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Fig. 1. Given a stream of color frames (left) and the corresponding fused geometry model (middle) from a single RGB-D camera, our method
computes a complete strand-level 3D hair model (right) that closely resembles both the fusion model and the hair textures in the input images.

Creating realistic 3D hairs that closely match the real-world inputs
remains challenging. With the increasing popularity of lightweight
depth cameras featured in devices such as iPhone X, Intel RealSense

and DJI drones, depth cues can be very helpful in consumer ap-
plications, for example, the Animated Emoji. In this paper, we

introduce a fully automatic, data-driven approach to model the
hair geometry and compute a complete strand-level 3D hair model
that closely resembles the input from a single RGB-D camera. Our

method heavily exploits the geometric cues contained in the depth
channel and leverages exemplars in a 3D hair database for high-
fidelity hair synthesis. The core of our method is a local-similarity
based search and synthesis algorithm that simultaneously reasons

about the hair geometry, strands connectivity, strand orientation,
and hair structural plausibility. We demonstrate the efficacy of
our method using a variety of complex hairstyles and compare our
method with prior arts.
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1 INTRODUCTION

Hair modeling is one of the most crucial components in digital
avatar creation. Modeling 3D hairs that closely resemble the
real-world inputs is a demanding task in today’s emerging
VR and AR applications. Due to the inherently densely con-
voluted complex structures exhibited in the wide variety of
real-world hairstyles, modeling of a complete and realistic 3D
hair remains challenging.

Image-based hair modeling has shown promising progress in
the past few years. Early researches rely on complex capture
setups in controlled environments [Hu et al. 2014a; Luo et al.
2013; Paris et al. 2008] to achieve compelling reconstruction
results but are less suitable for non-professional users. Single-
view based methods can reconstruct results with complex
strand-level 3D hairs [Chai et al. 2015, 2016, 2013, 2012; Hu
et al. 2015, 2017] but often fall short in generating results
that match the reality at views distant from the input one.
Zhang et al. [2017] introduce a four-view image-based hair
modeling method. They generate consistent hair textures over
a smooth surface of rough hair shape to combine hairstyles
from different views. Since there is no detail information along
the normal direction of the surface, they adopt helix curves
fitting to guide detail refinement which inevitably involves
some artifacts. Except the single-view approach of Chai et al.
[2016], most of the aforementioned methods require certain
amounts of manual work. Moreover, the lack of detailed ge-
ometry information in the RGB images makes it difficult for
these methods to model realistic 3D hairs that retain high
fidelity to the real-world inputs, for example, to model the
fine details shown in Fig. 1, middle.
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In this paper, we present a fully automatic, data-driven
approach to synthesize high-quality hair geometry from a
consumer-level RGB-D camera. The increasing popularity
of depth cameras featured in devices such as iPhone X and
Microsoft XBox has brought in a variety of applications (e.g.,
animated emoji). It has also opened up research opportunities
in the communities of visual recognition [Song and Xiao 2013]
and 3D reconstruction [Dai et al. 2017; Zhou and Koltun 2014].
Hence we seek to model 3D hairs that closely match the real-
world inputs by exploiting both the color and geometric cues
provided by the RGB-D camera.
To this end, we develop a search-and-synthesis framework

for modeling 3D hairs with an RGB-D camera. Given the
streamed depth and color frames from the camera, our method
first fuses the 3D geometry of the hair and automatically
extracts consistent hair regions across all frames. We then
define patch-based local similarity to search exemplars in a
3D hair database, and use them as references to synthesize a
complete 3D orientation field which is consistent with both
the fused surface orientation and the input color images. In a
key stage, we perform 3D PatchMatch-based optimization to
obtain a nearest neighbor field mapping between the synthesis
result and the exemplars, from which we grow hair strands
by the geometry guidance from the exemplars to ensure hair
structural plausibility.
Both the depth and color information from the camera

are crucial to the high-quality modeling results - the depth
frames provide a rough 3D geometry of hair shape, while the
color frames contain the hair surface orientation. On the other
hand, due to the inaccuracy of estimated camera poses and
the fusion process, there are inevitably noise and ambiguity in
the reconstructed surface orientation, which makes it difficult
to directly grow hair strands along the diffused orientation
field. Our 3D PatchMatch-based synthesis algorithm fills 3D
orientation in the empty regions and also enables us to bypass
the need for accurate reconstruction. Moreover, the locally
mapped strand geometry of exemplars as guiding references
ensures the structural plausibility of the synthesized result
and also constrains the strand lengths.
Our method is capable of reconstructing a variety of real-

world hairstyles which are challenging for the current state-of-
the-art methods and is suitable for an end-user to create a 3D
avatar with personalized hairstyles (see Fig.12). In summary,
our contributions are:

∙ The first high-quality and fully automatic hair modeling
pipeline that generates 3D hairs closely matching the
real-world inputs using a single RGB-D camera;
∙ An efficient exemplar search method by local patch-based
similarity to generate guide geometries;
∙ A 3D orientation synthesis method by 3D PatchMatch-
based optimization;
∙ A hair synthesis method guided by 3D nearest neighbor
mapping to propagate structural plausibility from exem-
plar strands to the target hair model.

2 RELATED WORK

Human hair modeling is extensively studied in computer
graphics, in which professional skills and laborious manual
work are often involved. A detailed discussion can be found
in the survey of [Ward et al. 2007]. By far, there are only two
approaches which have examined fully automatic hair model-
ing pipelines [Chai et al. 2016; Hu et al. 2017], however, both
methods are single-view based and hence the hair at views
distant from the front one is often hallucinated with deficient
quality, and it is unknown how to extend their algorithms to
multiple views.
Yuksel et al. [2009] first introduced hair meshes to model

complex hairstyles, where coarse polygonal hair meshes from
exemplars encode hair positions and directions and are used
as guidance for strand generation. Our method falls into the
category of image-based hair modeling which has shown to
be a promising way to create compelling hair geometries from
captured hair images. Below we review relevant works that
are closely related to ours, i.e., those based on images.

Multi-view hair modeling methods [Echevarria et al. 2014;
Herrera et al. 2012; Hu et al. 2014a; Jakob et al. 2009; Luo
et al. 2013; Paris et al. 2008], which create high-quality 3D
hair models from images taken from a number of views, often
require complex capture setups and long processing cycles.
Hu et al. [2014b] use a single RGB-D sensor as a multi-stereo
acquisition hardware to address constrained braided hairstyle.

Single-view hair modeling methods have recently achieved
impressive results but often require posing various priors such
as layer boundary and occlusion [Chai et al. 2013, 2012],
shading cues [Chai et al. 2015], or relying on 3D hair model
database [Chai et al. 2016; Hu et al. 2015, 2017]. A major
problem with single-view based techniques is the lack of
control over the final result at views distant from the input
one, as there is no input information at all.
In both multi-view and single-view methods, structural

references are incorporated during hair reconstruction pro-
cess. Luo et al. [2013] use a bottom-up strategy to connect
local ribbons into wisps through purely geometry-inspired
heuristics. Hu et al. [2014a] propose a strand fitting algorithm
to find structurally plausible configurations among simulated
strand examples. Hu et al. [2014b] use a braid patch fitting
method to find a set of fitted structure patches. All these
multi-view methods which use structural priors cost a lot
of time in the stage of point cloud reconstruction and out-
lier point removal [Luo et al. 2013], strand fitting [Hu et al.
2014a], or structure patch fitting [Hu et al. 2014b]. Hu et
al. [2015] and Chai et al. [2016] use the predefined database
as initial hairstyles to reconstruct hair model from a single
image. Hu et al. [2015] require user strokes to reveal the full
hair connectivity and topology and remix all candidates, one
of which is found for each stroke. Chai et al. [2016] use the
mask-based search to find best matches from a populated
database of 40k samples. Both methods are difficult to find a
good hair model that matches all views in a limited database.
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Zhang et al. [2017] introduce a four-view image-based hair
modeling method, to fill in the gap between multi-view and
single-view hair modeling. They require users to specify the
camera configuration for each view and estimate a rough 3D
shape of hair using a predefined database of hair models and
then synthesize hair texture consistent with all four input
images. Since the texture algorithm needs a smooth rough
shape surface, they only use contours as matching metric
and do not consider the internal hair structure. Piece-wise
helix-fitting [Cherin et al. 2014] is involved to refine the strand
details that are washed out by rough shape reconstruction and
orientation diffusion. Our method uses KinectFusion [New-
combe et al. 2011] to generate a hair shape, along with the
estimated camera poses. We use a localized 3D PatchMatch
algorithm and exemplar hairs as guidance to generate hair
strands to account for both the global hair shape and a plau-
sible internal hair structure.

PatchMatch algorithm [Barnes et al. 2009, 2010] efficiently
computes a Nearest-Neighbor Field (NNF) that stores the
correspondences between patches of a 2D images. More dis-
cussion on 2D cases can be found in the comprehensive survey
of [Barnes and Zhang 2017]. We adopt the original Patch-
Match algorithm in the step of example retrieval, where the
inputs are color images of the front and back views and the
images of hair meshes which are rendered under the two con-
strained views respectively. Li et al. [2017] extend PatchMatch
optimization to 3D volumetric voxels for shape completion.
In our 3D orientation synthesis, where the source and target
are represented as 3D vectors in volumetric voxels, we aim to
calculate an NNF mapping from the target to the source as
geometry guidance for hair synthesis.

3 OVERVIEW

The pipeline of our automatic system of portrait hair mod-
eling is shown in Fig. 2. Given a stream of depth and color
frames captured by a consumer-level RGB-D camera, we first
reconstruct a rough 3D geometry and estimate camera poses
using Kinect-Fusion algorithm [Newcombe et al. 2011]. Simi-
lar to Zhou and Koltun’s method [2014], a subset of images
is selected from the color frames as input. We pass selected
color frames through the hair parsing network of [Chai et al.
2016] (hairnet we call hereafter), to automatically segment
out hair region and remove directional sign ambiguity(§4).
With the hair segments and the directional maps, we estimate
2D directional fields on each frame and project them to the
fused hair model to obtain a 3D surface orientation field (Fig.
2, middle right), which is then diffused into a 3D volumetric
orientation field.
We observe that direct methods [Chai et al. 2016; Paris

et al. 2008] to grow hair strands along the diffused 3D ori-
entation field could neglect the fine geometric details of the
original hair model since these methods tend to grow hair in
a globally smooth manner. In order to get hair strands that
closely match the input model, we devise an exemplar-based
hair synthesis paradigm to synthesize a full detailed 3D hair

Hair Strands of Exemplars

Surface Orientation

 Hair Segment &
2D Direction Map

Fusion Model

Hair Model NNF & 3D Orientation Field

Front & Back ViewSelected FramesColor Frames

Depth Frames

Fig. 2. Overview of our pipeline. Given color and depth frames
captured by a consumer-grade RGB-D camera, we extract hair masks
and 2D direction map using hairnet [Chai et al. 2016], and obtain a
fusion model of the hair using the method of [Newcombe et al. 2011].
The hair masks and the 2D direction map are used to reconstruct
3D orientation on the hair shape surface. With two best-matching
exemplars as guiding geometry, we construct nearest neighbor field
mapping between the matched exemplars and the fusion model using
a 3D patchmatch-based optimization. Finally, a strand-level 3D hair
model is synthesized under the guidance of the mapping, with its
colored 3D digitalized character obtained through a color-map method,
which is visually similar to the real model.

by taking into consideration of both the global shape and local
details of the fusion model. Specifically, we search in a 3D
hair database and select two best-matching exemplars which
have similar style patterns with the front and back views
respectively. We convert the database models from mesh to
hair strands and establish 3D hair orientation field in the
corresponding hair volume, which are regarded as guiding
geometry (§5). Given the 3D volumetric orientation fields
from the exemplars and the orientation field from the fusion
model, we perform 3D patchmatch-based optimization con-
strained by the surface orientation on the fusion model, to
obtain an NNF mapping, which is then employed to guide
the hair growth in the internal region. The NNF mapping
helps us derive structure patterns from the guiding exemplars,
which reason about the connectivity, direction and hair end,
and help to synthesize the hair strands matching the fusion
model and the hair textures in all input images (§6).
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4 PREPROCESSING

Our input is a stream of depth images and the synchronous
color images captured by Intel RealSense SR300 camera at
30 fps. The resolution of depth and color images are both set
to 640× 480. A hair model takes 1-2 rotations of 360 degrees
in front of the RGB-D camera to get a full head scan.

Geometry fusion. The depth frames can produce an initial
mesh 𝐺 using the Kinect-Fusion pipeline [Newcombe et al.
2011], along with estimated camera poses that approximately
register each depth image to the mesh. We perform re-meshing
by uniformly sampling new vertices {𝑝𝑗} over the surface 𝐺
via the method of ACVD [Valette and Chassery 2004].

Hair region segmentation and direction annotation. Similar
to Zhou and Koltun’s method [2014], to reduce the number of
color images, we select one frame with the lowest blurriness
in each interval of 50 color frames, and gather them as input
color images {𝐼𝑖}. We pass all selected color images through
hairnet [Chai et al. 2016], to automatically obtain a set of
hair region masks {𝑀𝐼

𝑖 } and direction label maps {𝑀𝐷
𝑖 }.

With hair region mask, we can segment out hair region
mesh 𝐺𝑀 . A vertex 𝑝 on 𝐺 is defined as a hair surface vertex
when its projection lies inside the hair region of the nearest
view w.r.t. the normal of 𝑝. Please see Fig. 1 (middle) for an
example of 𝐺𝑀 .
With direction label map, since the network [Chai et al.

2016] is trained with images of hair distributed around the
face, we assume that the label map has higher confidence
𝑐𝑖 when the viewpoint is nearer to that of the front view.
We also densely calculated a per-pixel orientation map 𝑂𝐼

𝑖

for 𝐼𝑖 [Luo et al. 2013]. For a pixel 𝑝𝑖 with 2D orientation
𝑜𝐼𝑖 in the hair region, we can project it back to 3D space
using estimated camera transformation, to get a 3D position
𝑝. Then we can estimate the view based 3D orientation vector
𝑑𝑖(𝑝), referring the method in [Luo et al. 2013]. In order to
decide the direction sign for 𝑑𝑖(𝑝), we use a voting strategy.
We project it to all visible views, and then sum up those
voting view confidence: if 𝐶+ > 𝐶−, the direction sign for 𝑝𝑖
is positive, and vice versa.

Head fitting. Given the front view, we locate a set of facial
feature points using a face alignment algorithm [Cao et al.
2014]. By re-projection of the image feature points back onto
the surface of G, we obtain 3D facial feature points. By
extending the head mesh fitting method in [Chai et al. 2012]
to 3D, we compute a new head shape 𝑆𝑛𝑒𝑤 by the function:

𝑆𝑛𝑒𝑤 = 𝑇𝑆* = 𝑇 (𝑆 + 𝑉 · 𝛽)

𝑆 is the average head shape vector, 𝑉 is the matrix of principal
components and 𝛽 is the coefficient vector, where all those
three components are computed in the same way as in [Chai
et al. 2012]. 𝑇 is a rigid transformation computed by least
squares on the corresponding feature points. We finally get
𝑆𝑛𝑒𝑤 through an alternating optimization, i.e., 𝑆* is optimized
while 𝑇 is kept fixed, and vice versa.

5 GUIDING GEOMETRY GENERATION

Following [Hu et al. 2015], we collect an initial set {𝐻} of
about 300 3D models of different hairstyles, downloaded from
online public repositories [Electronic Arts 2014], and double
the number of the database by flipping each exemplar. In this
section, we describe how to generate 3D guide geometries by
searching from the database.

Hu et al. [2015] demonstrate that, with the help of a rich set
of hair geometry exemplars, excellent hair modeling results
can be obtained, which match the image cues and retain the
realism of hair geometry. However, in their method, the global
hair structure cannot be robustly estimated from local image
information, thus user interactions are needed. A subsequent
time-consuming optimization is also required to adapt the
exemplars to the user-specified global structure.
In order to avoid user interaction and improve run-time,

Chai et al. [2016] dramatically expand the database to an
amount of more than 40𝐾 on the precomputation stage by
remixing initial models and organize them for compact storage.
Moreover, they retrieve a few good-matching candidates from
a large set of exemplars, typically 5-40 candidates, all of
which are involved in the further reconstruction until the last
step, when the closest matching model is selected from the
candidates. Zhang et al. [2017] only need an approximately
matching hair shape with the four view contour constraints.
They only use contours as direct matching cues and do not
consider the internal hair structure.
In our case, we do not require that the exemplar models

in the database have the same style in global as our target
hairstyle. We only expect that there are local style patterns
provided in need to guide the target hair synthesis. Front and
back are two views which are sufficient to express a hairstyle
[Zhang et al. 2017], thus we regard them as guiding views to
search exemplars from the database, one for each view. We
pick the first input image as the front view (normally, the
model scan starts from the front view with angle 0𝑜), and the
back view is selected from {𝐼𝑖} as the one whose view angle
is closest to 180𝑜.

5.1 Database View Representation

All these database models are composed of a number of inde-
pendent thin polygon-strips. Each strip represents a coherent
hair wisp, with relative strand growth directions encoded
in parametric texture coordinates. We render each database
at two views: front and back, with the projected direction
encoded in color space for each pixel. See the left and middle
column in Fig.3 for example. To search for the best matching
exemplars, we consider the following two factors in order:
the hair mask 𝑀𝐻 for mask test to filter out less matched
candidates, and the orientation map 𝑂𝐻 for style patch match
to search for the best ones.

5.2 Mask Test

After view rendering for each database exemplar, we can get
a binary 2D hair mask 𝑀𝐻 . The distance between mask 𝑀𝐻
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Fig. 3. Guide exemplar search results for the front and back views,
respectively. Left column: given a hair segmentation, the best matching
exemplar rendered at the corresponding view. Middle column: the
original mesh with color indicating the direction. Right column: hair
strands grown from the scalp.

and the input image mask 𝑀𝐼 is measured as:

𝑑𝑖𝑠𝑡(𝑀𝐼 ,𝑀𝐻) =
𝑀𝐼 ∪𝑀𝐻 −𝑀𝐼 ∩𝑀𝐻

𝑀𝐼 ∪𝑀𝐻

The candidates whose distances to both the front and back
views are within 0.5 are selected.

5.3 Style PatchMatch

Our next task is to select for each view one best matching
exemplar, from the candidates which pass through the mask
test. Given an input color image 𝐼𝑖 and the orientation map
𝑂𝐻 of an exemplar 𝐻 at the corresponding view, we need a
measurement to decide whether 𝐻 can describe the hairstyle
of the input image. First, we densely calculate a per-pixel
orientation map 𝑂𝐼

𝑖 for 𝐼𝑖 [Luo et al. 2013] and remove the
directional ambiguity using the voting strategy described in
§4. The distance between 𝑂𝐻 and 𝑂𝐼

𝑖 is then defined as:

𝑑𝑖𝑠𝑡(𝑂𝐼
𝑖 , 𝑂

𝐻) =
∑︁

𝑋∈𝑂𝐼
𝑖

min
𝑌 ∈𝑂𝐻

||𝑋 − 𝑌 ||2

where 𝑋 is an 𝑚×𝑚 orientation patch in 𝑂𝐼
𝑖 and 𝑚 = 9 in

our cases; 𝑌 is the same size of patch in 𝑂𝐻 whose distance
to 𝑋 is the smallest. For each patch 𝑋 in 𝑂𝐼

𝑖 , we run several
PatchMatch sweeps [Barnes et al. 2009] to find a nearest
patch 𝑌 in 𝑂𝐻 .
After the selection of mask test described above, there

are about 5 ∼ 100 candidates. In the style patchmatch step,
we use 4 pyramid levels in the PatchMatch searching for

speedup. On each resolution level (𝑙 = 4, 3, 2, 1), we keep the
first 𝑘 candidates with the smallest distance for efficiency
(𝑘 = 20, 10, 5, 1, respectively).

5.4 Strand-level Exemplars and 3D Orientation Field

Given the two exemplars {𝐻1,2} retrieved by the front and
back views, following previous solutions [Chai et al. 2013;
Hu et al. 2015; Paris et al. 2008], we convert 𝐻1,2 to 3D
orientation volume (∼ 60× 60× 60) within the bounding box
of 𝐻1, 𝐻2, and 𝐺

𝑀 , and perform oorientation diffusion inside
the volume by treating the direction vectors given by 𝐻 and
the head surface normal near the scalp region as constraints.
We then grow 30, 000 strands from uniformly sampled seeds on
the scalp, under the guidance of the 3D volumetric orientation
field (see right column in Fig. 3). We record the following
geometry information of 𝐻1,2 for the further synthesis step:
the first is the 3D volumetric orientation field 𝐷ℎ, with 𝑜

ℎ
𝑥𝑦𝑧,

ℎ = 1, 2 indicating the orientation at voxel (𝑥, 𝑦, 𝑧); the
second is the strand-voxel indexing dictionary {𝑠𝑣}ℎ𝑥𝑦𝑧(ℎ =
1, 2) indicating the set of strand vertices of the model 𝐻ℎ

which go through (𝑥, 𝑦, 𝑧), 𝑠 is the index of strand passing
(𝑥, 𝑦, 𝑧), 𝑣 is the index of vertex on strand 𝑠 which occupies
(𝑥, 𝑦, 𝑧). We sample the strand such that no two vertices on
the same strand fall into the same voxel.

6 DATA-DRIVEN HAIR SYNTHESIS

After the guiding geometry generation step as described above,
our next goal is to synthesize the strand level hair geometry
that resembles both the fusion model and hair texture in the
input images.

Fig. 4. 3D orientation field generation. Left: Surface 3D orientation
field (colored per vertex). Right from up to bottom: a slice of surface
orientation, a slice of 3D orientation synthesis result, and the source
indexing.
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ALGORITHM 1: 3D orientation synthesis algorithm

for iteration = 1 → n do

for h = 1 → 2 do

NNF(ℎ) ← SingleSourceSynthesis(𝐷𝐺, 𝐷ℎ)
end for

for each patch 𝑂𝐺
𝑥𝑦𝑧 do

if 𝑑𝑖𝑠𝑡(𝑂𝐺
𝑥𝑦𝑧 , 𝑂

1
𝑥𝑦𝑧) < 𝑑𝑖𝑠𝑡(𝑂𝐺

𝑥𝑦𝑧 , 𝑂
2
𝑥𝑦𝑧) then

nnf ← nnf(1)

else
nnf ← nnf(2)

end if

end for
𝐷𝐺 ← FieldReconstruction(NNF, 𝐷1, 𝐷2)

end for

6.1 3D Orientation Reconstruction

Given a set of 2D orientation maps {𝑂𝐼
𝑖 } and the correspond-

ing camera transformations {𝑇 𝐼
𝑖 }, referred to [Wei et al. 2005],

for each point 𝑝 on 𝐺𝑀 , the 3D orientation 𝑑(𝑝) with all visible
views of 𝑝 is optimized as:

𝑑(𝑝) = 𝑎𝑟𝑔min
𝑑

∑︁
𝑖

𝛿2𝑖 (𝑁𝑖(𝑝) · 𝑑)2

𝑁𝑖(𝑝) is the normal of a plane defined by the cross of the
line-of-sight vector and the 2D orientation direction projected
into 3D in the camera space. 𝑑 is the 3D vector to optimize.
The line-of-sight vector is computed by 𝑝 and view center of
𝐼𝑖, and the 2D orientation direction is obtained from the pixel
of 𝐼𝑖 where 𝑝 is projected by 𝑇 𝐼

𝑖 . 𝛿 is the confidence of pixel
orientation. This can be solved efficiently by singular value
decomposition. See the left in Fig.4 for an example.

The above process gives us a 3D orientation reconstruction
for vertices on 𝐺𝑀 . We then convert surface orientation to
the 3D volumetric orientation field as defined in section 5.4,
denoted as 𝐷𝐺.

6.2 NNF Mapping Generation

Given the 3D orientation field𝐷𝐺, we perform 3D patchmatch-
based orientation synthesis algorithm to update 𝐷𝐺, with
guiding volumetric orientation fields𝐷1 and𝐷2. This operates
in the following three stages.

Single-Source-Synthesis. Similar to [Darabi et al. 2012], our
goal is to fill the content in the target region 𝐷𝐺 with those
from the source exemplars 𝐷1 and 𝐷2. We minimize the sum
of squared differences between the corresponding voxel via
patch-based operation:

𝐸(𝐷𝐺, 𝐷ℎ) =
∑︁

𝑂𝐺
𝑥𝑦𝑧∈𝐷𝐺

min
𝑂ℎ

𝑥𝑦𝑧∈𝐷ℎ
||𝑂𝐺

𝑥𝑦𝑧 −𝑂ℎ
𝑥𝑦𝑧||

2

Here, 𝑂𝑥𝑦𝑧 is an𝑚×𝑚×𝑚 3D voxel patch with 3D orientation
vectors as elements and we set 𝑚 = 5 in our experiments.
The search travels in the order of the left-and-right and the
up-and-down.
NNF Mapping. After Single-Source-Synthesis for both 𝐷1

and 𝐷2, we will determine for each target voxel patch whether

NNF for 𝐷1 or that for 𝐷2 better matches. Here, we just
naively keep the one with the smaller distance.

Field Reconstruction. Once all valid patches got their NNF,
we update the 3D orientation field 𝐷𝐺 in accordance with
the computed NNF mapping. Specifically, the orientation of
a particular voxel is computed as the average of all local
patches (from 𝐷1 and 𝐷2) that cover it [Darabi et al. 2012].
The updated 𝐷𝐺 will be used for the next iteration.

The above three steps are iterated many times (20 itera-
tions in our experiments) to get a stable 𝐷𝐺 as well as the
NFF mapping (see an overview in ALGORITHM 1). In our
subsequent hair synthesis step, we rely on the NNF mapping
function to guide the hair growth.

6.3 Hair Synthesis

Although the 3D orientation field is reconstructed as described
above, we still do not know the structure of strand connection
and growth end. Therefore, directly growing strands from
roots in scalp [Zhang et al. 2017] cannot cover the complete
hair region (See Fig.11). In order to grow natural strands uni-
formly in the hair region, we process hair synthesis in 3 steps:
hair growing, root assignment, and strand augmentation.
Hair Growing. The computed NNF mapping implicitly

assigns a one-to-one mapping from a target patch position
(𝑥, 𝑦, 𝑧) to that of the exemplars (𝑥ℎ, 𝑦ℎ, 𝑧ℎ)(ℎ ∈ {1, 2}), rep-
resented as 𝑛𝑛𝑓(𝑥, 𝑦, 𝑧)⇐ (𝑥ℎ, 𝑦ℎ, 𝑧ℎ). As described in §5.4,
we also obtain the strand-voxel indexing dictionary {𝑠𝑣}. We
grow strands starting from the uniformly sampled seeds inside
the hair volume and along the direction guided by the strand
geometry of the exemplars. For a seed 𝑠*, positioned at voxel
(𝑥, 𝑦, 𝑧), its NNF maps 𝑝′ in (𝑥ℎ, 𝑦ℎ, 𝑧ℎ) where a set strands
pass through with a set of vertices occupying it, {𝑠𝑣}ℎ𝑥𝑦𝑧, we

Fig. 5. Hair synthesis. For a sampled seed, nnf indexes its guide
strand vertex in sources (a). Hair grows along the direction guided by
source (b) until a source strand reaches its end (c). We also need to
trace along the negative direction from the beginning seed (d).
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Fig. 6. Hair strands using our SDF distance-based root assignment
(left) and using a direct greedy assignment (right). Strands at further
distance will collide with closer strands when they are later connected
to the scalp (the right blue square).

grow the strand along the direction 𝑑+:

𝑑+ =

∑︀
𝑠𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑅𝑒𝑔(𝑥ℎ,𝑦ℎ,𝑧ℎ) 𝑤(𝑠𝑣) ·

𝑠𝑣+1−𝑠𝑣
||𝑠𝑣+1−𝑠𝑣||∑︀

𝑠𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑅𝑒𝑔(𝑥ℎ,𝑦ℎ,𝑧ℎ) 𝑤(𝑠𝑣)

where 𝑤(𝑠𝑣) = exp (−10 · ||𝑝′ − 𝑠𝑣||2/𝑔2) , and 𝑔 is the voxel
width. 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑅𝑒𝑔(𝑥ℎ, 𝑦ℎ, 𝑧ℎ) is a 3 × 3 × 3 neighboring
voxel region centered at (𝑥ℎ, 𝑦ℎ, 𝑧ℎ). Then we calculate the
next strand vertex as 𝑠𝑛+1 ← 𝑠𝑛 +∆ · 𝑑+, ∆ is decided by
the nearest source vertex 𝑠*𝑣, which is set to ‖𝑠*𝑣+1 − 𝑠*𝑣‖. The
growing stops, if 𝑠*𝑣 is a strand end or 𝑝 is outside the hair
region.
Since the growing does not start from the scalp root, we

also need to trace along the opposite direction 𝑑− from the
seed 𝑠*:

𝑑− =

∑︀
𝑠𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑅𝑒𝑔(𝑥ℎ,𝑦ℎ,𝑧ℎ) 𝑤(𝑠𝑣) ·

𝑠𝑣−𝑠𝑣−1

||𝑠𝑣−𝑠𝑣−1||∑︀
𝑠𝑣∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑅𝑒𝑔(𝑥ℎ,𝑦ℎ,𝑧ℎ) 𝑤(𝑠𝑣)

The next strand vertex is computed by 𝑠𝑛−1 ← 𝑠𝑛 −∆ · 𝑑−,
with ∆ = ‖𝑠*𝑣 − 𝑠*𝑣−1‖. See Fig.5 for an illustration.

Root Assignment. After hair growing, we usually get about
3000 hair strands, denoted as 𝑆, which should be linked to the
scalp. A direct assignment to their nearest scalp point could
lead to undesired arrangements of the hair strands (see Fig.
6). We resort to a simple heuristic. We first, on the volume,
calculate the sign distance field (𝑆𝐷𝐹 ) to the head model.
Larger 𝑆𝐷𝐹 values mean further to the head model. We sort
these strands by the value 𝜓(𝑠) from large to small. Given
a strand 𝑠 ∈ 𝑆, 𝜓(𝑠) is calculated by the 𝑆𝐷𝐹 of all strand
vertices of 𝑠:

𝜓(𝑠) =
1

𝑁

∑︁
𝑣

𝑆𝐷𝐹 (𝑠𝑣)

where 𝑁 is the number of vertices. We then uniformly sample
more over 3000 roots on the scalp. The strands with a larger
value of 𝜓 have priority to be assigned first to its nearest root
samples. We use the similar cut-and-connect procedure as in
[Chai et al. 2016] to connect the strand to the scalp. This
simple heuristic allows hair strands at further distances to

get connected first to avoid the collision when closer strands
take up the nearby roots too quickly (Fig. 6).
Strand Augment. After the strands set 𝑆 obtained as de-

scribed above, we augment the number of strands in our
experiments by adding new strands to our result model as
in [Zhang et al. 2017]. For each new strand, we again uniform-
ly sample the scalp region as the root point, then copy the
nearest guide strand from 𝑆. After that, we adopt the linear
blend skinning approach in [Hu et al. 2015] to deform the
new strand to be coherent with the neighboring ones. Finally,
we obtain a hair model with 35, 000 strands.

7 RESULTS AND DISCUSSION

We run our modeling method on a variety of challenging
hairstyles, ranging from short/straight to long/curly (see
Fig.12). All experiments are run on a computer with an Intel
Core i7-4790 CPU and 32GB of memory. With hair masks,
color images and fusion model as input, a complete strand-
level hairstyle model is calculated, taking about 10 minutes
using our un-optimized automatic pipeline. The majority of
the time is spent on the iterations of 3D orientation recon-
struction. For comparison, the total processing time of [Zhang
et al. 2017] for an example is about 25 minutes (including 6
minutes for user interactions). Fig. 12 shows the results.
Our method is capable of successfully modeling various com-
plex hairstyles and generating results that closely resemble
the input images, including detail regions where it is very
challenging for previous methods to reconstruct, and in the
meantime, being fully automatic, thanks to our depth fusion
and the local 3D patch guided strand synthesis algorithm.

Fig. 7. Comparison of exemplar searching results with AutoHair [Chai
et al. 2016]. Left two columns: the 2D hair mask and the orientation
map (top), the best matching exemplar using our method (bottom)
and the corresponding mesh model (right). Right two columns: the
corresponding best matching results of AutoHair.

ACM Trans. Graph., Vol. 37, No. 6, Article 205. Publication date: November 2018.



205:8 • Zhang et al.

Fig. 8. Comparisons with a state-of-the-art four-view modeling method [Zhang et al. 2017]. From left to right, input images for [Zhang et al.
2017], our results (left three), and the results using [Zhang et al. 2017] (right three).

To evaluate our method, we first compare the exemplar
matching strategy with Autohair [Chai et al. 2016]. In [Chai
et al. 2016], they search results based on the symmetric differ-
ence between two masks and the pixel orientation difference.
They keep 4-50 candidates for their further deformation steps.
Here we show the results with the smallest distance drawn
from the 478 exemplars. In their method, the pixel orienta-
tion difference in the union mask region cannot describe the
similarity in style between the hair models of exemplar and
the input image. In comparison, we use local style pattern-
s as matching metric to find exemplars that provide patch
patterns as many as we need to describe our target hairstyle
model. Visual examples are shown in Fig. 7.
To evaluate the influence of the number of exemplars on

the final result, we use 4 views (front, back and two sides, cf.
[Zhang et al. 2017]) as guidance to search exemplars from the
database. Representative comparison results are shown in the
last row of Fig. 10. We find that the front and back views can
already provide enough geometry guidance for hair synthesis
and produce the modeling results that almost have the same

Fig. 9. Our algorithm is not sensitive to imperfect segmentations.
From left to right: color images, hair masks generated by hairnet [Chai
et al. 2016], hair region segmentation on the fusion model, and the
3D hair result by our method.

quality as those by four exemplars. Thus for efficiency reason,
we use the two-view scheme throughout our experiments.

We segment out hair mask from color images using the hair-
net in [Chai et al. 2016]. Although their network is trained
with hair images with front views, we find it to perform consis-
tently well for views distant from the front one. Occasionally,
small artifacts could happen round vague regions such as the
corner part of the side view hair in Fig. 9. Such improper 2D
hair mask may result in imperfect hair segmentation on the
3D fusion model (Fig. 9 middle). Additionally, the incorrectly
estimated camera poses from KinectFusion may also lead to
outliers in the hair masks (e.g., Fig. 12, the forehead). Nev-
ertheless, our data-driven hair synthesis algorithm is robust
enough to overcome such incorrect mask regions and produces
3D hair model that resembles the input images considerably
well (see Fig. 9, right).

We also compare our method with [Zhang et al. 2017],
a state-of-the-art light-weighted multi-view hair modeling
technique, in Fig. 8. Zhang et al. [2017] construct a smooth
rough hair shape with a matching database shape as reference
retrieved by the contours of the front, back and two side
views. Thus, there’s no information along the surface normal
direction. In order to generate more geometry detail, they
use a piece-wise helix fitting method for detail refinement.
In comparison, our approach makes use of the fusion model
computed from the depth frames, which provides a lot of shape
details. Our hair synthesis method ensures that there are hair
strands growing through even some small detail regions (Fig.
8). Moreover, the method of Zhang et al. [2017] requires
user interactions for camera specification, hair segmentation,
and directional ambiguity removal while ours runs in a fully
automatic manner.
In addition, direct growing hair strands from scalp roots

along the orientation field cannot guarantee to fill the entire

ACM Trans. Graph., Vol. 37, No. 6, Article 205. Publication date: November 2018.



Modeling Hair from an RGB-D Camera • 205:9

Fig. 10. Impact of the number of guiding exemplars. The top row
shows the 4 input views (front/back/left/right) and the middle row
shows their corresponding best-matching exemplars. The last row
are modeling results using 2 views (front and back) and 4 views,
respectively.

hair volume (See Fig. 11). Although cut-and-connect strat-
egy [Chai et al. 2013] can refine the overall hair model, it
unavoidably introduces some artifacts (see Fig. 8 and [Zhang
et al. 2017]). Our hair synthesis method allows a plausible
strands distribution inside the hair volume.
Limitations.Our hair modeling framework has limitations,

which may inspire interesting future work. First, our head
model fitting only considers a rigid transformation to align
the head of the orthogonal view when fitting to the 3D fusion
model. Thus the geometry of our fitted head may deviate from
the fusion model (see Fig. 9). Non-rigid transformation might
be considered to get more seamless head fitting (e.g., using the
method of [Li et al. 2017]). Second, although our algorithm
is robust against missing regions, the final 3D hair could still
get imperfect results in some fine detail regions if they are not
fully captured by the fusion model, i.e., there are no geometric
cues to guide our strand synthesis (see Fig. 8, 12). We believe
this is a common drawback for all current lightweight depth
sensors. Third, we do not handle constrained hairstyles such
as braids and buns. To create constrained braids which are
different from the natural hairs, separate identification and
processing of the braid structure should be done such as the
methods in [Hu et al. 2014a,b]. In addition, our method may
not work well for long highly curly hairstyles such as the
failure case shown in [Zhang et al. 2017] due to the highly
convoluted structures. Finally, our framework is off-line, and
we hope that we can extend our data-driven method to online
screened hair modeling.

Fig. 11. A direct growing of hair along the 3D orientation field may
lead to over-smoothed result (middle), while our data-driven hair
synthesis produces higher quality hair strands (right).

8 CONCLUSION

We have presented a data-driven approach to model the hair
geometry and compute a strand-level 3D hair model by using
a single RGB-D camera. The core of our pipeline is a 3D
PatchMatch-based local search and volumetric synthesis algo-
rithm that simultaneously reasons about the hair geometry,
strands connectivity, strand orientation, as well as hair struc-
tural plausibility. We extend the single-view and multi-view
image-based 3D hair modeling to achieve more complete and
realistic 3D hairs by utilizing depth fusion and 3D Patch-
Match. To the best of our knowledge, our method is the first
fully automatic method that can generate 3D hairs of higher
quality than those of the state-of-the-art approaches. Finally,
our approach also opens up possibilities for future researches
including depth-based style-constrained hair modeling and
online screened hair modeling.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
constructive comments; the gamers and artists for making
their hair models available on The Sims Resource and Newsea
platform; Monika Teiserskyte, Thauana de Morais, Kaizhang
Kang, Xinru Hu, and Qin Lv for being our hair models. This
work is partially supported by the NSF China (61572429,
61502306, U1609215, 61772457), and the China Young 1000
Talents Program.

REFERENCES
Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Gold-

man. 2009. PatchMatch: A Randomized Correspondence Algorithm
for Structural Image Editing. ACM Trans. Graph. 28, 3 (2009),
24:1–24:11.

Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkel-
stein. 2010. The Generalized Patchmatch Correspondence Algorithm.
In ECCV’10. 29–43.

Connelly Barnes and Fang-Lue Zhang. 2017. A survey of the state-of-
the-art in patch-based synthesis. Computational Visual Media 3, 1
(2017), 3–20.

Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. 2014. Face alignmen-
t by explicit shape regression. International Journal of Computer
Vision 107, 2 (2014), 177–190.

Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap,
and Kun Zhou. 2015. High-quality hair modeling from a single
portrait photo. ACM Trans. Graph. 34, 6 (2015), 204:1–204:10.

Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou.
2016. AutoHair: Fully Automatic Hair Modeling from a Single Image.

ACM Trans. Graph., Vol. 37, No. 6, Article 205. Publication date: November 2018.



205:10 • Zhang et al.

ACM Trans. Graph. 35, 4 (2016), 116:1–116:12.
Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou.

2013. Dynamic Hair Manipulation in Images and Videos. ACM
Trans. Graph. 32, 4 (2013), 75:1–75:8.

Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu, Baining Guo, and
Kun Zhou. 2012. Single-view Hair Modeling for Portrait Manipula-
tion. ACM Trans. Graph. 31, 4 (2012), 116:1–116:8.

Nicolas Cherin, Frederic Cordier, and Mahmoud Melkemi. 2014. Mod-
eling piecewise helix curves from 2D sketches. Computer-Aided
Design 46 (2014), 258–262.

Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Christian Theobalt. 2017. Bundlefusion: Real-time globally consis-
tent 3d reconstruction using on-the-fly surface reintegration. ACM
Trans. Graph. 36, 3 (2017), 76:1–76:19.

Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B. Goldman, and
Pradeep Sen. 2012. Image Melding: Combining Inconsistent Images
Using Patch-based Synthesis. ACM Trans. Graph. 31, 4 (2012),
82:1–82:10.

Jose I Echevarria, Derek Bradley, Diego Gutierrez, and Thabo Beeler.
2014. Capturing and stylizing hair for 3D fabrication. ACM Trans.
Graph. 33, 4 (2014), 125:1–125:11.

Electronic Arts. 2014. The Sims Resource. http://www.thesimsresource.
com/.

Tomas Lay Herrera, Arno Zinke, and Andreas Weber. 2012. Lighting
hair from the inside: A thermal approach to hair reconstruction.
ACM Trans. Graph. 31, 6 (2012), 146:1–146:9.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2014a. Robust
hair capture using simulated examples. ACM Trans. Graph. 33, 4
(2014), 126:1–126:10.

Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-view
hair modeling using a hairstyle database. ACM Trans. Graph. 34,
4 (2015), 125:1–125:9.

Liwen Hu, Chongyang Ma, Linjie Luo, Li-Yi Wei, and Hao Li. 2014b.
Capturing Braided Hairstyles. ACM Trans. Graph. 33, 6 (2014),
225:1–225:9.

Liwen Hu, Shunsuke Saito, Lingyu Wei, Koki Nagano, Jaewoo Seo, Jens
Fursund, Iman Sadeghi, Carrie Sun, Yen-Chun Chen, and Hao Li.
2017. Avatar digitization from a single image for real-time rendering.
ACM Trans. Graph. 36, 6 (2017), 195:1–195:14.

Wenzel Jakob, Jonathan T Moon, and Steve Marschner. 2009. Captur-
ing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5 (2009),
164:1–164:9.

D. Li, T. Shao, H. Wu, and K. Zhou. 2017. Shape Completion from a
Single RGBD Image. IEEE Trans. Vis. Comp. Graph. 23, 7 (2017),
1809–1822.

Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-aware
hair capture. ACM Trans. Graph. 32, 4 (2013), 76:1–76:12.

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J Davison, Pushmeet Kohi, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion:
Real-time dense surface mapping and tracking. In Mixed and aug-
mented reality (ISMAR), 2011 10th IEEE international symposium
on. IEEE, 127–136.

Sylvain Paris, Will Chang, Oleg I Kozhushnyan, Wojciech Jarosz, Wo-
jciech Matusik, Matthias Zwicker, and Frédo Durand. 2008. Hair
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Fig. 12. Our hair modeling results. Each row shows the selected reference color images, the fusion model, and four views of the hair modeling
results.
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