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Fig. 1. Given a video sequence captured with a handhold monocular camera (bottom row), our method constructs a dynamic hair model that closely matches
hair shapes in individual frames and exhibits coherent motions.

We introduce a deep learning based framework for modeling dynamic hairs
from monocular videos, which could be captured by a commodity video
camera or downloaded from Internet. The framework mainly consists of
two neural networks, i.e., HairSpatNet for inferring 3D spatial features of
hair geometry from 2D image features, and HairTempNet for extracting
temporal features of hair motions from video frames. The spatial features
are represented as 3D occupancy fields depicting the hair volume shapes and
3D orientation fields indicating the hair growing directions. The temporal
features are represented as bidirectional 3D warping fields, describing the
forward and backward motions of hair strands cross adjacent frames. Both
HairSpatNet and HairTempNet are trained with synthetic hair data. The
spatial and temporal features predicted by the networks are subsequently
used for growing hair strands with both spatial and temporal consistency.
Experiments demonstrate that our method is capable of constructing plausi-
ble dynamic hair models that closely resemble the input video, and compares
favorably to previous single-view techniques.
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1 INTRODUCTION
Modeling 3D hairs that closely match the sensing images has long
been an important problem in computer graphics. Impressive recon-
struction of high-fidelity, static hair models has been demonstrated
with image-based techniques (e.g., [Chai et al. 2016; Hu et al. 2015;
Luo et al. 2013; Paris et al. 2008]). Reconstructing dynamic hair mod-
els from video sequences, however, is a relatively underexplored
problem.

The challenges of dynamic hair reconstruction mainly arise from
the high complexity of hair motion and geometry. Dynamic hair
often exhibits constantly changing occlusions among hair strands,
making it extremely difficult to build reliable temporal correspon-
dences across video frames. Furthermore, the thin features of hair
strands may cause severe motion blur in videos, bringing additional
troubles to existing feature-tracking algorithms such as optical-flow
methods.

The state-of-the-art technique for dynamic hair capture requires
multiple cameras and light arrays in a controlled environment [Xu
et al. 2014]. It reconstructs static hair geometry at every video frame
using a multi-view based method [Luo et al. 2013], and extracts hair
motion paths to resolve hair temporal inconsistency. The dynamic
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hair reconstruction is then formulated as a global spacetime opti-
mization procedure. While this technique demonstrates impressive
reconstruction results, the complex hardware setup (21 GoPro cam-
eras and 6 LED arrays) restricts the modeling process to professional
users. The lightweight technique introduced by Chai et al. [2013]
is able to construct a dynamic hair model from a monocular video
sequence. It constructs a static hair model for a reference video
frame, and relies on optical flow methods to estimate a motion field
from the video to deform the static model. Due to the instability of
tracking hair strands in many situations, the technique is limited to
simple hairstyles and modest motions.
The goal of our work is to develop a lightweight dynamic hair

modeling method that can construct plausible dynamic hair models
from monocular video sequences. We aim at recovering both the
spatial and temporal features of dynamic hairs – the constructed
hair models not only have the spatial details of hair strands revealed
in the input frames, but also exhibit the temporal coherence of hair
motions across the video sequence.
To this end, we introduce a deep learning based framework for

modeling dynamic hairs from monocular videos. The framework
mainly consists of two network structures, i.e., HairSpatNet for in-
ferring 3D spatial features of hair geometry from 2D image features,
and HairTempNet for extracting temporal features of hair motions
from video frames. The spatial features are represented as 3D oc-
cupancy fields depicting the hair shapes and 3D orientation fields
indicating the hair strand directions. The temporal features are rep-
resented as bidirectional 3D warping fields, describing the forward
and backward motions of hair strands cross adjacent frames. An
important benefit of our deep learning based framework is that it
avoids the unstable feature tracking which is commonly employed
by previous dynamic hair capture techniques (e.g., [Chai et al. 2013]),
making it robust to real-world hair motions. Both HairSpatNet and
HairTempNet are trained with synthetic hairstyles in a dataset and
synthetic hair motions from hair simulation. The spatial and tem-
poral features predicted by the networks are subsequently used for
growing hair strands and spacetime optimization to generate the
final dynamic hair models.
We tested our method with video clips of several real-world

hairstyles driven by head movements or external forces, which
are captured by a commodity video camera or downloaded from
Internet. Experimental results show that our method is capable of
constructing plausible dynamic hair models that closely resemble
the input video, and compares favorably to previous single-view
techniques.
In summary, our paper makes the following contributions:

• We introduce the first deep learning based approach for con-
structing high-quality dynamic hairs from a monocular video
sequence;

• We introduce HairSpatNet and HairTempNet to synthesize the
spatial and temporal features from the video streams, which are
trained with synthetic hair data;

• We introduce a novel hair-strand-growing algorithm that ac-
counts for the spatial and temporal consistency of hair strands.

2 RELATED WORK
We review the literature over the field of image-based hair modeling.
As one of the most vital parts of digital characters, hair modeling
has received extensive attention in computer graphics in the past
decades. For a seminal introduction of this prolific field, we refer to
the survey of [Ward et al. 2007].

Static hair modeling. With the development of image sensing
and computer vision techniques, it becomes possible to create high-
quality complex hairstyles from captured images. Among these
works, the pioneering multi-view based methods [Echevarria et al.
2014; Herrera et al. 2012; Hu et al. 2014a; Jakob et al. 2009; Luo et al.
2013; Nam et al. 2019; Paris et al. 2008] usually require controlled
environments, complex hardware setup, and long processing cycles,
which make them not accessible to average users. Single-view based
methods [Chai et al. 2015, 2016, 2013, 2012; Hu et al. 2015, 2014b,
2017b; Saito et al. 2018] can produce high-fidelity hair reconstruc-
tions, but could fall short in creating realistic results at views distant
from the input image. To fill in the gap between multi-view based
methods and single-view based methods, later work introduces hair
modeling methods based on sparse (three or four) views [Zhang et al.
2017], video streams [Liang et al. 2018], or RGBD inputs [Zhang
et al. 2018] to generate realistic hair models. While it is possible to
apply such static hair modeling techniques to generate a separate
hair model for each video frame, ignoring the temporal correspon-
dences between hair strands across frames would result in flickering
artifacts in the reconstructed hair models.

Dynamic hair modeling. Dynamic hair modeling is much less
explored in the literature compared to static hair modeling. The pio-
neering work of [Ishikawa et al. 2007] uses motion capture systems
to track the motions of a set of guiding hair strands and subse-
quently interpolates the motions to generate a full dynamic hair
model. Follow-up works exploit multi-view correspondences [Luo
et al. 2011; Yamaguchi et al. 2009] or physical simulation [Hu et al.
2017a; Zhang et al. 2012] for dynamic hair modeling. However, these
methods are either restricted to coarse and limited hair motions, sim-
ple hairstyles, or prone to over-smoothed geometry and artifacts of
temporal incoherence. Luo et al. [2013] proposed an algorithm to re-
construct a 3D hair surface of high accuracy by utilizing cross-view
consistency of hair orientations. The most recent method of [Xu
et al. 2014] introduces motion paths to account for temporal coher-
ence and formulates the hair reconstruction as a global spacetime
optimization problem. Their method generates compelling results
compared with prior arts. However, the requirements of controlled
environments and specialized hardware such as calibrated high-
speed cameras and light arrays make these method not accessible
to average users.

Chai et al. [2013] introduce a lightweight technique for construct-
ing dynamic hair models from single-view video clips. The main
idea is to use a single-view static hair modeling technique to create
a static hair model for a reference frame of the video, and then use
a motion field estimated by optical flow methods to deform the
static model to match the other frames. Due to the complexity of
hair geometry and motion, optical flow methods often fail to track
hair strands in many situations, restricting the technique to simple
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Fig. 2. The pipeline of our method. The input video frames (left) are first preprocessed to generate 2D image features with a bust model (middle left), which
are then fed into our HairSpatNet and HairTempNet to compute 3D hair spatial and temporal features (middle right). The output 3D fields serve as guidance
for consistent hair growth and spacetime strands optimization to generate the final dynamic hair models (right).

hairstyles and modest motions. Our method avoids feature tracking
by using deep neural networks to calculate 3D bidirectional warping
fields between adjacent frames.

Deep learning for hair modeling. With the recent success of deep
neural networks in various fields, deep learning based algorithms
have also been employed in hair modeling. Early work of Chai et
al. [2016] exploits convolutional neural networks for fully auto-
matic hair segmentation and hair orientation field estimation. Hu
et al. [2017b] use a deep learning method for hair attribute classi-
fication to improve the retrieval performance. Zhou et al. [2018]
introduce an encoder-decoder network to directly generate para-
metric strand point positions, while Saito et al. [2018] leverage a 3D
latent space of volumetric hair representations and subsequently
train a network to transform dense image features to the latent
vector to synthesize 3D hair volume. In the latest work of Zhang et
al. [2019], they introduce generative adversarial networks to directly
transfer from 2.5D inputs extracted from a single image to a 3D hair
orientation field. Our HairSpatNet is inspired by their work. Unlike
all these approaches, our method is designed for reconstructing both
hair geometry and motion across frames rather than reconstructing
static hair geometry only in a single frame. We introduce HairTemp-
Net that seamlessly integrates with HairSpatNet to produce reliable
hair temporal correspondences.

3 OVERVIEW
Fig. 2 shows the pipeline of our dynamic hair modeling framework.
Our method takes as input a monocular video sequence with hair
motions induced by head movements or external forces. The output
of ourmethod is a strand-level 3D hairmodel with vivid hair motions

matching the input video. We assume that the face is visible in time
so that state-of-the-art head tracking algorithms (e.g., [Cao et al.
2014]) are sufficiently robust. With the video sequence, we first
extract the 2D image features (2D hair mask, 2D hair orientation
map), and a 3D bust model capturing head motion in the input
frames. The extracted 2D image features and the bust model are
subsequently fed into our HairSpatNet and HairTempNet to estimate
the 3D hair features (occupancy, 3D hair orientation, and 3D hair
warping fields), which are encoded as 3D volumetric tensors (Fig. 2,
middle right). Then in a key stage, we grow the hair strands from
the 3D occupancy and orientation fields under the guidance of the
warping fields to enforce temporal coherence. The generated hair
strands in individual frames are further refined with a spacetime
optimization.

To train our networks, we use both static and dynamic synthetic
hairs. The static hairs are collected from a hair database while the
dynamic hairs are derived from a hair simulation system. We train
our HairSpatNet using both the static and dynamic hair examples
while the HairTempNet using only the dynamic hair examples. This
strategy is based on the key observation that the space of hair motion
is rather constrained and in general piece-wise smooth, thus a few
representative hairstyles in the simulation system are sufficient to
generate basis for various types of hair motions.

4 THE METHOD
In this section, we first explain our image-based hair input and
the volumetric output which consists of 3D hair spatial features
(occupancy and orientation fields) and 3D hair temporal features (3D
forward and backward warping fields). Then, we introduce the two
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networks, HairSpatNet and HairTempNet, to separately predict the
hair spatial and temporal details, followed by the descriptions of our
novel hair growing algorithm and the global spacetime optimization.

4.1 Data Representation
Our data representation should satisfy two requirements. The first
is that we should bridge the input gap between the synthetic data
(synthetic images generated from hair databases and the simulation
system) and the real data (real video images). The second is that
it should be easy for CNNs to handle. Inspired by the previous
works, we use 2D orientation map and confidence as input hair
information to meet the first requirement. For the latter one, we
propose to represent both 3D hair geometry and 3D hair motion
as volumetric fields, all of which are defined on evenly-distributed
grid of resolution 128 × 128 × 96.

2D Hair Image Feature. We use the method described in [Zhang
and Zheng 2019] to generate 2D dense hair orientation and con-
fidence maps as 2D hair features for both synthetic data and real
images. The 2D dense hair orientation and confidence maps filter
out original hair texture, and thus avoid the appearance discrepancy
between synthetic and real hairs, making it credible to train our
networks on synthetic data and execute inference on the real data.
We also utilize the fitted bust’s depth map as a 2.5D input to help
our networks generate 3D voxels. All of the input images have the
resolution of 1024 × 1024.

3D Hair Spatial Feature. The occupancy field and orientation field
together define the hair geometry. Specifically, the occupancy field
is a 3D binary mask where each cell is set to 1 if its center is inside
the hair volume or 0 otherwise. The orientation field is a dense 3D
direction field where each cell in the hair volume contains a unit
vector indicating the local hair growing direction. The orientations
for the cells out of the hair volume are undefined and set to zero
vectors.

Given a sequence of 3D strand-based hairs of the same style
{St |t = 0, ...,T − 1}, we can define occupancy field Ot

occ by extract-
ing the outer surface of the hair vertices [Saito et al. 2018] for each
frame t . We can also generate the corresponding orientation field
Ot
or i by iteratively averaging the directions of inner hair segments

for each cell in the hair volume [Wang et al. 2009]. Then we dif-
fuse the orientations into entire hair volume as proposed by [Paris
et al. 2008]. On the other hand, given the sequence of geometry
fields {(Ot

occ ,O
t
or i )|t = 0, ...,T − 1}, we can easily generate 3D hair

strands {S′t |t = 0, ...,T − 1} using the hair growing algorithm
[Zhang et al. 2018] (S is not necessarily equal to S ′). However, the
temporal coherence is lost across adjacent frames.

3D Hair Temporal Feature. In video processing, optical flow is
commonly used to build the correspondence between two neigh-
boring frames [Chen et al. 2017; Wang et al. 2018a]. By analogy, we
build the 3D motion of hair strands as a warping field defined on
the occupancy field where each cell in the hair volume contains the
local 3D hair motion vector. If the 3D warping field between two
consecutive frames is known, we can estimate the hair of the next
frame by warping the current frame (see details in the paragraph
below). However, only warping hair forwards will accumulate errors

in one direction, as shown in Fig. 3. Thus, we adopt the similar con-
cept in [Xu et al. 2014], namely to take both forward and backward
directions into consideration and jointly optimize the hairs (Section
4.5).

Given {St |t = 0, ...,T − 1}, we denote the corresponding 3D for-
ward warping field as Dt

f (between St and St+1) and 3D backward
warping field as Dt

b (between St and St−1). Due to the noises of
both motion direction and magnitude, it is unreliable to estimate
the motion for one cell by simply averaging the motions of hair
vertices inside it. Inspired by [Wang et al. 2009], we use iteratively
re-weighted least squares to reduce the correction by outliers. Differ-
ent from [Wang et al. 2009] where they only take growing direction
as objective, we divide motion into its magnitude and unit direc-
tion, and separately regress them. Specifically, let (x,y, z) denote
the indices of a cell; dv denote the motion of one hair vertex v ;
A(v) = ∥dv ∥ denote the magnitude of dv while T(v) = dv

∥dv ∥
its

unit direction; C(x,y, z) denote the collection of vertices passing
through the cell (x,y, z), where vertices with small motions (A(v) <

1e-6) are removed. The magnitude Ac and the unit direction Tc of
this cell can be computed iteratively as follows:

T i
c =

∑
v ∈C(x ,y,z) ω

i (v)T (v)

∥
∑
v ∈C(x ,y,z) ω

i (v)T (v)∥
, (1)

Ai
c =

∑
v ∈C(x ,y,z)

ωi (v)A(v) (2)

where i denotes the iteration, ωi (v) = (T (v) · T i−1
c + 1)/2 and

T 0
c = 0. We use 3 iterations in all our cases. Then we smoothly
diffuse the motions into entire hair volume to get our warping
fields.

Hair Prediction using Warping Field. The derived warping fields
can be used to build the correspondence between the strands of
the same root across adjacent frames, which is the key in our final
spacetime optimization. Given the 3D warping field Dt of current
hair strands St , we can warp each vertex v on one strand s ∈ St

to get corresponding warped strand s ′ by simply querying which
volumertic cell contains v : v ′ = v +Dt (v), v ′ being the warped
vertex. For the root of s , we directly use the rigid head transform
to get the warped position, which serves as a hard constraint to
fix the roots on the scalp across the whole video. Otherwise, the
strand may appear to deviate from the scalp because of the tiny
errors of the warping fields. The above method works if all the
vertices lie in current hair volume. However, several vertices may

(a) original strands (b) only forward (c) forward + backward
Fig. 3. Comparing our bidirectional hair optimization with only forwards
warping hair of initial frame to the current frame.
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be out of it when we consecutively warp the strand to build longer
correspondence across multiple frames, which will render them the
dead vertices, as shown in Fig. 4.
Consequently, we regard it as an energy minimization problem

for s ′ instead. We first get the known warped positions ΦV for
the strand vertices inside the hair volume. Then, we use ΦV as
sparse constraints and regress the vertex positions on s ′ using least
squares, as in [Xu et al. 2014]. More concretely, the least-squares
energy combines terms for sparse position alignment Epos , shape
preserving Elap and length regularization Er eд :

E(s ′) = ωposEpos (s
′,Φv ) + ωlapElap (s

′) + ωr eдEr eд(s
′), (3)

where ωpos , ωlap , ωr eд are weights and set to 300, 1 and 1 respec-
tively. The later two terms are used to help extrapolate the dense
motions and smooth the result. We refer to [Xu et al. 2014] for more
details of the two terms. Note that, since our warping field is a dense
3D field, there is no "Barberpole Illusion", which means one view is
enough and directly solving the linear system only once is robust to
get s ′. This is more stable and faster than in [Xu et al. 2014] where
multiple views and more optimization iterations are needed.

Unified Space. In order to generate these paired training data, as in
[Zhang and Zheng 2019], we define a bounding box of shapeH×W ×

D whose center intersects with that of our bust CG model. Then the
hair input information, the bust depth map, and the corresponding
fields can be obtained by the method described in [Zhang and Zheng
2019]. Fig. 2 shows the visualization of input information and output
fields.

4.2 HairSpatNet
Our HairSpatNet is designed to predict 3D geometry frame by frame,
namely the input information comes from a single frame. The input
Xt of frame t consists of dense 2D hair orientation, 2D confidence
map, and bust depth. The output is the corresponding occupancy
field and orientation field.

Architecture. Since our goal is to recover dynamic hairs, both
global shape and local details are important. Thus, we cannot directly
map the 3D hair geometry into a compact latent space [Saito et al.
2018] and train an image embedding network to predict the latent
code for any input image, which will unavoidably lose information
during the coding process [Zhang and Zheng 2019]. Our approach
is based on [Zhang and Zheng 2019] where they use a residual
network to locally learn the hair geometry, which can match the
inputs well but needs tedious post processing to refine the global

(a) original strands (b) warp by simple query (c) ours

Fig. 4. Comparing our warping method with simple query. The warping
interval is 4 frames.
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Fig. 5. Architecture of our HairSpatNet for an input Xt with shape of
1024 × 1024 × 4. We first use three downsampling modules to convert
Xt to 128 × 128 × 32 which is then fed into our proposed U-Net. The
contracting part has 4 downsampling modules with (32, 64, 128, 256) output
channels. The expanding part has 4 upsampling modules with (64, 32, 16, 1)
output channels for occupancy field and (64, 32, 16, 3) output channels for
orientation field. Since the contracting part extracts 2D features while the
expanding part processes 3D features, we use a learnable toVoxel module to
build feature skip connections. The last upsampling layer does not employ
Instance Normalization (IN).

shape. Thus, we utilize the U-Net architecture for this task. Our
insights come from two ends. First, the contracting part of the U-
Net can map the high-dimensional input into a latent space which
is progressively decoded by the expanding part to learn the overall
shape. Second, its skip connections can help inject more details into
the decoding process. However, current architecture of U-Net is
mainly designed for image-to-image tasks [Isola et al. 2017]. It can’t
be directly applied here. Thus, we modify the original architecture
by inserting a learnable toVoxel module to build the skip connection
between 2D and 3D features. toVoxel module first uses a convolution
layer to change the channel number, then reshapes and transposes
the features to make it compatible with the 3D features, which are
followed by two refinement steps based on 3D convolutions. Fig. 5
shows the architecture of our HairSpatNet. We use two branches to
learn the occupancy and orientation fields.

We also add a discriminator [Goodfellow et al. 2014] to the orien-
tation branch to further enforce fine-grained details. Our discrim-
inator D consists of 6 3D convolution layers followed by LReLU
with stride 2 and kernel size 3 × 3 × 3. The output channels are
(32, 64, 128, 256, 256, 1). The input to it is Ψ(Xt ) along with either
prediction output (negative example) or the ground-truth (positive
example), which are first channel-wise concatenated. Ψ denotes 3
downsampling modules along with our toVoxel module that con-
verts 2D tensor to 3D feature (see Fig. 5). The final output score is
calculated as the average of the feature of the final layer.

Loss Function. For occupancy field , it is a classification problem
and we use binary cross entropy (BCE):

Lbce = −E[γOt
occ ⊙ log(Ôt

occ )+ (1−γ )(1−Ot
occ ) ⊙ log(1− Ôt

occ )]

(4)
where ⊙ denotes element-wise production, Ôt

occ is produced by
the HairSpatNet and Ot

occ is the ground truth, γ is used to balance
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(a) simulation (b) database

Fig. 6. The hair volume discrepancy between the hairs in the simulation
system and the hairs in the database.

the training by putting more penalty for false negatives [Yang et al.
2017], and set to 0.85. For orientation field, we use L1 loss:

Lf =
1∑

i O
t
occ (i)

| |Ot
occ ⊙ (Ôt

or i − Ot
or i )| |1, (5)

where we only learn the orientations for Ot
occ (i) = 1. The reason is

that the generated occupancy Ôt
occ cannot overlap with Ot

occ even
when the network converges, namely Ôt

occ
⋃

Ot
occ−Ô

t
occ

⋂
Ot
occ ,

∅. In real scenarios, the orientations in these non-overlapping cells
should be reasonable which are undefined during training and will
be forced to zero vectors if simply minimizing the L1 loss between
Ôt
or i and Ot

or i . With this loss function, we find the network can
automatically fill meaningful orientations in these cells due to the
continuousness of convolution operations.
However, the above L1 loss will produce over-smoothed pre-

diction results, for which we introduce a discriminator to further
enforce fine-grained details. Similar to [Zhang and Zheng 2019], we
use the WGAN-GP loss function [Gulrajani et al. 2017]. Different
from [Zhang and Zheng 2019], the false example to the discrimi-
nator is the regulated prediction result, i.e., O

t
or i = Ot

occ ⊙ Ôt
or i ,

forcing the discriminator to only focus on the defined orientations.
The WGAN-GP loss is defined as:

Ld = E[D(X
t ,O

t
or i )] − E[D(X

t ,Ot
or i )] + λдpLдp , (6)

where D denotes the discriminator, λдp is a weighting factor for the
gradient penaltyLдp ,Lдp = E[(| |∇Ot

∗
D(Xt ,Ot

∗ )| |2−1)2], andOt
∗ is

a data point uniformly sampled along the straight line between O
t
or i

andOt
or i . In addition, we use the discriminator feature matching loss

Lm as it can improve the convergence speed and training stability
[Wang et al. 2018b].
Our overall objective function is

Lдeo = Lbce + Lf + Ld + λmLm, (7)

where λm balances the multiple objectives.

Training Details. For all the experiments, we set λдp = 10.0 and
λm = 0.00001 based on cross validation and use the Adam solver
[Kingma and Ba 2014] with a batch size of 4. All networks are
jointly trained from scratch with an initial learning rate of 0.0001
for generator and learning rate of 0.0003 for discriminator.

4.3 HairTempNet
Our HairTempNet is designed to predict forward warping field D̂t−1

f

in frame t − 1 and backward warping field D̂t
b in frame t for two

consecutive frames t − 1 and t . Thus the input should consist of
multiple frames’ information: {Xt−o |o = 0, ...,N }. We use N = 2
and we find there is no significant improvement with more frames
(e.g., N = 5). Based on the hair input information of adjacent frames,
we hope the network can learn to first predict the 2D motion for
the local 2D orientation and then extrapolate the corresponding 3D
motion.

Architecture. Our HairTempNet is also a modified U-Net architec-
ture to learn both global motions and local details. We first down-
sample the input to extract features, and then use two independent
branches to learn the bidirectional warping fields. Our HairTempNet
has three main difference with respect to our HairSpatNet. The first
is that all the Instance Normalization layers are removed to avoid
normalizing the motion range. The second is that the output chan-
nels of two expanding branches are both (64, 32, 16, 3). Thirdly, we
do not employ any discriminator, as we find it will introduce many
noises.

Loss Function. Below shows the loss function of forward warping
field and that of backward warping field is similarly defined. Similar
to the regression of the orientation field, we use L1 loss and only
learn the cells of interest:

Lw =
1∑

i O
t
occ (i)

| |Ot
occ ⊙ (D̂t

f − Dt
f )| |1. (8)

However, since the average hair volume in the simulation system is
smaller than that in static database due to the influence of gravity,
the prediction results, only reasonable in a “thinner" hair volume,
sometimes are not compatible with HairSpatNet trained on both
datasets (see Fig. 6). Instead of resorting to the cumbersome post
processing, we let the deep network automatically dilate motions
of the defined cells. To do this, we add a laplacian loss function:

Llap =
1∑

i 1 − Ot
occ (i)

| |(1−Ot
occ ) ⊙ (

∂2D̂t
f

∂x2
+
∂2D̂t

f

∂y2
+
∂2D̂t

f

∂z2
)| |22 .

(9)
This term can also enforce piece-wise smoothness of warping fields.
Thus, our overall objective function is

Lwarp = Lw + λlapLlap , (10)

w/o Laplacian loss w/ Laplacian loss

Fig. 7. The effect of the proposed Laplacian loss. The network trained with
Llap (right) generalizes better to the real data, especially towards the
invisible part around the back of the head.
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Fig. 8. The three hairstyles used in the simulation system to generate the
dynamic hair set.

where λlap balances the multiple objectives. Fig. 7 demonstrates
the effectiveness of Llap . We see that with Llap , our HairTempNet
generates much smoother results towards the unregulated parts
(e.g., the invisible back head part).

Training Details. For all the experiments, we set λlap = 0.001
based on cross validation and use the Adam solver [Kingma and Ba
2014] with a batch size of 4. All networks are jointly trained from
scratch with an initial learning rate of 0.0001. Inspired by [Mayer
et al. 2016], we also inject multilevel L1 losses for extra resolutions
(1/16, 1/8, ..., 1/2) to facilitate the training. The groundtruth for
them are nearest-resized from that of the original voxel resolution
(1/1).

4.4 Training Data
As mentioned earlier, our training data consists of two sets: a dy-
namic set and a static set. We train our HairSpatNet on both sets
while our HairTempNet on the dynamic set.

Dynamic set.We use a mass-spring model similar to [Selle et al.
2008] to generate sequences of dynamic hairs. The input to our
simulation system includes two parts: a rest-state hair and a se-
quence of external forces to drive the hair movements. We select
three high-quality hairstyles (straight, wavy, and long hairs, see Fig.
8) and use typical head movements (including roll, pitch and other
randommotions), and also random wind forces to generate dynamic
sequences of hairs. Based on these movements, our full simulation
generate an animation with 1000 frames for each hairstyle. We then
augment the data by flipping each hair horizontally and obtain a
training set of 6000 frames. We also prepare the test set by changing
the forces and regenerating an animation with 100 frames for each
hairstyle (300 frames in total).
Static set. In order to cover diverse hair styles, we collect 343

static hairstyles from USC-HairSalon dataset. We also augment the
data by rotating them around z axis and flipping them horizontally
to obtain 3430 different hairs. We then randomly split the entire
static set into a training set of 3230 hairs and a test set of 200 hairs.

Finally, we convert these strand-level hairs into volumetric fields
using themethod described in 4.1 to train our networks. Tomake our
networks more robust against input variations, we also augment the
training images by adding Gaussian noise and applying Gaussian
blur.

4.5 Hair Strand Growing and Optimization
After obtaining all the fields for a video sequence, we can grow
the hair strands from geometry fields, and further enforce their

(a) initial (b) iteration #1 (c) iteration #2

Fig. 9. Global hair correction. Initially, for the same root, the traced strands
in different frames may appear at either side of the parting line. After 1-2
iterations of the refinement, these strands are corrected to be at one side of
the parting line.

temporal coherence under the guidance of warping fields. Finally,
we use a modified version of the EM-like optimization procedure
[Xu et al. 2014] to get the final hair strands.

Initial strands growing. Given the geometry fields of T frames,
we use the hair growing method introduced in [Zhang et al. 2018]
to grow hairs for each frame: {St |t = 0, ...,T − 1}. Different from
[Zhang et al. 2018], we impose a constraint that each root can
only be connected to one strand. Then the set of strands Θr =

{s0r , s
1
r , ..., s

T−1
r } belonging to the same root r acrossT frames should

be optimized to exhibit temporally-coherent motion.

Spacetime Optimization. We optimize Θr for each root r indepen-
dently. Let Wn

m (s) denote the function that warps strand s from
framem to frame n sequentially using the forward warping fields if
m < n or backward fields otherwise (see details in fourth section of
4.1). In the E-step, for each root r in frame t , we update its strand str
with the estimated strand s̃tr by averaging the warped strands from
neighboring frames:

s̃tr =
∆∑

j=−∆
ω jWt

t+j (s
t+j
r ), (11)

where the warped strands are uniformly resampled before averaging,
ω j is the gaussian weight and Wt

t (s
t
r ) = str . In the M-step, we

solve a linear system to align the shape of s̃tr with the local spatial
constraints imposed by current orientation, as in [Xu et al. 2014]. We
further deform the frontal strands according to the 2D orientation
map, similar to [Hu et al. 2015]. We find 10 EM iterations and ∆ = ±3
sufficient to converge to a good result in most cases.

Hair Correction. The spacetime optimization assumes that the
initial strands in Θr have consistent motion. Due to the noise es-
timation in the orientation fields and the randomness of the hair
growing algorithm, this assumption could be violated occasionally.
For example, for hair roots around a parting line, they can be con-
nected by hair strands from either side (see Fig. 9). As a consequence,
the E step (equation 11) in these regions can be highly unreliable,
which will collapse the spacetime optimization, as shown in Fig. 10.

We thus propose a correction procedure independently for each
root r to enforce its initial strands’ temporal coherence before space-
time optimization. We first define the coarse growing direction for
a strand str ∈ Θr as dtr =

(s tr (κ)−s
t
r (0))

| |(s tr (κ)−s tr (0)) | |
, str (κ) being the κ-th vertex

from scalp and str (0) its root vertex. We use κ = 10 in all our cases.
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Fig. 10. The effects of the hair correction procedure. The result without the
correction has obvious artifacts, as highlighted in the yellow boxes.

Then, we define the aligned coarse direction of str as Q−1
t dtr , where

Q−1
t is the inverse of the corresponding head transform. The cor-

rection algorithm alternates between the following two steps until
converging or exceeding the maximum iterations (e.g., 10):

• In the first step, we use K-Means to divideΘr into two groups
Cд and Cb based on their aligned coarse directions. We let
Cд include more strands than Cb for the ease of the second
step. Then we judge whether the algorithm converges or
not. Specifically, we regress two mean directions d̃

д
r and d̃

b
r

respectively for the aligned coarse directions of Cд and that
of Cb and we compute the dot product between them β ′ =<

d̃
д
r , d̃

b
r >. If |β − β ′ | < 0.15, β being initialized as -1, the

algorithm stops. Otherwise, we update β with β ′.
• In the second step, we use the strands in Cд to correct the
strands in Cb . For a strand smr ∈ Cb , we correct it only if one
of its neighbors sm+1r or sm−1

r belongs to Cд . If sm+1r ∈ Cд , we
use our backward warping field Dm+1

b to obtain the warped
strand s̃m+1r = Wm

m+1(s
m+1
r ). Then by tracing the cells of

current geometry fields around the s̃m+1r , we regenerate a
bunch of strands where we find the one whose coarse direc-
tion best match the coarse direction of s̃m+1r and replace smr
with it. Finally, we remove smr from Cb and add it to Cд . This
procedure will repeat many times until Cb = ∅.

This algorithm has the following advantages. First, it offers better
initial hair strands and thus can stabilize and fasten the subsequent
spacetime optimization. Second, it can be parallelized for each root.

5 EXPERIMENTS
We have tested our method on real videos with four different types
of hairstyles including long hair, short hair, wavy hair, and straight
hair. Each hairstyle undergoes different types of motions induced
either by head movements, wind blow, or hand interaction. Fig. 16
shows a few representative examples, which demonstrate that our
results can faithfully recover both the hair shape and the hair motion
closely matching the video input. We refer to the supplementary
video for the dynamic results.

The input videos typically contain 100∼300 frames which last for
3∼10s. All of them are captured with a single monocular camera
without any specific controlled setups, and the reconstructed hair
models consist of 10K∼15K strands (we interpolate to 30-50K for
rendering purposes). Note that the quality of the reconstructed
hair depends on the input video quality and the resolution of the
volumetric fields. In our experiments, we find an input resolution
of 1024 × 1024 and a grid resolution of 128 × 128 × 96 could lead to

(d) unregulated U-Net

(a) original strands (b) ground truth

(e) vanilla U-Net

(c) ours

(f) ours w/o toVoxel

Fig. 11. Comparisons of different approaches for our HairSpatNet. We show
(a) the original strands, (b) the ground-truth orientation field after projection,
(c) ours, (d) unregulated U-Net (ours with regular GAN loss), (e) vanilla U-
Net (ours without GAN loss), and (f) ours without toVoxel module.

satisfactory results while imposing a relatively light burden for the
training procedure.

Timings. The training of our HairSpatNet and HairTempNet takes
10 days and 15 days respectively. For a frame number of 100, it typi-
cally takes 15-30 minutes to generate the final dynamic hair models
at runtime. The network prediction is instant. Hair growth cross
frames takes around 5 minutes and the spacetime optimization typi-
cally takes 10-20 minutes to converge (depending on the hair length).
All tests are conducted on a PC with an i7-8700 CPU(3.2GHz), 64G
main memory, and a GeForce 2080Ti GPU with 11G memory.

5.1 Evaluation
We conduct qualitative and quantitative experiments to evaluate the
effectiveness and various algorithmic choices of our HairSpatNet
and HairTempNet.

Evaluation of HairSpatNet. We evaluate ourHairSpatNet in terms
of energy function and the architecture. We first run an ablation
study on the proposed energy function for our HairSpatNet by com-
paring it with two alternatives: vanilla U-Net and unregulated U-Net.
We refer to vanilla U-Net as our proposed U-Net trained without
any GAN loss (i.e., only using Lbce and Lf ) while the unregulated
U-Net as the U-Net trained with regular GAN loss (the false example
is directly fed into the discriminator without the proposed regula-
tion mechanism). For a fair comparison, we keep all the parameters
and the network architecture as the same with the exception of the
energy function used for training. We conduct the experiments on
dynamic and static test sets.

Fig. 11 and Table 1 show the comparisons on the test set. It is evi-
dent that the vanilla U-Net produces over-smoothed results although
it achieves slightly lower error for reconstruction of orientation field,
compared to our proposed loss function.
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Table 1. Quantitative comparisons of different approaches for our HairSpat-
Net on the two data sets. We use precision for occupancy field while L2
error for orientation field.

Method Static Set Dynamic Set
Precision L2 Precision L2

Vanilla U-Net 0.7854 0.0760 0.8852 0.0958
Unregulated U-Net 0.7339 0.4814 0.8434 0.3809
Ours(w/o toVoxel) 0.6912 0.1645 0.8206 0.1680

Ours 0.7723 0.1360 0.8675 0.1568

The unregulated U-Net produces bad results both qualitatively
and quantitatively. Due to the cells in the hair volume (defined cells)
are extremely sparse with respect to the cells out of the hair volume
(undefined cells and their orientations are set to zero vectors in the
training set), the discriminator tends to focus more on the unde-
fined cells and forcing them to zero vectors. This in turn collapses
the training process and makes the generated orientation fields
incompatible with the corresponding occupancy fields (e.g., some
orientations in the predicted hair volume are close to zero vectors,
as shown in Fig. 11). With the regulation mechanism, there is no
gradients back-propagated through these undefined cells, making
the training procedure much easier. In addition, the generator can
automatically fill meaningful orientations in these undefined cells
due to the continuousness of convolution operations.

We also run an ablation study on the proposed toVoxel module by
comparing it with the network without it while the rest are the same.
Fig. 11 and Table 1 show the comparisons. Obviously, our proposed
U-Net achieves overwhelming results both in quality and quantity,
compared to the network without toVoxel module. This is consistent
with our insight that the contracting part and the expanding part of
the network can only learn the coarse geometry while the toVoxel
module can inject fine-grained details into the decoding process.

Evaluation of HairTempNet. To evaluate the effectiveness of our
HairTempNet, we conduct the experiments on the dynamic test
set. We test on two forces: wind force and head movement. We
compare our generated warping fields with ground truth fields.
Table 2 show the quantitative error of the reconstructed motion
fields (representative visual results are shown in Fig. 12). In the
table, we additionally examine the number of frames N used for
input information. We keep all the rest the same except N . It shows
that the influence of N is negligible and N = 2 is enough to achieve
good results. Note that the model trained with larger N fails to
quantitatively surpass that with N = 2. One possible reason is
that N is not large enough to build long-term dependencies (e.g.,
N >> 7). On the other hand, training themodel with largerN entails
more training corpus and iterations. We leave this exploration to
future work.

To further evaluate the influence of the quality of generated fields
on the final results, we conduct 4 set of experiments alternating
between the generated 3D fields (i.e., occupancy field, orientation
field, and warping field) and the ground truth fields. Fig. 12 shows
representative qualitative results. In all testing examples, ourmethod
is able to faithfully recover high-fidelity hair motions.

Table 2. Quantitative comparisons for different N (number of input frames
used for our HairTempNet).

Method L2(forward) L2(backward) L2(average)

N = 7 0.0331 0.0341 0.0336
N = 5 0.0344 0.0348 0.0346

N = 2(ours) 0.0308 0.0303 0.0306

5.2 Comparisons
To evaluate the effectiveness of our HairSpatNet architecture, we
first conduct comparisons with HairGAN [Zhang and Zheng 2019]
and the method of [Saito et al. 2018]. For a fair comparison, we
use the same processed 2D hair information and final deformation
algorithm as in [Zhang and Zheng 2019]. As shown in Fig. 13, three
methods generate comparable results, with our method performing
slightly better in some hair regions. Due to the lack of occupancy
field, HairGAN has out-of-volume problem where the generated
hair shape does not match the input mask and requires tedious post-
refinement. Their network learns local features while ours learns
both global and local features. Subsequently, the overall hair growth
trend in our result match the input image slightly better (see the
parting region around the top-left corner, Fig. 13 top row). In [Saito
et al. 2018], since they use the image embedding network to predict
the latent code, the hair details are unavoidably lost due to a series
of down sampling operations, e.g., the generated hair layering does
not match the input well as shown in the bottom row of Fig. 13.

We also compare our method with two alternative dynamic hair
modelling methods. First, we compare our method with a straight-
forward solution which uses optical flow to track the 2D hair motion
and propagate the motion to 3D [Chai et al. 2013]. Fig. 14 shows
the corresponding results. It is evident that a simple optical flow-
based method could easily fail when the hair strands undergo either
fast motion (resulting in severe blur) or occlusion and thus require
manual efforts to specify pixel-level correspondences as in [Chai
et al. 2013]. On the other hand, such 2D-based approach could easily
generate artifacts for invisible strands such as those on the back. In
both cases, our method succeeds to generate reliable results.
In a second experiment, we compare our method with the state-

of-the-art multi-view based dynamic hair capture method of [Xu
et al. 2014]. We take a single-view input video acquired from the
authors to generate our results. Fig. 15 shows the results and the cor-
responding input view. Since the face of the bust model in the video
is invisible, we manually align the head model. The results show
that our generated hair shape and motion are similar to that of [Xu
et al. 2014], but the result of [Xu et al. 2014] contains more shape and
motion details. The light curly hair details are lost partially because
our volume grid resolution is much lower than theirs (128× 128× 96
in our case, ∼ 7mm per voxel, compared to 3mm per voxel in [Xu
et al. 2014]). However, their method requires complex environmen-
tal setup (e.g., 21 calibrated GoPro cameras) and a much longer
processing time while our method only requires a consumer-level
handhold monocular camera. Please see the supplemental video for
the dynamic animation results.
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(a) ground truth (b) gt o./o. + gt w. (c) gt o./o. + our w. (d) our o./o. + gt w. (e) our o./o.+ our w.

Fig. 12. Validation of our HairSpatNet and HairTempNet on the synthetic data. Our method generates consistently high-quality results compared to that of
ground truth. o./o. strands for occupancy field/orientation field and w. strands for warping fields.

Fig. 13. Comparisons with [Zhang and Zheng 2019] (the first row) and
[Saito et al. 2018] (the second row). For each comparison, from left to right:
input image, the result of the previous method and our result.

5.3 Limitations and Discussions
Although our method can generate plausible dynamic hair mod-
els from real-world videos with different types of hairstyles, the
results are still not as good as those generated by state-of-the-art
multi-view methods and exhibit artifacts like ‘over-smoothing’ and
‘jittering’. First, compared to [Xu et al. 2014], our method generates
comparable results in global hair shape and motion, but lacks small
hair details. This is because not only our volume grid resolution

is much lower than theirs but also the E step in space-time opti-
mization, which serves as a Gaussian filter, will smooth the results.
As seen in Fig. 12(b), even with the ground truth fields, the recon-
struction tends to be smooth. Increasing the grid resolution may
help, but will significantly slow down the training speed. Second,
hair length changing across frames is another noticeable artifact.
The occupancy fields of neighboring frames may have a significant
discrepancy at the boundaries; consequently the strands near the
boundaries will appear to vary in length. We can leverage warp
fields to refine the occupancy fields to make them more temporally-
coherent before hair growing and optimization. Another way to
alleviate this problem is to use temporal convolution or recurrent
neural networks (RNN). Third, some of our results also demonstrate
spurious hair motions. We sample seeds randomly in the hair vol-
ume rather than from the scalp; consequently, the hair strands in
individual frames could exhibit slight differences. The orientation
fields generated by the HairSpatNet in the stationary part could be
disturbed by the moving hairs from the other part, which also exac-
erbates this problem. Although we execute space-time optimization
afterwards, the spurious motions are alleviated but still exist. Fourth,
our method would fail to faithfully recover stray hair strands whose
motions exhibit sudden changes from the nearby frames. This could

Fig. 14. A direct optical flow-based method [Chai et al. 2013] (with no user
intervention) could easily lead to undesirable results (middle), especially
when large motion or occlusion occurs. Our result is shown on the right.
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Fig. 15. Our method achieves compatible results with the multi-view
method of [Xu et al. 2014] (middle). Their method retains more accurate
details of the hair geometry thanks to the multi-view acquisition.

happen when different layers of hairs cross over each other during
large-scale motions. An example is shown in Fig. 16, the middle col-
umn of the third row. Moreover, if the hair motion is highly chaotic,
our method will fail and produce over-smoothed results. Fifth, the
dynamic hair models constructed by our method only match the
input video sequences, and may not resemble the ground-truth hair
at novel views. Finally, our method relies on robust head fitting
algorithms. If this step fails, manual efforts will be required.

6 CONCLUSION
Reconstructing dynamic hair models from video sequences remains
challenging. We introduced the first deep learning based method for
modeling dynamic hair from a monocular video sequence, which
could be captured by a handhold camera or downloaded from Inter-
net. We have demonstrated the efficacy of our method on several
real-world hairstyles driven by head movements or external forces.
The constructed dynamic hair models closely resemble the input
video frames.We expect that our work could inspire further research
on this difficult problem.
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