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a b s t r a c t

We introduce Hair-GAN, an architecture of generative adversarial networks, to recover the 3D hair
structure from a single image. The goal of our networks is to build a parametric transformation from
2D hair maps to 3D hair structure. The 3D hair structure is represented as a 3D volumetric field which
encodes both the occupancy and the orientation information of the hair strands. Given a single hair
image, we first align it with a bust model and extract a set of 2D maps encoding the hair orientation
information in 2D, along with the bust depth map to feed into our Hair-GAN. With our generator
network, we compute the 3D volumetric field as the structure guidance for the final hair synthesis.
The modeling results not only resemble the hair in the input image but also possesses many vivid
details in other views. The efficacy of our method is demonstrated by using a variety of hairstyles and
comparing with the prior art.
© 2019 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Techniques of 3D avatar modeling are becoming increasingly
popular in today’s emerging VR and AR applications. However,
hair modeling, one of the most crucial tasks, still remains chal-
lenging due to the complexity and variety of hairstyles in the real
world. Methods of single-view hair modeling (Chai et al., 2016;
Hu et al., 2015; Chai et al., 2015) are considered as a much more
user-friendly in comparison with those of multi-view modeling
methods (Echevarria et al., 2014; Herrera et al., 2012; Hu et al.,
2014; Jakob et al., 2009; Luo et al., 2013; Paris et al., 2008),
which usually require specialized equipments in controlled studio
environment and long processing cycles.

Due to the lack of information at views distant from the
input one, single-view hair modeling techniques usually rely on
a large database containing hundreds or thousands of synthetic
hairstyles used as prior knowledge of hair shape, distribution,
or complex structure. These data-driven methods (Chai et al.,
2016; Hu et al., 2015, 2017) come with some problems. Firstly,
the requirement of large storage for hair database restricts their
application on resource-constrained platforms such as mobile
devices. Second, the quality of modeling results relies on the
retrieved hair exemplars which are searched from the quantity-
limited database. Although post-refinement is introduced to im-
prove the detail accuracy, the structure of the final result is
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still confined by the initially retrieved exemplar. In addition, the
greedy searching process is slow and difficult to balance the
selection criteria between the local detail similarity and the global
shape similarity.

Recently, deep learning has been intensively exploited in many
fields of researches. One of the most attractive characteristics
of deep learning methods is their effectiveness in converting
big datum into high-dimensional feature representations. Those
learned features are sufficiently qualified to describe a new data
and to set up a space mapping from the input to the target
output, totally independently from those training datum. The
method of Chai et al. (2016) and the concurrent works of Zhou
et al. (2018) and Saito et al. (2018) introduce deep learning into
single-view hair modeling. In Chai et al. (2016)’s method, they
use CNN networks to detect hair regions and direction predictors
from images as preprocessing for the subsequent hair modeling.
Zhou et al. (2018) use an auto-encoder to directly learn the
correspondence from 2D orientation map to hair stand assembly
parameterized to a 2D scalp map of low resolution as in Wang
et al. (2009). Saito et al. (2018) put an effort to achieve end-to-end
3D hair inference by leveraging the latent space of auto-encoders
to build a bridge between the 2D image and the 3D hair structure.

In this paper, we introduce Hair-GAN, an architecture of gen-
erative adversarial networks to recover the 3D hair structure
from a single input image. As studied in the vision communi-
ties, generative adversarial networks are capable of capturing the
model distribution better than those of CNN and auto-encoder
models because their adversarial training nature tends to learn
more generic distance measures by themselves rather than hand-
coded (Goodfellow et al., 2014). In order to build the data for the
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Fig. 1. Given single-view inputs of a variety of hairstyles (the first column), our generator network recovers 3D hair structures represented as the rough shape and
orientation field (the second column) to guide hair synthesis. Complete strand-level 3D hair models (the last three columns) are finally generated that resemble the
hairs in input images.

network trainings, we use 3D artificially synthetic hair database.
Like the deep learning methods of Zhou et al. (2018) and Saito
et al. (2018), the large amount of database is put aside after the
training of the network is completed.

A particular challenge of single-view hair modeling is that
the input image only provides 2D information, lacking the cues
along the depth direction in the 3D space. Therefore, a direct
2D-to −3D training may lead to unconstrained results. We thus
involve the bust depth map into the input tensor of our net-
work as a condition to our GAN, which provides depth prior for
hairs growing around the human body. Meanwhile, we convert
a succession of 2D features to a single channel of 3D features by
a dimensional expansion layer to aggregate 3D knowledge from
2D convolutional neural networks. Inspired by the adversarial
structure of GANs (Goodfellow et al., 2014), we minimize the
objective loss of discriminator to enlarge the difference between
the real and the fake, and competitively optimize the generator to
reduce the distance between the output and the ground truth, not
only voxel-wisely but also in the latent space of the discriminator.
Our method can generate a high-quality 3D strand-level hair
model with a single image as input, guided by the volume of occu-
pancy and orientation field generated by our generator network.
3D hair structure recovered by our Hair-GAN takes care of high
perceptual-quality details along the depth direction, rather than
a smooth rough hair shape as in Saito et al. (2018). Fig. 1 shows
the efficacy of our method for both shot and long, straight and
curly hairstyles.

In summary, our contributions are:

• We introduce the architecture of GAN for single-view hair
modeling. Our GAN transform 2D orientation maps into 3D
volumetric field which encodes both the occupancy and
orientation information of hair strands;
• We propose a dimension expansion layer into the design of

our generator network which converts a succession of 2D
features to a single channel of 3D features;
• We optimize the generator parameters by considering both

the output and the latent features of the discriminator.

2. Related work

Hair is one of the vital components of digital characters in
online games, virtual worlds, and virtual reality applications.
The techniques of modeling high-quality 3D hair are extensively
studied in computer graphics, which usually require professional
skills and days of laborious manual work. Please refer to the

survey (Ward et al., 2007) for a detailed discussion of seminal
hair modeling methods.

Image-based hair modeling is a promising way to create com-
pelling hair structures from captured hair images. According to
the number of images required, methods of image-based hair
modeling can be roughly separated into multi-view hair mod-
eling and single-view hair modeling. Multi-view hair modeling
methods (Echevarria et al., 2014; Herrera et al., 2012; Hu et al.,
2014; Jakob et al., 2009; Luo et al., 2013; Paris et al., 2008)
create high-quality 3D hair modeling from a number of views,
which often require complex hard-ware setup, well-controlled
environment, and long processing cycles. They are not consumer-
friendly since these multi-view capture systems and professional
skills are not easily accessible to average users. While single-
view hair modeling methods are becoming increasingly popular
and important as single-view, un-calibrated images are widely
available on the Internet. Chai et al. (2012, 2013) first introduce
the technique of single-view hair modeling by utilizing different
kinds of prior knowledge, including layer boundary and occlusion,
and shading cues (Chai et al., 2015). A major problem of their
methods is the lack of control over the geometry at views distant
from the input image.

Data-driven hair modeling methods provide a conceptually
persuasive prior knowledge of the entire hairstyle, with 3D syn-
thetic hairstyle database. Hu et al. (2015) assemble different
hairstyles searched from the database by fitting with a few user
strokes to reconstruct a complete hair shape. Chai et al. (2016)
bring forward the model remixing step to precomputation stage.
About 5–40 candidates are found from their enlarged database
and afterward, they perform deformation on these candidates to
achieve a model result with detail similarity. In order to enrich
their 3D hair database to 40 K models, they cluster hair strands
and recombine those cluster models. Zhang et al. (2017) only
use the candidate searched by contour fitting for their four-view
based hair modeling to build a smooth rough hair shape and
the style details are introduced by texture melding and helix-
fitting. In Zhang et al. (2018), they introduce a local patch-based
searching strategy to find candidates with local style patterns
enough to guide hair synthesis, instead of to find those with the
same style in global. All these data-driven methods need storage
for hundreds or thousands of hairstyle database.

The recent success of deep learning also brings significant
improvement in the fields of hair modeling. Chai et al. (2016)
present a fully automated hair modeling method by replacing
user interactions with deep convolutional neural networks to
hair segmentation and hair growth direction estimation. Hu et al.
(2017) introduce deep learning based hair attribute classifier to
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improve the candidate retrieval performance of the data-driven
method. In order to get an end-to-end learning from 2D im-
age knowledge to 3D hair representation, Zhou et al. (2018)
use encoder–decoder architecture to generate hair strands rep-
resented as sequences of 3D points for 2D orientation fields as
input. But their hair representation is parameterized to a low-
resolution grid on the scalp, which leads the modeling result of
a low quality. In a concurrent work, Saito et al. (2018) demon-
strate that 3D occupancy field and the corresponding flow field
with high resolution are easily handled by neural networks and
compatible with traditional strand-based representation for high-
fidelity modeling and rendering. However, in their method, the
occupancy field and flow field are decoded separately from the
same volumetric latent space. They fine-tune the pre-trained net-
work of ResNet-50 to encode input image to the hair coefficients
which are aligned to the volumetric latent space by their trained
embedding networks. Since there is compression during the pro-
cessing of encoder and the information loss in latent coefficient
alignment, their results lack corresponding details between the
input image and the output hair structure. In comparison, with
2D information maps as input, our method is more direct to
train Hair-GAN to predict the 3D volumetric field encoding both
the occupancy and orientation information, with consideration of
detail correspondence between the input image and the modeling
result.

Generative adversarial networks (GANs) is introduced by
Goodfellow et al. (2014) as a framework to construct a gener-
ative model that can mimic the target distribution. The goal of
GANs is to train the generator model by iteratively training the
discriminator and generator in turn. Conditional GANs (Mirza and
Osindero, 2014) are a type of GANs using conditional information
for the discriminator and generator, regarded as a promising tool
on image domains, e.g., the conditional image synthesis (Odena
et al., 2017), the generation of the images from text (Reed et al.,
2016), and image to image translation (Zhu et al., 2017). We adopt
GANs to recover 3D hair structure from 2D image information,
taking advantage of the power of GANs to re-create the distri-
butions of complex data sets. We make use of the latent space
of discriminator to enforce the similarity of the ground truth
and target output in distribution. Our Hair-GAN aims to learn
a parametric transformation from 2D information maps to 3D
volumetric occupancy and orientation field with no intermediate
latent space.

3. Overview

We first clarify our unified model space where all synthetic
hair database and the identical bust model are aligned. Based
on the unified model space, we generate the training data of
the ground-truth 3D volumetric field coupling with the corre-
sponding 2D orientation and confidence maps (Section 4). Next,
we introduce the architecture and loss functions of our Hair-
GAN (Section 5). Similar to the original GANs, our networks are
also composed by a discriminator and a generator. Given a real
hair image as input, by using our trained Hair-Generator, we can
recover the 3D hair structure based on the 2D orientation and
confidence maps, along with the bust depth map (all of which are
extracted from the image), and finally synthesis a high-quality 3D
hair model (Section 6).

4. Data preparation

Inspired by Zhang et al. (2018), we regard a hairstyle as a
fusion of local style patterns distributed around human body,
in contrast to Chai et al. (2016), Hu et al. (2015) and Zhou
et al. (2018), where different hairstyles are treated as different

combination of styled hair strands. Similar to those previous
researches, we collect an original hair dataset with about 300
3D artificial hair models provided by Chai et al. (2016), which
have already been aligned to an identical bust model. We define
a unified model space (Section 4.1) to prepare our training data
(Section 4.2) including both the ground-truth 3D volumetric field
Y along with the 2D hair information maps X .

4.1. Unified model space

We define a bounding box as the boundary of our model
space, where we generate the ground-truth 3D hair orientation
volume and capture 2D hair orientation and confidence maps.
Fig. 2 illustrates our defined bounding box and 2D capture as an
example.

Bounding box. The model space is bounded by a bounding box
defined in consideration of the bust model and all database hair
models except some extreme long hairs (selected manually). Then
a 3D volume with the resolution of 128 × 128 × 96 is subdivided
inside the bounding box (H × H × D).

2D capture. In order to get 2D information maps X under
the defined model space, we put a camera straight forward to
the bust model. The center of the image plane coincides with
the center of the bounding box. The 2D image is captured by
orthogonal projection with a scale of 1024/H . Therefore, the size
of the captured image is 1024 × 1024.

4.2. Training data

Following Hu et al. (2015), we double the number of the
database by simply flipping each model and remove the con-
strained hairstyles such as braids and bounds. There are 303
hairstyles in our database varying from short to long, straight
to curly. We randomly rotate the hair around the center of the
bounding box. The rotation ranges from −15o to 15o for X-axle,
−30o to 30o for Y-axle, and −20o to 20o for Z-axle. Since all
these database models are made up of polygon-strips, same as
to Hu et al. (2015), we convert the polygon-strips to dense 3D
orientation volume regarded as the ground truth Y and grow
strands afterwards. Then we render the hair strands to the 2D
image at the camera view pose defined in Section 4.1. However,
in order to remove the difference of real and synthetic hair
image, we compute 2D orientation and confidence maps for the
captured image using the iterative method of Chai et al. (2012).
Considering the diverse quality of real images, the iteration for
the database randomly ranges from 3 to 5. Usually, there is di-
rectional ambiguity in the orientation map and Chai et al. (2013)
have confirmed that directional ambiguity should be removed to
ensure the correct direction of hair growth. We can project model
strand direction to the image plane to update the orientation map
to avoid ambiguity. Then we diffuse the orientation with high
confidence to obtain the final pixel-dense orientation map and
encode direction vectors to color space. In addition, as mentioned
earlier, the bust model should also be taken into account as a
condition to our networks since hairs are grown from the scalp
and distributed around the body. We compute the bust depth
map by ray tracing pixel by pixel to get the distance from the bust
to the camera, and divide the distance by D to range the value
within [0, 1]. Finally our network input X is generated made up
of 2D orientation map, confidence map, and bust depth map.

All 2D maps are valued within [0, 1] and both 3D and 2D
orientation vectors are encoded in color space. For each database
model, we compute 12 pairs of X and Y . Therefore, we get 3636
pairs of training datum. An example of training data generation
is shown in Fig. 3.
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Fig. 2. Left: A bounding box set up with a camera pose for 3D volume definition and 2D capture. Right: An image plane aligned to the bounding box with an image
rendered by the defined camera projection.

Fig. 3. Training data generation. The first row from left to right is from a polygon-strip model randomly posed in the defined bounding box to generate the
ground-truth volumetric field Y and to grow hair strands afterwards. Then the fourth of the second row is shown a 2D image captured. Based on the 2D image and
the bust model, X are calculated made up of orientation, confidence, and bust depth maps (from left to right in the second row).

5. Hair-GAN

With the 2D maps and the bust depth map extracted from
the input image, the goal of our Hair-GAN is to produce a 3D
orientation volume encoding both the occupancy and orientation
information to guide the hair synthesis. The input of the network
is a 2D tensor X with a size of 1024 × 1024, composed of 4
feature channels that are captured in the unified model space:
hair orientation map (the 2D direction vector XY encoded as the
color of RG), confidence map (the confidence value as the color
of gray), and the bust depth map (the depth value as the color of
gray). The output is a 3D tensor Y of size 128 × 128 × 96, where
the hair orientation vectors are encoded in color of RGB. We first
describe the loss functions of our adversarial training networks
(Section 5.1). Next, we describe the architecture (Section 5.2) and
the training strategy of our Hair-GAN (Section 5.3).

5.1. Loss functions

The GANs (Goodfellow et al., 2014) is trained in a strategy of
competition between two networks: the generator and the dis-
criminator. We refer to the function form of WGAN-GP (Gulrajani

et al., 2017) in order to get an easy training. For our cases, the
goal is to train a generator G(X ) that maps the input 2D tensor
to a desired output 3D tensor Ỹ : Ỹ = G(X ). In the meantime,
the discriminator maximizes the Wasserstein-1 distance between
the generator distribution of G(X ) and the target distribution of
Y with a conditional latent projection P(X ).

Discriminator. The objective of our discriminator is to minimize
the energy:

LD = E[D(Ỹ, P(X ))]−E[D(Y, P(X ))]+λE[(∥∇ŶD(Ŷ, P(X ))∥2−1)2]

(1)

Similar to Gulrajani et al. (2017), the third term in this func-
tion is the gradient penalty for random samples Ŷ , that Ŷ ←
ϵY + (1− ϵ)Y , and ϵ is a random number in [0, 1]. The coefficient
λ is set to 10. P(·) is CNNs (denoted in Fig. 4) to map 2D tensor
X into a 3D latent space in order to be concatenated with Y or Ŷ
referred to the strategy introduced in Reed et al. (2016). And the
parameters in P(·) are trained along with those of D.

Generator. Following the original WGAN-GP (Gulrajani et al.,
2017), the energy function for generator is defined as

LG = −E[D(Ỹ, P(X ))] (2)
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Fig. 4. An overview of our Hair-GAN architecture. The generator and the discriminator are trained in conjunction.

However, in our experiment, we find that this function does
not work well to optimize the generator, since the difference
of the distribution between the real and the fake cannot be
easily determined by the sign of plus and minus. Inspired by
a previous work (Gatys et al., 2016) where they use selected
layers of pre-trained networks VGG as feature representation to
transfer texture style from a source image to a target one, here,
we introduce the losses of style and content to our research,
where the features are represented in the domains of selected
discriminator layers. Thus, the objective to optimize the generator
is to minimize the energy:

L∗G = αLcontent + βLstyle = α
∑

l

Llcontent + β
∑

l

Llstyle (3)

α and β are the weighting factors. As described in Gatys et al.
(2016), the content loss is defined by square-error loss between
feature representations:

Llcontent =
1
2

∑
ik

[f lik(Y, P(X ))− f lik(Ỹ, P(X ))]2 (4)

Here l is a selected layer, i is the is ith feature map, k is the index
in feature tensor, and f is the discriminator features (denoted in
Fig. 4). The style loss is defined by the mean-squared distance
between the Gram matrices, where each element is calculated by
the inner product between the vectorized feature maps i and j:
Al
ij =

∑
k f

l
ikf

l
jk. The objective is:

Llstyle =
1

4N2
l M

2
l

∑
ij

[Al
ij(Y, P(X ))− Al

ij(Ỹ, P(X ))]2 (5)

Here Nl is the number of feature maps andMl is the size of feature
tensors (e.g. if l = 0, N0 = 3 and M0 = 128× 128× 96).

5.2. Architecture

Fig. 4 and Table 1 describe the architecture of generator and
discriminator in detail. To clearly specify the architecture of our
Hair-GAN, we use the following notations: let in(resolution, fea-
ture channels) and out(resolution, feature channels) represent
input and output information for operation blocks; C(input chan-
nels, output channels, strides) denotes the convolutional layer
with a ReLU activation followed; ϖ is dimensional expansion
layer, and ζ is fully connected node. We use + as the element-
wise addition in the residual blocks constituted by C , and I
denotes the input tensor current layer. For all 2D convolutional
layers C2, the filter size is 5, and 3 for all 3D convolutional layers
C3. The operation blocks for X-, Y -, Z-info have the same form of
scheme.

Table 1
Architecture of the generator and the discriminator.
Generator

in(1024× 1024, 4)⇐ X
C2(4, 16, 2)+ [C2(4, 8, 2), C2(8, 16, 1)]
C2(16, 64, 2)+ [C2(16, 32, 2), C2(32, 64, 1)]
C2(64, 256, 1)+ [C2(64, 128, 2), C2(128, 256, 1)]
I + [C2(256, 256, 1), C2(256, 256, 1)]
out(128× 128, 256)

X-, Y -, Z-blocks
in(128× 128, 256)
I + [C2(256, 256, 1), C2(256, 256, 1)]
I + [C2(256, 256, 1), C2(256, 256, 1)]
C2(256, 128, 1)
C2(128, 96, 1)
ϖ

out(128× 128× 96, 1)

Concat. the outs from X-, Y -, Z-blocks
in(128× 128× 96, 3)
I + [C3(3, 3, 1), C3(3, 3, 1)]
I + [C3(3, 3, 1), C3(3, 3, 1)]
out(128× 128× 96, 3)⇒ Ỹ

Discriminator

P(·) block Concat. Ỹ/Y with P(X )
in(1024× 1024, 4)⇐ X in(128× 128× 96, 4)
C2(4, 32, 2) C3(4, 32, 2)
C2(32, 64, 2) C3(32, 64, 2)
C2(64, 128, 2) C3(64, 128, 2)
C2(128, 96, 1) C3(126, 256, 2)
ϖ C3(256, 512, 2)
out(128× 128× 96, 1) ζ

Generator. We illustrate the generator as some blocks. The first
block with X as input, composed of 4 residual networks (Lim
et al., 2017) element-wisely adding activation from earlier layers
to later layers in order to get a residual correction from high-
to low-level information, down-samples feature maps to a latent
code from 1024 × 1024 to 128 × 128, along with the number
of features increasing from 4 to 256. Then X-, Y -, and Z-blocks
separately encode the latent code to features with the number
of channels as 96, the resolution along Z-axis in the resulting
volume. ϖ converts the succession of 2D features to a single
channel of 3D features. Afterwards, we concatenate the output
from X-, Y -, Z-blocks as input into the following 3D residual
convolutional networks. More details please refer to Fig. 4 and
Table 1.

Discriminator. Taking into consideration of the correspondence
between the 2D input X and the 3D desired output Ỹ/Y , inspired
by Mirza and Osindero (2014), we concatenate Ỹ/Y with P(X ),
a feature map encoding X to a 3D latent space with the same
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Fig. 5. From left to right: input image, image aligned with the bust model fitted, and 2D maps as input for the generator network.

Fig. 6. Hair barbola. Modeling hair from single-view hair images created by cut-and-paste of different hairstyles. The left are input images of drastically different
hairstyles. The middle is the hair barbola images. The right is 3D hair modeling results generated by our Hair-GAN with barbola images as input.

resolution as Ỹ/Y . Then the concatenated 3D feature tensor is
convoluted by a number of filters until the layer of ζ finally
distinguishes the real and fake.

5.3. Training strategy

In Gulrajani et al. (2017), the generator updates after five-
times training of the discriminator, which takes a lot of time.
For time efficiency, we apply the two-timescale update rule
(TTUR) (Heusel et al., 2017) to update the discriminator only
once instead of five times. We employ the commonly used ADAM
optimizer (Kingma and Ba, 2014) with β1 = 0 and β2 = 0.9
for training. The learning rate for the discriminator is set to
0.0003, and 0.0001 for the generator. Generally, our Hair-GAN are
designed to generate a 128×128×96 3D volume encoded in both
of the occupancy and orientation fields, using 2D maps as input
with a size of 1024× 1024. The batch size for training is set to 4.

For the generator objective, the style and content weighting
factors are set as: α = 1e − 2, β/α = 5e + 2. Selected layers
for content loss are 0, 3, 6 and l = 0, 1, 2, 3, 4 for style loss.
Specifically, when l = 0, P(X ) can be removed from L0content and
L0style.

6. Hair synthesis

Given an input image, we first align it to our unified model
space and generate 2D information maps and depth map
(Section 6.1) as input to our generator network. After the 3D
orientation volume is generated, we build a rough shape to

confine hair synthesis and finally generate our strand-level hair
model (Section 6.2).

6.1. Preprocessing

Similar to previous single-view methods (Chai et al., 2016;
Hu et al., 2015; Chai et al., 2012), with an input image, we first
run the face alignment algorithm (Cao et al., 2014) to fit the
identical bust model to the facial landmark points detected in
the image. Also, we segment the hair region and to generate the
hair direction predictor to remove directional ambiguity for the
orientation map computation afterwards (Chai et al., 2016, 2013).
Specifically, assume that we have transformations: s (scaling) r
(rotation) and t (translation) involved in the bust fitting, s and
t are applied to the image and r is applied to the identical bust
model (for correct depth map generation). After the alignment,
we capture the image and hair mask by the projection described
in Section 4.1 and generate maps of orientation, the confidence
of orientation, and bust depth referred to Section 4.2. We also
remove the directional ambiguity with the help of direction pre-
dictor from the orientation map. Fig. 5 shows an example of
preprocessing.

6.2. Post-processing

We find that a direct trace along the 3D orientation field
computed by our generator network could lead to non-smooth
results for some complex hairstyles because the orientation is not
smooth in the flow field. Therefore, we apply the marching cube
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Fig. 7. Slices of volumetric fields. From left to right: the ground truth, our Hair-GAN output, the result learned using Eq. (2) as generator objective, a CNN generator
output with only naive L0content loss (no GAN training).

Fig. 8. Sampled strands tracing along the orientation field generated by Hair-GAN with (left) / without (right) the confidence map as input (cf. Fig. 5). There are
more structural discontinuities in the tracing result generated without the confidence map input (the right blue square).

Fig. 9. Up to down in the first column: a synthetic image with blue-colored hair contour, comparison of hair mask (the blue colored is the mask of the input image,
while the magenta colored is mask projected by the modeling result), orientation difference map (white color indicates there is a big difference between the input
and the modeling result in orientation map). The right three columns: the first row is our hair modeling results and the second row is the ground-truth.

algorithm (Lorensen and Cline, 1987) on the occupancy field to
compute a rough shape and smooth it by Poisson method (Kazh-
dan et al., 2006). We then smooth the exterior orientation field
tangent to the surface of the rough shape. We also optionally
refine the orientation field by warping the image orientation map
to the rough shape surface. Constrained by the normal direction
of the scalp and the image warping orientation field, we grow

hair strands from the scalp uniformly distributed inside the rough
shape following the previous method of hair synthesis (Chai et al.,
2013; Hu et al., 2015). After that, in order to refine the local detail
matching with the input image, we run the strands deformation
according to the projected image orientation map, as in Hu et al.
(2015).
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Fig. 10. Given an input image (leflt), modeling hair results with (middle) / without (right) post-processing.

Fig. 11. Comparisons with Chai et al. (2016) (the top two rows), Zhou et al. (2018) (the middle two rows) and Saito et al. (2018) (the bottom three rows). For each
comparison, from left to right: input image, our results (rough shape, orientation field, 3D hair models), the result of the previous method.

7. Results and discussion

The implementation of our hair structure recovery runs on a
PC with an Intel Core i7-4790 CPU, 32G of memory and an NVIDIA

GeForce GTX 1080Ti. It took about 10 days to train our Hair-GAN
with 200k generator iterations using our GPU. We use tensorflow
frameworks to set up our deep learning networks. With a single-
view input image as input, using our unoptimized pipeline, it
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Fig. 12. Hair modeling results using our Hair-GAN with single-view images as input.

takes less than 3 s for data preparation by the automatic method
of hair parsing (Chai et al., 2016), about 1 second to generate
3D volume field using our networks (after tensorflow python
call), and less than 30 s to synthesis final hair model. Fig. 12
demonstrates the effectiveness of our method on a variety of
hairstyles.

Hair-GAN can generate 3D models of hairstyles which do not
exist in our hairstyle database. Different from Saito et al. (2018)
to align the 3D hair structure with 2D image in a latent space,
we build parametric transformation from 2D image to 3D struc-
ture guaranteed by the local respective property of convolutional
neurons. Because we consider a hairstyle as a fusion of local
style patterns as mentioned in Zhang et al. (2018), rather than
a combination of different styled strands (cf. Chai et al., 2016).

Therefore, even with the image of an exaggerated hairstyle cre-
ated by two drastically different hairs, our method can also create
a strand-level 3D hair model as shown in Fig. 6.

Evaluation. To evaluate the efficacy of our generator objec-
tive function, we compare our volumetric field output with the
ground truth in Fig. 7. Additionally, we also train our generator
network separately by using the original function of WGAN-GP
(Eq. (2)) and the naïve L2 loss. The original function leads to
much ambiguity and noise in both the fields of occupancy and
orientation (Fig. 7, middle right). A naïve training of the generator
just using the L2 loss (L0content ) results in a blurred output (Fig. 7,
right), just like its usual effect on the super-resolution field (Xie
et al., 2018). Our objective function of the generator considers
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the distribution similarity of selected discriminator layers in both
style and content, which leads to a higher perceptual quality.

To evaluate the impact of the confidence map on the 3D volu-
metric field result, we train another GAN without the confidence
map as input. The Hair-GAN without confidence map can also
generate 3D volumetric field to encode the hair structure glob-
ally fitted with the input image. However, there exit more local
structural discontinuities in the orientation field than the result
field computed with confidence map input, which are revealed by
uniformly sampled strand tracing along the orientation as shown
in Fig. 8. Thus, we prefer to involve the confidence map within
the input maps which indicates reliable hair strands’ trajectory.

We also evaluate the quality of our modeling results in Fig. 9.
With a synthetic image as input, our Hair-GAN produces the
modeling results similar to the ground-truth model even in views
distant from the input one. The projected mask of our result can
be well matched with the input mask. Moreover, the projected
orientation map is similar to the input image in most of the hair
region.

Additionally, the direct output of our generator network has
already been able to provide a reasonable reconstruction of 3D
volumetric field to guide hair synthesis (see Fig. 10). The post-
processing is optional for structural detail refinement.

Comparisons. We compare our method with the state-of-the-
art methods of Chai et al. (2016), Zhou et al. (2018) and Saito
et al. (2018) in Fig. 11. The results of Chai et al. (2016) (Fig. 11,
top two rows) rely on their database models which are used as
the prior structures of hair modeling. Our results are generated
by deep learning networks. Using our Hair-GAN, we can generate
more faithful modeling results of hairstyles even they do not
exist in our training data. Since the network of Saito et al. (2018)
is trained with natural images, their method tends to recover
hairstyles perceived in the original images rather than the mod-
ified ones in the case of hair barbola (the last row in Fig. 11).
And our result is comparable to those by Saito et al. (2018) on
those typical hairstyles (the 5th and 6th row in Fig. 11). Zhou
et al. (2018) (Fig. 11, middle two rows) compute a feature map
of low resolution parameterized on the scalp. Our results show
more details in hair structure.

8. Conclusion

We have presented our Hair-GAN, an architecture of networks
to learn 3D hair structure from a single-view input image. We
use 2D CNNs to learn 3D cues and convert the succession of 2D
features to a 3D feature map of a single channel by the dimen-
sional expansion layer. The core of our method is to follow the
training strategy of GANs, the competition between the generator
and the discriminator. In order to produce a volumetric field of
high perceptual quality, we design the generator objective func-
tion in consideration of the distribution similarity in all selected
discriminator lays, inspired by the method of style-transfer. Our
results on a variety hairstyles resemble the input images in both
of the hair contour and hair texture. The network can also learn
more details in the views distant from the input one.

Our architecture of Hair-GAN is subject to a number of limita-
tions, which may inspire interesting future work. First, like almost
all single-view hair modeling methods, our training datum only
takes the frontal view image into account. Our method would fail
when hair is partially occluded. Second, although our network can
produce a considerable volumetric field for complex hairstyles,
hair tracing method still merits some improvement on the quality
of the final modeling result. Current efforts (Chai et al., 2016; Hu
et al., 2014; Zhang et al., 2018) improve the hair strand geometry
by using the guidance of database models. We hope in the future,
there is a method independent of database to synthesis complex

hairstyles, e.g., even the highly curly. Third, we hope to expand
our training data dynamically to cover the ever-changing fashion
of hairstyles. In addition, the resolution and size of the volumetric
field have an impact on the quality of the final modeling results.
Some complex hairstyles may need a larger and more subtilized
volume. We believe the advances in efficient data structures for
3D-GANs could leverage this problem.
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