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Abstract
Controlling stroke size in Fast Style Transfer remains a difficult task. So far, only a few attempts have been made towards it, and
they still exhibit several deficiencies regarding efficiency, flexibility, and diversity. In this paper, we aim to tackle these problems
and propose a recurrent convolutional neural subnetwork, which we call recurrent stroke-pyramid, to control the stroke size in
Fast Style Transfer. Compared to the state-of-the-art methods, our method not only achieves competitive results with much fewer
parameters but provides more flexibility and efficiency for generalizing to unseen larger stroke size and being able to produce
a wide range of stroke sizes with only one residual unit. We further embed the recurrent stroke-pyramid into the Multi-Styles
and the Arbitrary-Style models, achieving both style and stroke-size control in an entirely feed-forward manner with two novel
run-time control strategies.

CCS Concepts
•Computing methodologies → Neural networks; Image processing;

1. Introduction

Rendering an image in the style of another one is a long-standing
problem [GG01, SS02, KEBK05]. Inspired by the deep learning
algorithms, the seminal work of Gatys et al. [GEB15b, GEB15a]
shows that a pre-trained convolutional neural network (CNN) can
be used as a feature extractor to achieve this goal. The key idea is to
optimize an image with a gradient descend method, so as to match
the feature statistics of it to that of the style for texture synthesis, or
both the style and the content for image stylization. However, this
algorithm is extremely slow in terms of real-time application, as it
needs hundreds of iterations to converge every time.

To resolve the problem, significant efforts have been devoted to
speeding up neural style transfer. Ulyanov et al. [ULVL16] and
Johnson et al. [JAFF16] attempt to train a feed-forward neural net-
work that stylizes the input image in a single forward pass, which
turns out to be three orders of magnitude faster than the method
of [GEB15b, GEB15a]. Nonetheless, the flexibility is lost: a style
transfer network is tied to one specific style. Surprisingly, Ulyanov
et al. [DSK16] discover that specializing affine transformation pa-
rameters to each specific style is sufficient to model a style. They
successfully incorporate different styles into only one generator
with negligible extra parameters introduced. There are also many
other methods [LFY∗17a,ZD17,CYL∗17] proposed to address this
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problem, but they are all restricted to a fixed number of styles. Lat-
er on, the works of [HB17,GLK∗17,LFY∗17b,SLSW18] introduce
algorithms to transfer arbitrary style through only one single model.
In short, these Fast Style Transfer algorithms can be classified into
three categories: One-Style model [ULVL16, JAFF16, UVL17, L-
W16], Multi-Styles model [DSK16,LFY∗17a,ZD17,CYL∗17] and
Arbitrary-Style model [HB17, GLK∗17, LFY∗17b, SLSW18].

The above methods don’t take stroke-size control into accoun-
t, which is an essential perceptual factor in paintings. Gatys et
al. [GEB∗17] first design a method to produce large stroke size for
the high-resolution image, which can be used to change the stroke
size but is apparently very slow and inflexible. Recently, Jing et
al. [JLY∗18] propose a module named stroke-pyramid to continu-
ously control the stroke size of the generated images in real time.
However, this method suffers from the following drawbacks: (1) the
number of stroke sizes is fixed, and their method cannot adapt to
new size without training the newly-introduced parameters; (2) the
method of [JLY∗18] needs a lot of parameters when a wide range
of stroke sizes are needed, which is very wasteful. What’s more, it
remains unclear how effective this kind of structure is when used
in Multi-Styles model or even Arbitrary-Style model.

In this work, we develop a novel style transfer method to tack-
le the aforementioned problems. Our work stems from the intu-
ition that in stroke-pyramid [JLY∗18], different residual units might
share much degree of computation. However, this sharing will be
thrown away by training different residual units as in [JLY∗18].
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Figure 1. An overview of our work. (a) The proposed recurrent stroke-pyramid described in Section 3.1. (b) The recurrent stroke-pyramid
can generalize well to unseen larger stroke size. The picture above represents the largest stroke size during training while below reflects
unseen larger stroke size during testing. (c) It can produce a wide range of stroke sizes with only one residual unit. (d) Spatially controlling
both style and stroke size in a totally feed-forward manner. The picture above only uses style spatial control while below uses both two. (e)
and (f) When embedded into Arbitrary-Style model, it can control the stroke size of unseen styles without any image processing before or
after one-shot forwarding.

Thus, we design a recurrent convolutional neural subnetwork to re-
place the original stroke-pyramid, which we call recurrent stroke-
pyramid. Consequently, this kind of recurrent computation can au-
tomatically increase the receptive field of the generator without in-
troducing extra parameters, making it flexible to generate larger
unseen stroke sizes than the training set. Besides, it can save a lot
of parameters when a wide range of stroke sizes are needed. Fi-
nally, we extend our proposed method to the Multi-Styles and the
Arbitrary-Style models to incorporate different styles into one s-
ingle model while the stroke size of each style can be controlled
without any image processing before or after one-shot forwarding.

Our contributions are threefold: (1) We re-analyze the function
of each residual unit used in [JLY∗18] and propose a novel recur-
rent convolutional neural subnet to control stroke size in Fast Style
Transfer. (2) Experiments demonstrate the high efficiency and flex-
ibility of our method for parameters reduction, ease of training,
generalization to unseen larger stroke size, and the capability to
produce a wide range of stroke sizes only with one residual unit. (3)
We newly design the network architecture to embed this pyramid
structure into the Multi-Styles and the Arbitrary-Style models, and
present two novel run-time control strategies to concurrently con-
trol the style and the stroke size in an entirely feed-forward manner.

2. Background and related work

Below we briefly introduce the background and relevant method-
ologies in Fast Style Transfer.

Style Normalization. Style normalization (SN) is a domain
transformation technique applied to each sample image indepen-
dently, which is commonly used in Fast Style Transfer [UVL17,D-
SK16, HB17, GLK∗17, LFY∗17b, SLSW18]. It transforms the cur-
rent domain Dc back to the common domain D̃ and then to the
style domain Ds in the feature space of a CNN, where D̃ contains
the basic information, e.g., orientation, but dispels several details,
e.g., amplitude. Specifically, let x ∈ RC×(H×W ) denote the input to

the SN layer, then the output of it can be described as:

y =WsW−1
c (x−µc)+µs, (1)

where Wc, Ws ∈ RC×C are transformation matrices respectively
for Dc and Ds; µc, µS ∈ RC represent the channel-wise mean.
It should be noted that Wc and µc are derived from x while
Ws and µs from data [UVL16, DSK16] or a style encoder [H-
B17, GLK∗17, LFY∗17b, SLSW18].

Among these methods, Instance Normalization (IN) [UVL16]
is first proposed to improve the stylization quality, but it only
normalizes different images into one single style. When multiple
styles are considered, Ws and µs should be augmented to indepen-
dent pairs with each one conditional on a specific style, which is
known as Conditional Instance Normalization (CIN) proposed by
Dumoulin [DSK16]. In addition, given Ws and µs computed from a
style encoder, the whole network will be able to transfer arbitrary
style according to the works in [HB17, GLK∗17]. Later on, Li et
al. [LFY∗17b] discover that a well-designed SN layer, which they
call Whitening and Coloring Transformation (WCT), can be effec-
tively used in the auto-encoder architecture to achieve zero-shot
style transfer. Very recently, Sheng et al. [SLSW18] introduce the
Style Decoration (SD) module to improve WCT for better quality.

Figure 2. The recurrent stroke-pyramid receives the input feature
map FΓ0 and output a sequence of feature maps {FΓi}R

i=1 after R
steps, during which the parameters w are shared.
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However, these auto-encoder-based methods will find it hard to re-
cover fine-grained style patterns due to the downsample operations.

Stroke-size Control. Stroke size plays an essential part in paint-
ings, which measures how big a corresponding brush is used and
how much distance it moves. Thus, stroke size can be defined as the
average scale of the similar-sized stroke texons [JLY∗18,Jul81,ZG-
WX05] in an area. There are three primary requirements for stroke-
size control: (1) generating semantically distinguishable images no
matter which stroke size is used; (2) continuously controlling the
stroke size in a feed-forward manner; (3) preserving the stroke con-
sistency [JLY∗18] that the generated images of different stoke sizes
should exhibit consistent stroke orientation, configuration, etc.

In the Fast Style Transfer literature, the One-Style model [UL-
VL16,JAFF16] can train multiple models to obtain different stroke
sizes. However, it is very uneconomic and inflexible. Wang et al.
[WOZW17] design a hierarchical convolutional neural network to
paint large strokes in high-resolution images. However, it inherent-
ly entails multiple models for different stroke sizes. Furthermore,
the works in [ULVL16, JAFF16, WOZW17] dissatisfy requirement
(2) since one model only produce one stroke size. Though Some
SN methods [HB17, GLK∗17, LFY∗17b, SLSW18] can achieve
arbitrary-style transfer with one single model, they are not good at
controlling stroke size when the receptive field is fixed (see Section
4.2.2). Moreover, they need image processing to achieve different
stroke sizes, which is very inflexible. To resolve this dilemma, Jing
et al. [JLY∗18] recently discover that the generator with larger re-
ceptive field can produce larger stroke size and propose a module
named stroke-pyramid to endow the network with adaptive recep-
tive fields. It consists of several stroke branches, namely separate
residual units, with each one having a larger receptive field than the
previous one. As a result, this method perfectly meets the require-
ments with only one model, becoming the state-of-the-art method.

Nevertheless, another problem occurs that compared with a
network without stroke-pyramid, the work in [JLY∗18] requires
L×2×(9C2+2C) additional parameters, where C is the number of
residual units’ channels and L the number of stroke branches. Fur-
thermore, if C is large (e.g., C = 128), overall parameters will come
from the residual units and increase linearly with L. Therefore, it
seems wasteful to apply their method to wide-ranging stroke sizes.
Besides, their approach can not adapt to new stroke size without
training the newly-introduced parameters. On the other hand, since
they only focus on the One-Style model, it’s unclear how to extend
their method to the Multi-Styles and the Arbitrary-Style models.
Note that our work is intrinsically different to [JLY∗18] as we pro-
pose a novel technique to control the stroke size, and newly design
the network architecture and loss function to explore the effective-
ness of it for diverse styles in one single model.

3. The Method

3.1. Recurrent Stroke-Pyramid

Our work stems from the intuition that in stroke-pyramid, dif-
ferent residual units have the similar function: fine-tune the fea-
ture map from the previous one to let the stroke decoder produce
larger stroke size, which means they might share much degree of

computation. Therefore, training separate residual units for differ-
ent stroke sizes will leave this sharing vulnerable to be broken.

Taking this into consideration, we design the recurrent stroke-
pyramid which is a recurrent convolutional neural network and in-
serted in the encoder-decoder architecture (see Section 3.2 for de-
tails). The main part of it is a residual unit [HZRS16a] similar to
the proposed method of [HZRS16b], where a kind of SN layer is
substituted for the Batch Normalization [IS15] layer. This structure
has two advantages. First, the parameters are shared across the w-
hole procedure. Second, inserting convolutional computation into
the recurrent neural network can endow the generator with adap-
tive receptive fields, which is the key to controlling the stroke size
according to [JLY∗18]. In each step, the input to the residual u-
nit comes from the output feature map in the previous step (or the
input feature map if this is the first step). Thus, after R steps, our
recurrent stroke-pyramid will output a sequence of R feature maps.
An illustration of the recurrent stroke-pyramid can be as seen in
Figure 2. Here, let FΓ0 denote the input feature map to the module
and define convolution, style normalization and Relu nonlinearity
as φC(·), φSN(·) and φ f (·) respectively, then the output feature map
FΓi(i = 1, · · · ,R) in the ith step that corresponds to the ith bigger
stroke size Γi, can be computed by:

FΓi = FΓ0 +
i−1
∑

j=0
φSN(φC(φ f (φSN(φC(F

Γ j )))))

= FΓ0 +
i−1
∑

j=0
φ(FΓ j ;w)

(2)

where w denotes the parameters of the residual unit. In this formu-
la, the residual unit will fine-tune the feature map FΓi−1 by adding
the term φ(FΓi−1 ;w) in the ith step. Having observed that, we ex-
pect this addition will consistently tell the decoder to produce larg-
er stroke size than FΓi−1 does. Besides, this recurrent computation
can enforce stroke consistency (see Section 2) and automatically
increase the receptive field of the whole network without introduc-
ing extra parameters, making it possible to generate larger unseen
stroke size during testing flexibly. It can also save a lot of parame-
ters when a wide range of stroke sizes is needed, which will waste-
fully induce many separate residual units to be trained in [JLY∗18].

3.2. Architecture

Figure 3 shows our proposed architecture. It consists of four part-
s: encoder, recurrent stroke-pyramid, fusion module and decoder.
The convolution layers are all followed by a kind of SN layer to
control the style. The padding mode is set to reflect-padding. All
the activation functions are Relu nonlinearity except the sigmoid
function in the last layer. The encoder is stacked by three convolu-
tion layers and two residual units while the decoder consists of two
up-sampling layers [ULVL16]. Notice that the style control and the
stroke-size control are mutually independent thanks to the separa-
tion of the convolution and the normalization operations.

SN Layer. For single-style transfer, we use the IN layer. For
multi-styles transfer, the CIN [DSK16] layer is applied to our net-
work. For arbitrary-style transfer, we use the similar style normal-
ization method as in [GLK∗17], where the parameters Ws and µs for
each style are computed from the Inception v3 [SVI∗16]. We for-
malize Ws and Wc as diagonal matrices whose diagonal elements

© 2018 The Author(s)
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Figure 3. An overview of our algorithm. In this picture, the recurrent time R is five. The recurrent stroke-pyramid receives the input feature
map from the encoder and outputs a sequence of feature maps. Then the fusion model will receive it and use one of the three functions
to generate the output feature map for the decoder. During training, each style image will be resized to R different sizes and each size
corresponds to one specific stroke size.Nmeta will update the parameters ofN f based on current style. Details are described in Section 3.2.

correspond to channel-wise standard variance [DSK16, GLK∗17],
mainly for high efficiency and also good stylization quality.

Recurrent Stroke-pyramid. According to Section 3.1, this
module will receive the feature map from encoder and output a
sequence of feature maps after several recurrent steps. Each feature
map has a larger receptive field than that produced in previous re-
current step through 2 newly increased convolution operations. To
let the later-produced feature map contain larger stroke size infor-
mation, the corresponding style image should be used for training,
which is achieved by the resizing method. During testing, its recur-
rent time can be extended to be longer than during training, making
it possible to produce larger unseen stroke size.

Fusion Module. This module has three functions, as illustrated
in the pink regions of Figure 3. Function 1: during training, it acts
as a multiplexer that chooses one feature map from input sequence
for decoder based on current style stroke size Γ

i in each iteration.
Function 2: if given a list of convex weights {α̂i}R

i=1 that ∑
R
i=1 α̂

i =

1, it will output fused feature map F Γ̃ = ∑
R
j=1 α̂

jFΓ j . Function 3: if

given a list of masks {Mi}R
i=1 indicating the spatial correspondence

between content regions and stroke sizes, it will spatially control
the stroke size within one image F Γ̃ = ∑

R
j=1 M j�FΓ j , where � is

a simple mask-out operation.

Run-time Control Strategies. The Function 2 and 3 of the fu-
sion module can achieve continuous control and spatial control of
the stroke size respectively [JLY∗18]. When these functions are ex-
ecuted synchronously with the style control strategies [DSK16, H-
B17], there emerge two novel run-time strategies. Strategy 1: con-

currently interpolating between styles and stroke sizes. Strategy 2:
concurrently executing style and stroke-size spatial control. The re-
sults and details can be found in 4.3.2.

3.3. Loss Function

Content Loss. Based on the works in [GEB15b, ULVL16, JAF-
F16], the content loss is formulated as the Euclidean distance be-
tween the content target Ic and the generated image I in the high-
level feature space of the VGG network [SZ14]. Let Ψl(x) denote
the feature map of shape Cl ×Hl ×Wl in the lth layer of the loss
network Ψ with input image x. The content loss Lc is defined as:

Lc(I, Ic) =
1

2ClHlWl
‖Ψl(I)−Ψl(Ic)‖2

2 . (3)

Style loss. Let G(Ψl(x)) denote the Gram matrix of Ψl(x) that
represents the style statistics [GEB15a], then the style loss Ls is the
Frobenius norm of the difference between G(Ψl(I)) and G(Ψl(Is)),
where Is indicates the style target. During training, for one feature
map FΓi selected by the fusion module, the style image IΓi

s of stroke
size Γi is used. Then, the style loss for the output image IΓi , gener-
ated by feeding FΓi to the decoder, can be described as:

Ls(IΓi , IΓi
s ) = ∑

l∈{ls}
αl

1
4Cl

2Nl
2

∥∥∥G(Ψl(I
Γi))−G(Ψl(I

Γi
s ))

∥∥∥2

2
, (4)

where IΓi
s is obtained by resizing Is based on Γi, Nl = Hl×Wl , {ls}

is the set of loss network layers used to compute the style loss, and
αl is the weight for the lth layer. During training, the weight for
high-level layers will increase linearly with current stroke size to
enhance the large pattern.

© 2018 The Author(s)
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Figure 4. Visual comparisons between our recurrent stroke-pyramid and [JAFF16,GLK∗17,LFY∗17b,SLSW18,JLY∗18]. From right to left,
the style images are Figure 14 (g) (i) (a), content images are Figure 13 (g) (e) (i) in the Appendix. Note that [JAFF16] entails multiple models
while ours and [JLY∗18, GLK∗17, LFY∗17b, SLSW18] can achieve different stroke sizes with only one single model.

Total Loss. In order to transfer multiple or even arbitrary style,
different styles should have their own Ws and µs, as discussed in
Section 2. We use Nmeta to abstractly represent the mapping from
style image Is to its corresponding parameters wθ. The total loss for
IΓi can be then written as:

LΓi = ∑
Is∈{Is}

λcLc(IΓi , Ic)+λsLs(IΓi , IΓi
s )+λtvLtv(IΓi), (5)

where IΓi =N f (Ic;w,Γi);N f denotes the generator; w = (wd ,wθ),
wd represents the parameters shared by different styles, wθ =
Nmeta(Is); total variation loss Ltv is added for piece-wise smooth-
ness; λc is set to 1.0 while λs and λtv are left as hyper-parameters.
The Algorithm 1 in the Appendix details our training strategy.

4. Experiments

4.1. Details

We train our proposed network using MS-COCO [LMB∗14] as
content images with a batch size of 8. They are resized and ran-
domly cropped to 256× 256 patches. We let the recurrent time be

5 as default and use 5 scales for each style image to achieve differ-
ent stroke sizes. During training, the pre-trained VGG-16 network
[SZ14] is chosen as the loss network and relu4_2 is used as the con-
tent layer while {relu1_1, relu2_1, relu3_1, relu4_1, relu5_1} as the
style layers where {relu3_1, relu4_1, relu5_1} are set to be high-
level. Adam [KA15] optimizer is applied with a learning rate of
1.0× 10−3. All of our experiments are implemented on Tensor-
flow†. The content and the style images used in the experiments
can be found in Figure 13 and Figure 14 in the Appendix.

4.2. Evaluation of Our Recurrent StrokePyramid

In this section, we focus on the evaluation of the recurrent stroke-
pyramid. We use three kinds of evaluation metric: quantitative com-
parison, qualitative comparison and flexibility comparison. IN is
used in our network for a fair comparison with [JLY∗18].

† https://www.tensorflow.org

© 2018 The Author(s)
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Table 1. Differences between our approach and other methods.

Parameters(5 sizes) Requirments Receptive Field
[JAFF16] 8.39M × fixed
[GLK∗17] 3.82M × fixed
[LFY∗17b] 34.24M × fixed
[SLSW18] 7.01M × fixed
[JLY∗18] 2.27M X adjustable

Ours 1.09M X adjustable

4.2.1. Quantitative Comparison

In order to see what is being traded off by incorporating differ-
ent residual units into only one in a recurrent manner, we use the
same training strategy to train our proposed model and the model
in [JLY∗18], then compare them regarding the convergence speed
and the final average loss of different stroke sizes. We set the num-
ber of stroke branches in [JLY∗18] to be 5 for consistency with our
recurrent time. Also, we let their encoders and decoders respec-
tively be the same structures. Table 1 shows the parameters usage
comparison between these two models. In this experiment, the pa-
rameters of the model in [JLY∗18] are more than twice that of ours.

Top two figures in the Figure 5 compare the learning dynamics
for each stroke size between two models. The losses are all aver-
aged over 32 random batches of content images and 10 styles. By
visual inspection, we can observe that for each stroke size, ours
converges as quickly as [JLY∗18] with respect to both the style and
the content losses. In order to quantify this observation, we show
the final loss difference for each stroke size between these two mod-
els below. Roughly, the difference is negligible since our proposed
model’s average final content loss over 5 different stroke sizes is
0.57% lower than [JLY∗18] while average final style loss difference
is even less (0.51% higher). What’s more, as stroke size becomes
larger, the style loss difference stabilizes (see stroke size Γ4 and
Γ5), which is about 2.7% higher, also very insignificant. Therefore,
ours can achieve quantitatively competitive results while improving
the parameter-usage efficiency.

4.2.2. Qualitative Comparison

Figure 4 and Figure 8 show several samples of ours and
[JLY∗18], it is evident that the two models produce closely similar
results. Specifically, they can generate semantically clear images
with wide-ranging stroke sizes and preserve the stroke consistency
that all the strokes change together only in size, namely satisfying
the requirement (1) and (3) (Section 2). Note that we use much few-
er parameters than [JLY∗18] to achieve comparable visual results.
Furthermore, our approach is more flexible, as shown in 4.2.3.

We also visually compare our method with [JAFF16, GLK∗17,
LFY∗17b, SLSW18] in Figure 4. To obtain multiple stroke sizes,
[JAFF16] needs to wastefully train multiple networks while
Arbitrary-Style models [GLK∗17,LFY∗17b,SLSW18] should first
resize input style images to different scales. As we can see, [JAF-
F16] will collapse the stroke consistency due to the separate learn-
ing of different models (e.g., the inconsistent stroke orientations on
the left of the house in columns 1 through 3). The style encoder
in [GLK∗17] can’t correctly parse the style patterns and result in

Figure 5. Top two figures compares the training procedure. For one
specific stroke size, it is represented by two curves with the same
color (red - Γ1, yellow - Γ1, green - Γ3, purple - Γ4, black - Γ5).
The full curve represents our proposed method while the dashed
curve the method of [JLY∗18]. Below is the final average loss com-
parison for each stroke size.

unwanted ones when the stroke size mismatches its fixed and limit-
ed receptive field (e.g., the conspicuous discrepancy in overall hue
between the original style and the stylized images with Γ3 and Γ5).
Since [LFY∗17b] and [SLSW18] employ an auto-encoder struc-
ture, when the stroke size is tiny, the decoder fails to completely
reconstruct the subtle details due to the pooling layers and gener-
ate semantically vague images (see the stylized images with Γ1,
especially in column 7). Furthermore, WCT [LFY∗17b] tends to
generate unseen patterns (e.g., the distorted patterns in columns
1 through 3, 7 through 8) while SD [SLSW18] will collapse the
stroke consistency (e.g., the style layout of the background varies
with different stroke sizes), though they can holistically match the
second-order statistics of arbitrary style and achieve high rendering
quality generously. SD sometimes destroys the local continuous-
ness of several style patterns (e.g., the long line patterns in column
8 are chaotic) due to the reassembling process in SD [SLSW18].
Moreover, these methods can’t achieve continuous or spatial con-

© 2018 The Author(s)
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trol of stroke size with economical processing cost, and they need
much more parameters than ours. Table 1 summaries the above
comparisons.

Learning from scratch

Fine-tuning

Figure 6. Comparisons between fine-tuning and learning from
scratch in terms of style loss curve and quality.

Figure 7. Our recurrent stroke-pyramid generalizes well to unseen
stroke size without any fine-tuning. Emphasis (red box) has been
added on the results for comparison purpose.

4.2.3. Flexibility Comparison

Learning to Produce Larger Unseen Stroke Size. In order
to produce unseen larger stroke size, [JLY∗18] should retrain the
network by incrementally learning a new branch on the top of
stroke-pyramid. Although this method achieves faster convergence
than training the whole network from scratch, it still needs hun-
dreds of iterations to converge [JLY∗18]. It should be noted that
ours can achieve this goal by lengthening the recurrent time dur-
ing testing. This is because the decoder learns to be sensitive to
the changes in its input feature map caused by different recurrent
times. The longer the recurrent time is, the larger stroke size should
be achieved. To quantify this observation, we first augment a new
larger stroke size upon the pre-trained network by fine-tuning it us-
ing the proposed training strategy (see the Algorithm 1 in the Ap-
pendix). Then, we compare the loss curve and stylization quality
with that of optimizing the network from scratch (Figure 6). While
achieving comparable results, fine-tuning nearly converges since
the beginning, which indicates the network generalizes well to the
larger unseen stroke size. We also let it produce unseen stroke size
without any fine-tuning (Figure 7).

Producing a Wide Range of Stroke Sizes. In this case, our re-
current stroke-pyramid only needs to lengthen the recurrent time to
be much longer (eg., 10 steps) for the continuous control of stroke
size during testing. But for the model in [JLY∗18], it should use 10
different residual units to achieve comparable results, which seems

Smallest Biggest Smallest Biggest

Ours

[JLY∗18]

Figure 8. Visual comparisons of producing a wide span of stroke
sizes.

extremely wasteful and liable to overfitting. Besides, during test-
ing, the computation graph of our model can be adjusted flexibly
depending on the actual demand by only changing the recurrent
time while for [JLY∗18], it seems a little troublesome to do this,
especially on the tensorflow platform. Figure 8 shows several re-
sults. While achieving comparable results, ours shows less high-
frequency noise and saves a lot of parameters, making it easier to
train and more suitable for mobile development.

4.3. Multi-styles Stroke-controllable Transfer

In this section, we embed our recurrent stroke-pyramid into
the Multi-Styles Model. Clearly, we use CIN [DSK16] as our S-
N method to transfer multiple styles while the stroke size for each
style could be regulated by the recurrent stroke-pyramid. We cal-
l our proposed model using IN as 1-style model while that using
CIN as N-styles model, where N indicates the number of styles. We
first train 10 1-style models and 1 10-styles model, then compare
between them. Finally, we execute two run-time control strategies
described in Section 3.2, further manifesting the flexibility of it.

4.3.1. Comparison

To validate the effectiveness of the embedding method, we ran-
domly sample 5 styles and compare the final style and content loss-
es for each stroke size between 1-style models and 10-styles model
(left column of Figure 9). The losses are all averaged over 32 ran-
dom batches of content images. Generally speaking, for style loss
the 10-styles model achieves around 1.43%± 5.02% lower losses
than its counterparts while for content loss, the difference is more
negligible (about 0.64%±1.37% higher). Since our N-styles model
uses only one model to transfer multiple styles and stroke sizes, this
difference can be ignored in the view of much parameters reduction
compared to N 1-style models. The right column of Figure 9 shows
several visual comparisons between N-styles model and N 1-style
models. We can see that both results are qualitatively similar.

4.3.2. Run-time Control

Stratregy 1. Concurrently Interpolating Between Styles and
Stroke Sizes. Similar to [DSK16], interpolating between different
styles’ transformation parameters Ws and µs can fuse them together.
During style fusing, if we use the Function 2 of our fusion module
detailed in Section 3.2, then the stroke size of the fused style can
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Figure 9. The left column is the final average loss comparisons for
each stroke size between 1-style models and N-styles model. Dif-
ferent shapes represent different stroke sizes. The right column is
the visual comparisons between them.

also be continuously controlled, as shown in Figure 10. It can be
seen that the stroke size is changed faily smoothly. While our model
is only trained to control the stroke size for the style chosen from
the fixed style set, it generalizes naturally to the fused style.

Stratregy 2. Concurrently Executing Style and Stroke Size
Spatial Control. Since the feature statistics in the generator can
reflect the style of the output image, applying CIN separately to d-
ifferent regions via region masks can achieve style spatial control.
The masks for different layers can be obtained by using nearest
neighbor interpolation according to current layer’s stride. By con-
currently using the Function 3 of our fusion module detailed in Sec-
tion 3.2, where the masks are obtained by the same method, ours
can achieve both stroke size and style spatial control in a complete-
ly feed-forward manner. Figure 11 shows some results.

4.4. Arbitrary-style Stroke-controllable Transfer

According to Section 4.3, our recurrent stroke-pyramid can suc-
cessfully control the stroke size for each style in the fixed style set.
Thus, it’s natural to combine the arbitrary style transfer architecture
with it to flexibly control the stroke size of arbitrary style without
any image pre-processing. Here, we employ the pre-trained net-
work proposed by [GLK∗17] and simply add our recurrent stroke-
pyramid after its fifth residual unit. The recurrent stroke-pyramid
is also followed by a fusion module to control the stroke size of
the output image. It should be noted that Ws and µs in the recurrent
stroke-pyramid are also computed from the pre-trained Inception-
v3 [SVI∗16], just like the way in [GLK∗17]. During training, we
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Figure 10. Interpolation between both styles and stroke sizes.

use our proposed training strategy to first train the newly-added pa-
rameters with others fixed and then fine-tune the whole network, on
the DTD dataset [CMK∗14]. Figure 1 shows some results (image
(e) and (f)). More results can be found in the Figure 12. It can be
seen that the network generalizes well to the unseen styles.

(a) (b)

(c) (d)

Figure 11. (a) Content image. (b) The mask for style and stroke size
spatial control. The yellow region corresponds to the style image
(e) of Figure 14 in the Appendix and stroke size Γ1, the red region
the style image (b) and stroke size Γ3, the black region the style
image (d) and stroke size Γ5. (c) The stylized result without stroke
size spatial control. (d) The stylized result with stroke size spatial
control.
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Observed Styles Unobserved StylesContent Stroke Size #1 Stroke Size #2 Stroke Size #3 Stroke Size #1 Stroke Size #2 Stroke Size #3

Figure 12. The samples of arbitrary-style stroke-controllable transfer. The model generalizes well to the unseen styles, especially the styles
with regular patterns (see the first, third and fifth rows).

5. Conclusion

In this work, we propose a recurrent convolutional neural sub-
network to control the stroke size of the generated images in Fast
Style Transfer, which is a brand-new concept and also a novel tech-
nique in the style transfer literature. It can automatically increase
the receptive field of the whole network without introducing ex-
tra parameters, making it flexible to generate larger unseen stroke
size than during training. What’s more, it can save a lot of mem-
ories when a wide range of stroke sizes is needed. Experimental
results demonstrate that ours can not only achieve comparable re-
sults with much fewer parameters but allow more flexibility and
efficiency, compared with the original method. In addition, the pro-
posed method can be successfully extended to Multi-Styles mod-
el or even Arbitrary-Style model to control both the style and the

stroke size in an entirely feed-forward manner. However, the com-
binational optimization over multiple styles and stroke sizes will
compromise the rendering quality (e.g., row 6 and 7 in Figure 12).
Thus, further research is needed to generate high-quality images for
arbitrary-style stroke-controllable transfer.
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6. Appendix

Figure 13 and Figure 14 show the content images and style im-
ages respectively used in Section 4.2 and 4.3. Algorithm 1 details
our training strategy.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Diverse content images used in 4.2 and 4.3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Diverse style images used in 4.2 and 4.3.

Algorithm 1 Our Training Strategy

for number of training iterations do
Sample a style image Is from {Is}
w ← (wd ,wθ), wθ←Nmeta(Is)
for i in {1,2, ...,R} do

IΓi
s ← Resize(Is;Γi)

Sample a mini-batch of content: {(Ic)
j}m

j=1

{(IΓi)
j}m

j=1←N f ({(Ic)
j}m

j=1;w,Γi)
Compute gradients and update w.

end for
end for
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