavati, F. F., Sousa, M. C., and Jorge, J. A.
Sketch-based modeling: A survey. Computers &
Graphics 33, 1 (2009), 85–103.

40. Owada, S., Nielsen, F., Nakazawa, K., and Igarashi, T. A
sketching interface for modeling the internal structures
of 3d shapes. In ACM SIGGRAPH 2007 courses, ACM
(2007), 38.

41. Öztireli, A. C., Uyumaz, U., Popa, T., Sheffer, A., and
Gross, M. 3d modeling with a symmetric sketch. EG
(August 2011).

42. Paczkowski, P., Dorsey, J., Rushmeier, H., and Kim,
M. H. Paper3d: Bringing casual 3d modeling to a
multi-touch interface. In UIST ’14 (2014), 23–32.

43. Paczkowski, P., Kim, M. H., Morvan, Y., Dorsey, J.,
Rushmeier, H., and O’Sullivan, C. Insitu: Sketching
architectural designs in context. ACM TOG (SIGGRAPH
Asia) 30, 6 (2011), 182:1–10.

44. Sachs, E., Roberts, A., and Stoops, D. 3draww: A tool
for designing 3d shapes. IEEE Comput. Graph. Appl.
11, 6 (Nov. 1991), 18–26.

45. Sadri, B., and Singh, K. Flow-complex-based shape
reconstruction from 3d curves. ACM Trans. Graph. 33, 2
(Apr. 2014), 20:1–20:15.

46. Schmidt, R., Khan, A., Singh, K., and Kurtenbach, G.
Analytic drawing of 3d scaffolds. In ACM TOG
(SIGGRAPH Asia), vol. 28 (2009), 149.

47. Schnabel, R., Wahl, R., and Klein, R. Efficient ransac
for point-cloud shape detection. Computer Graphics
Forum 26, 2 (June 2007), 214–226.

48. Shao, C., Bousseau, A., Sheffer, A., and Singh, K.
Crossshade: Shading concept sketches using
cross-section curves. ACM Transactions on Graphics
(SIGGRAPH Conference Proceedings) 31, 4 (2012).

49. Shao, T., Li, W., Zhou, K., Xu, W., Guo, B., and Mitra,
N. J. Interpreting concept sketches. ACM TOG
(SIGGRAPH) 32, 4 (2013).

50. Shao, T., Monszpart, A., Zheng, Y., Koo, B., Xu, W.,
Zhou, K., and Mitra, N. J. Imagining the unseen:
Stability-based cuboid arrangements for scene

understanding. ACM Transactions on Graphics 33, 6
(2014), 209:1–209:11.

51. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo,
B. An interactive approach to semantic modeling of
indoor scenes with an rgbd camera. ACM Transactions
on Graphics (TOG) 31, 6 (2012), 136.

52. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. Structure
recovery by part assembly. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH Asia 2012
31, 6 (2012), 180:1–180:11.

53. Shesh, A., and Chen, B. Smartpaper: An interactive and
user friendly sketching system. In Computer Graphics
Forum, vol. 23, Wiley Online Library (2004), 301–310.

54. Shtof, A., Agathos, A., Gingold, Y., Shamir, A., and
Cohen-Or, D. Geosemantic snapping for sketch-based
modeling. Computer Graphics Forum 32, 2 (2013),
245–253.

55. Snavely, N., Seitz, S. M., and Szeliski, R. Photo tourism:
Exploring photo collections in 3d. In SIGGRAPH
Conference Proceedings, ACM Press (New York, NY,
USA, 2006), 835–846.

56. Song, S., and Xiao, J. Sliding shapes for 3d object
detection in depth images. In European Conference on
Computer Vision, Springer (2014), 634–651.

57. Thormählen, T., and Seidel, H.-P. 3d-modeling by
ortho-image generation from image sequences. In ACM
Transactions on Graphics (TOG), vol. 27, ACM (2008),
86.

58. Trimble, Inc. SketchUp. 2017.

59. Xie, X., Xu, K., Mitra, N. J., Cohen-Or, D., Gong, W.,
Su, Q., and Chen, B. Sketch-to-design: Context-based
part assembly. Comput. Graph. Forum 32, 8 (2013),
233–245.

60. Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae,
J., and Singh, K. True2form: 3d curve networks from 2d
sketches via selective regularization. ACM TOG
(SIGGRAPH) 33, 4 (2014).

61. Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M.
Sketch2scene: Sketch-based co-retrieval and
co-placement of 3d models. ACM Transactions on
Graphics 32, 4 (2013), 123:1–123:15.

62. Zeleznik, R. C., Herndon, K. P., and Hughes, J. F.
Sketch: An interface for sketching 3d scenes. In
SIGGRAPH ’96 (1996), 163–170.

63. Zhang, Y., Xu, W., Tong, Y., and Zhou, K. Online
structure analysis for real-time indoor scene
reconstruction. ACM Transactions on Graphics (TOG)
34, 5 (2015), 159.

64. Zheng, Y., Chen, X., Cheng, M.-M., Zhou, K., Hu,
S.-M., and Mitra, N. J. Interactive images: Cuboid
proxies for smart image manipulation. ACM Trans.
Graph. 31, 4 (July 2012), 99:1–99:11.

65. Zheng, Y., Liu, H., Dorsey, J., and Mitra, M. Smart
canvas: Context-inferred interpretation of sketches for
preparatory design studies. Computer Graphics Forum
(Proc. Eurographics) 35, 2 (2016).

66. Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C.,
Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C.,
Theobalt, C., et al. Real-time non-rigid reconstruction
using an rgb-d camera. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 156.

	Introduction
	Related Work
	Basic Notions
	User Interface
	Algorithm
	Plane extraction
	3D feature consolidation
	s-Canvas creation

	Experiments
	Pilot Study
	Discussion and Limitations
	Conclusion and Future Work
	Acknowledgements
	References

