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Abstract—This paper presents a very easy-to-use interactive tool, which we call dot scissor, for mesh segmentation. The user’s effort
is reduced to placing only a single click where a cut is desired. Such a simple interface is made possible by a directional search
strategy supported by a concavity-aware harmonic field and a robust voting scheme that selects the best isoline as the cut. With a
concavity-aware weighting scheme, the harmonic fields gather dense isolines along concave regions which are natural boundaries of
semantic components. The voting scheme relies on an isoline-face scoring mechanism that considers both shape geometry and user
intent. We show by extensive experiments and quantitative analysis that our tool advances the state-of-the-art segmentation methods

in both simplicity of use and segmentation quality.

Index Terms—Interactive Mesh Segmentation, Dot Scissor, Concavity-aware, Harmonic Fields, Voting.

1 INTRODUCTION

Esh segmentation has received extensive research
Mattention in recent years [1], [2], [3], [4], [5]. Seg-
mentation algorithms, either automatic or interactive,
are designed for specific purposes such as recognition,
modeling and rigging. While humans can easily under-
stand shape semantics, it is extremely difficult to design
shape analysis tools that automatically establish such
semantics. There exists no single automatic segmentation
algorithm that can consistently produce human intended
results, demanding interactive tools to incorporate user’s
intent. This paper focuses on the design of interactive
segmentation tools, presenting a sufficiently easy-to-use
tool for the user to cut out meaningful shape compo-
nents.

Existing interactive approaches can be roughly clas-
sified into three groups: on-boundary brushes (e.g., the
intelligent scissors [6], [7]), in-segments brushes (e.g., the
foreground /background brushes [2], [4], [8], [9], [10])
and cross-boundary brushes [5]. On-boundary tools require
the user to draw strokes or click along the desired
cut boundary, which may require substantial user ef-
forts. In-segment tools made the user interaction easier
by allowing the user to draw free strokes indicating
the background and foreground regions. However, free
strokes provide looser constraints, thus weakening the
user control on the cutting boundaries. The cross bound-
ary brushes provide a nice balance between the user
control and the ease of use. Executing a cut only requires
the user to roughly sketch a stroke across a desired cut-
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ting boundary. Though easy to use and providing good
control over cutting boundaries, the cross boundary tools
have notable drawbacks. First, it often requires multiple
strokes for refining the cutting boundaries locally due
to the underlying harmonic field being oblivious to
the shape geometry. Second, when refining a cutting
boundary, strokes need to be drawn in a consistent
general direction, and the stroke length may affect the
segmentation result since the desired cut is assumed to
run roughly across the center of the strokes.

Most of the above-mentioned interactive segmentation
tools often require multiple strokes (points) to execute
a single cut. The in-segment tools [2], [4], [8], [9], [10]
need both foreground and background strokes; the on-
boundary approaches need multiple inputs along the cut
boundary; the cross-boundary brushes [5] need multiple
strokes to refine a cutting boundary. The multiple inputs
serve the purpose of providing more information indi-
cating how the cutting boundary should run across the
surface. For example, the foreground and background
strokes indicate that the cutting boundaries should lie in
between them, while the cross-boundary strokes specify
that the desired cutting boundary lies roughly perpen-
dicular to the strokes.

In this paper, we ask the question of whether it is nec-
essary to specify these additional information to execute
a single cut. Naturally, the design of interactive segmen-
tation tools should first ponder the following question:
what is the simplest interface for a user to specify a
desired segmentation cut? We argue that the simplest
possible way is a single mouse click. We show in this
work that it is possible to achieve quality segmentations
using only single mouse clicks without any additional
user input.

We call our interactive segmentation tool the dot s-
cissor. The user only needs to place a dot-circle near
where a cut is desired and click the mouse (Figure 1).



A best cut that runs through the circle is automatically
returned. We choose not to restrict to finding a best
cut that runs through the clicked point, for the reason
of flexibility. Such a design allows the user to place
the circle more casually without paying great attention.
To allow precision control over clicking flexibility when
desired, we let the user reduce the circle size using the
mouse wheel.

This simple interface is made possible by a direction-
al search-and-vote strategy that first samples the search
space to get a set of potentially good cutting boundaries
lying near the clicked point and then finds a best cut
from this search space. Like the cross-boundary brush-
es [5], our candidate cutting boundaries are isolines of
harmonic fields; but in our case, no directional input
information is provided to determine the directions of
the isolines, demanding a search strategy. We generate
the search space by defining a set of harmonic fields
that propagate in different directions and sample the
isolines that pass through the dot circle as candidate cuts.
We adopt a variant of the concavity-aware harmonic
field [11] which has strong differentiating power towards
concave creases and seams, producing dense isolines
at concave regions where natural boundaries lie. With
the candidate cuts defined, we apply a robust face-
based voting scheme that considers both shape geometry
information and user intent to select the best cut.

We demonstrate the power of our single-click dot
scissor through extensive experiments. We compare it
with the state-of-the-art interactive segmentation tech-
niques and show that our dot scissor advances others
in both simplicity of use and segmentation quality. In
addition, we quantitatively evaluate our segmentation
results for all the models in the Princeton Segmentation
Benchmark (PSB) and show that our tool consistently
locates high-quality cuts in agreement with the ground
truth segmentations using only a single click for each
cut.

2 RELATED WORK

We briefly review previous mesh segmentation methods,
focusing on interactive ones. Automatic mesh segmenta-
tion has a long history and there is a large body of work
in the literature. The survey paper by Shamir [12] offers
an excellent overview.

Interactive segmentation tools. Interactive mesh seg-
mentation was first attempted by [13], [14]. In their
methods, the user specifies points on the cutting bound-
ary and the cut is completed by finding the shortest
path connecting the points. This interface is simple and
straightforward (used also in [15]), however the user
needs to rotate the model multiple times to specify the
boundary points. Later, the intelligent scissor tools were
introduced to allow drawing of boundary strokes [6],
[7], and a closed loop is automatically formed by a
geometric snake or an invariant shortest path on the
mesh surface. These tools produce cutting boundaries

Fig. 1.
a component by moving a dot circle and clicking at a
location where a cut-boundary is desired. Our system
automatically returns a best cut boundary that respects
the local geometry features.

Interface of our dot scissor. The user cuts out

that closely follow the user strokes, however specifying
the boundary strokes requires careful user attention.

Arguably, the most well-known interactive mesh
segmentation methods are those that use the fore-
ground/background snapping tools [2], [4], [8], [9]. Ini-
tial seeds are specified by drawing free strokes on the
mesh to specify the foreground/background regions,
then either a graph-cut [2], [4] or region growing [8], [9]
algorithm is employed to partition the mesh into two
regions. Although intuitive to use, these tools provide
limited control over the cutting boundaries. They are
also sensitive to noise.

The recently introduced cross-boundary brushes [5] pro-
vide the part brush and the patch brush to segment
the part and patch types of components, respectively.
They require drawing rough strokes across the imaginary
desired cut boundary. A single stroke input provides
both location and orientation information of the desired
boundary. However, since the cut boundaries are smooth
isolines of fields that are oblivious to geometric features
(see Figure 12), multiple strokes are often needed to
refine the boundaries. Most recently, Fan et al. [10]
proposed a tool called “painting” brush for mesh seg-
mentation, which simplifies the user effort to drawing a
single stroke within the component to be cut out while
providing interactive feedback. In contrast, our proposed
tool simplifies the user interface to a single click near the
desired cutting boundary.

Harmonic field. Harmonic field has played an im-
portant role in surface processing. It is often used for
interpolation in applications such as shape approxima-
tion and editing [16], [17]. More recently, harmonic fields
have also been exploited for mesh segmentation. In
interactive segmentation, the cross boundary brushes uses
isolines as the cutting boundaries. In automatic segmen-
tation, the recent work of Au et al. [11] introduced a
concavity-aware segmentation field to capture the shape



Fig. 2. Basic flow of our method. (a) The user clicks on a
region where a cutting boundary is desired. Four pairs of
points are sampled on the dotted circle and projected onto
the surface to form constraints of the concavity-aware
harmonic fields (b). All four sets of isolines extracted
between pairs of constraints are candidates of cutting
boundaries. The faces through which the isolines pass
are assigned scores (c) and vote to elect the best isoline
as the cutting boundary (d).

concavities along the propagation paths of the harmonic
fields. In this paper, we use a simpler variant of the
concavity-aware field for our dot scissor (see details in
Section 4.1).

Voting. Voting has been widely used in recent research
work [18], [19], [20] due to its robustness against local er-
rors or missing data. To the best of our knowledge, there
has been only one previous mesh segmentation method
that uses voting as a basic technique, i.e., the randomized
cut [1]. Seven automatic segmentation methods are em-
ployed to find the cutting boundaries which then vote
for the best one. In contrast, our method is based on
selecting the best cut from a set of sampled candidate
isolines of harmonic fields. It is computationally efficient
and does not contain any randomized process.

3 SYSTEM OVERVIEW

Clearly, the simplest possible interface for segmentation
is requiring only a single mouse click that roughly spec-
ifies where a cut is desired. The cutting direction and the
exact placement of the cut are automatically determined.
In some situations, the user may prefer to have pre-
cise control over where the cutting boundary will pass
through. Therefore, a practical interface should allow the
user to choose between a precise or flexible placement of
the mouse click. These considerations motivate the key
ingredients of our dot scissor interface. We use a circle
centered at the mouse point to indicate the region where
a desired cut lies and we allow the user to vary the size
of the circle to control the desired flexibility in placing
the circle. To execute the cut, the user only needs to place
the dot circle at a desired boundary region. Figures 1
and 2 show the interface of the dot scissor.

Fig. 3. Our resizable dot circle facilitates user interaction
during segmentation. The user can change the circle size
by mouse wheel to cut out components of different scales
without zooming in and out on parts of model.

An additional benefit of the variable circle size is that
it reduces the need of zooming in and out during interac-
tion. Users can use different circle sizes to segment com-
ponents of different sizes. Figure 3 shows an example of
the user first using a large circle to segment out the head
of the Neptune model and then uses a smaller circle to
cut out a finger without zooming in. We will show that
the user has considerable leeway in specifying the circle
size (Figure 8). In all our experiments, we default the
circle size to be 10% of the window size and let the user
change the size if necessary.

The placement of the dot circle indicates the user’s
intent to have a cutting boundary near it. No cutting
direction is specified. Hence we need to solve the prob-
lem of which direction a good cutting boundary should
run across and how to search for it. These questions
motivate the design of our search-and-vote strategy. By
using different point pairs on the dot circle as con-
straints, we define multiple harmonic fields propagating
in different directions on the object surface. Specifically,
we uniformly sample K pairs of opposite points on the
dot circle and use them as boundary constraints to define
K harmonic fields. From these fields, we sample K sets
of isolines that intersect the dot circle to be the candidate
cutting boundaries. Among them we then search for
the best one as the final cut. We use K = 4 in our
experiments, see detailed discussion in Section 5. To
ensure that the sampled points on the circle are projected
to unique surface points, we limit the circle size to be no
smaller than 10 pixels.

To find a best cut in the user-clicked region, we
consider the collection of all the sampled isolines as raw
data to vote for the best boundary cut. The basic idea is
to determine which faces have high probability of lying
on the best cutting boundary. We assign a face score to
each face measuring its quality of being on a cutting
boundary and use the face score to vote for the final
best isoline. The face score is determined based on the
quality of the isolines passing through the face as well
as the concavity of the face. To evaluate the quality of
an isoline, we combine three measures: concavity of the
shape region on which the isoline lies, tightness of the



isoline, and its proximity to the user clicked position.
Each face will receive scores from all isolines that pass
through it. Finally, to find the best isoline, each face votes
by sending their scores to the isolines that pass through
it and the isoline with the highest vote is returned as the
best cut.

4 THE DOT SCISSOR

We now introduce the details of our approach. Our
framework consists of two main components, a direc-
tional search space sampling that constructs a set of can-
didate isolines as the potential cutting boundaries and
a robust voting mechanism devoted to finding the best
isoline as the final cutting boundary. In the following,
we present the techniques used in each component.

4.1

Our candidate cutting boundaries are isolines of har-
monic fields. We adopt a variant of the concavity-aware
segmentation field introduced by Au et al. [11]. By
placing very small weights on edges that lie in concave
regions, the weighting scheme is able to generate large
field variation along concave regions. The isolines at
concave regions then follow closely the concave creases
and seams, forming good cutting boundaries for seg-
mentation (in line with the Minima rule [21], [22]). To
reduce sensitivity to surface noise and fine details, we
remove the curvature term used in [11]. The weighting
term is defined as:

Search Space Sampling

_ lvi—villg  if either v; Or v; is concave, 1
Wij = € . ( )
1 otherwise.

Here € is the average edge length and © is a small
constant (0.01 in our experiments). Figures 2 and 4 show
examples of the segmentation fields. The constant field
colors on the components demonstrate the strong differ-
entiating power of the fields. In addition, Figures 2 (last
two bear examples of the top row) and 10 show that the
generated fields are not sensitive to small changes in the
placement and orientation of the constraints. This allows

Fig. 4. The concavity-aware harmonic fields gather iso-
lines towards local concave regions such as creases and
seams. The field values are normalized to [0, 1].

the use of only a small number of fields propagating in
the major directions (4 in our experiments) to sufficiently
identify all desirable cutting boundaries.

To construct the candidate set of cutting boundaries,
we compute a field corresponding to each pair of sam-
pled points on the dot circle (Section 3) and extract
candidate isolines from each field. For each field, we set
its boundary constraints at two projected surface points
(from points on the circle) with boundary values 0 and
1 (but in fact the order and magnitude does not affect
the candidate isolines generation). We uniformly sample
the isolines using isovalues between the two boundary
values such that the sampled isolines lie between the
projected point pair, passing through the user-defined
circle area. The collections of isolines sampled from all
fields form the set of candidates from which the final cut
will be selected.

Note that, for a given model, the computation of
different harmonic fields differs only in the boundary
constraints, which can be expressed as a penalty term as
in [23]. Hence we employ the fast Cholesky factorization
update/downdate scheme [24] for fast fields generation
and achieve realtime response for interactive segmenta-
tion.

4.2 Face-based Voting

For each harmonic field, we extract a set of isolines lying
between its two constraints. All K sets of isolines form
our search space. We design a robust face-based voting
scheme to select the best cut from the candidate set.

We assign a face score s; to each face to measure
its likelihood of lying on a cutting boundary. The face
score is determined by the isolines that pass through it
and the face’s concavity. For each candidate isoline, we
analyze its quality of being a cutting boundary based
on concavity of the local region on which it lies, the
isoline’s tightness and proximity to the user click (see
details below) and assign an isoline score 1 to it. Each
face accumulates the scores from all the isolines that
pass through it, weighted by the in-face isoline segment
length, as follows:
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where 9; denotes the score of isoline j, ¢;; is the segment
length of isoline j in face i and V; is the set of isolines
that pass through face 1.

To determine the concavity of a face, we use the
summed field gradient magnitude g as in [11], based on
the observation that concave regions have larger field
gradients. Specifically, to compute g; for each face i, we
simply sum up all the magnitudes of the gradients from
all the K fields and linearly map them to [0, 1]. The face
score s; is then defined as

t; = 2

Si = gi * ty, 3)



which indicates the total votes the face i holds. Then the
faces vote for the final best cut. Each face sends its votes
to each isoline that passes through it, again weighted
by the in-face isoline segment length. Finally, the isoline
that gets the most normalized vote (total votes divided
by the isoline length) is returned as the final cut.

Isoline Scores. Designing robust measures for good cut-
ting boundaries is crucial to the voting process. The score
of an isoline takes into consideration both the shape
geometry and the user intent. Specifically, we measure
three quantities: concavity, tightness and proximity to
user click.

Concavity. The concavity of an isoline measures the
concaveness of the region in which it lies. To avoid sen-
sitivities to local geometric features or noise, we employ
a similar idea proposed in [5], which we call the global
concavity < here. Specifically, given the length distribution
of a set of isolines I;, Is, ..., I; from a specific harmonic
field, the global concavity of an isoline is computed as
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where f(k) is a Gaussian function and A, = 2r; —r;_ —
riyr is the multi-scale stepped concavity. For details,
please see [5]. Note that the value ¢ for each isoline is
computed within the set of isolines from the same field.

Tightness. This term measures the tightness of the seg-
mentation boundaries (isolines). This is motivated by the
short-cut rule [25], which states that, other things being
equal, human perception prefers to use the shortest path
to parse silhouettes. We observe that although the iso-
lines are constrained to pass through the dot circle, some
of them may form looser loops diverging far from the
desired boundary region. At branching regions where
multiple components conjunct, some sampled isolines
may pass through multiple boundaries (e.g. the isolines
passing through both the underarm and the neck of the
teddy model in Figure 2 (b)). Such lengthy isolines are
not desirable cutting boundaries and should be rejected
as candidate cuts. Thus we introduce the tightness term
in our isoline score under the assumption that good cuts
should be tight loops. For each set of isolines, we want to
filter out those that are much longer than the others. To

Fig. 5. Some harmonic fields may have small isolines
lying on flat surface regions. We filter out such isolines by
analyzing the flatness of the isolines (Section 4.2). The
right image shows the final cut selected from another set
of isolines not shown here.

avoid locality of measure, we construct a filter using all
K sets of isolines. The tightness of an isoline is defined
as the ratio of the isoline length /; and the minimum
length [, of all K sets of isolines, i.e.,

i
For efficiency, we simply disregard any isoline whose
length is larger than 1.5 times the minimum length
among all the isolines and remove them from the voting
process.

In some cases, we observe that the improper locations
of constraints (projected to the surface) at flat regions
lead to the field propagation getting stuck, forming
swirls in the field and resulting in small iso-rings (Fig-
ure 5). We consider these isolines as outliers and also
remove them. To do this, we apply the simple strategy
of collecting the normals of the faces through which an
isoline passes and consider the isoline as lying on a flat
region if more than 80% of the collected face normals
lie on the same hemisphere. Isolines on flat regions are
removed unless all the sampled isolines of a harmonic
field lie on a flat region. Since this indicates that the
current component to be cut out is a patch-like segment
(e.g., a human face), we cancel out this filtering step.

Proximity to user click. Though the user’s click po-
sition is rough, we assume that the position conveys
the intent that a cutting boundary shall lie close to it.
Thus, we introduce a proximity measure. For an isoline
i, we define its proximity ¥J; to the clicked point c as the
average distance of ¢ to k sampled points p1, p2, ..., pr on
the isoline. For efficiency, we use the Euclidean distance
here instead of the geodesic distance. We calculate this
proximity measure within each set of isolines.

Finally, to calculate the score for each isoline, we
linearly scale three terms to be in the same range of [0, 1]
and combine them. Specifically, the score for each isoline
i is the product of the three terms:

i = g(si) x g(7i) x g(94). (6)

Here ¢ is a monotonic function that controls the influence
of the three terms. We set it to be g(z) = 1/(1 + 2?) to
encourage smaller values of all three terms. Note that the
first term ¢ (global concavity) can be negative, therefore
it was first scaled to [—1, 1] and then linearly mapped to
[0,1].

5 ROBUSTNESS

The dot scissor has several desirable properties. In Fig-
ure 8, we show that the segmentation results are not
sensitive to the clicked position along a boundary. Sim-
ilar cutting boundaries are also returned using different
circle sizes as long as the dot circle covers the user-
desired cutting boundary. Further, our robust directional
searching and voting strategy enables the dot scissor to
have very good performance even when the part to be
segmented is rather casually oriented (Figures 5, 9). Such



Fig. 6. Segmentation results of complex models using our dot scissor. All results were obtained using single clicks

without any boundary refinement.

Fig. 7. Segmentation results showing a representative
object from each of the 19 categories in the PSB data
set.

cases would be hard for existing techniques to specify or
draw the regions of interest.

The concavity-aware harmonic fields are solved glob-

Fig. 8. Our dot scissor is not sensitive to the clicked po-
sition along a boundary. Different circle sizes also return
similar boundaries as long as the circle covers the desired
boundary.

Fig. 9. The dot scissor does not require the input model
to be oriented properly.

ally in a least-squares sense and are stable in the presence
of noise, therefore the located cut boundaries are also
not sensitive to noise (Figure 10). In Figure 11, we show
that our dot scissor is also largely insensitive to different
resolutions and surface tessellations, thanks to the design
of the harmonic field and our robust voting scheme.
Dot scissor with different supporting fields. The
weighting scheme for the Laplacian matrix is crucial
to the quality of the solved harmonic fields for our
use in the interactive dot scissor. Beside the proposed
concavity-aware weighting scheme, we have also used
the cotangent weighting and the feature preserving
weight of [26] and evaluate the segmentation results.
Figure 12 shows a comparison of the segmentation re-
sults using the different weighting schemes. It is inter-



Fig. 10. Our concave-aware harmonic field is stable in the
presence of surface noise. The top uow shows the original
model and the bottom row shows the same model with
20% mean edge length Gaussian noise. The four fields in
each row correspond to four pairs of constraints. Observe
the similar final cuts for both models (last column).
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Fig. 11. The dot scissor is insensitive to different surface
tessellations. (a) to (d) are Gargoyle models in different
surface resolutions and tessellations. The same clicked
position leads to a consistent cut.

esting to note that the dot-scissor produces reasonable
quality segmentations with all these fields. But only the
concavity-aware field produces boundaries that follow
the geometric features well. Hence, we choose that as
the underlying supporting field.

Parameter analysis. An important parameter of our
system is the number of sampled pairs on the dot circle,
i.e. the parameter K, whose projected points are used as
boundary constraints for the generation of the harmonic
fields. It specifies how many directions to propagate

Fig. 12. Comparison of harmonic fields with different
weighting schemes. (left to right) Our concave-aware
field, field with cotangent weighting and field of [26].
Zoom-in images show the cutting results using these
fields.

Fig. 13. The effect of different K to the final segmentation
results. We found K >= 4 suffices to locate desired
cutting boundaries in all our experiments.

the fields in search for the best cut. Fewer searching
directions are desirable for computation efficiency. More
searching directions would theoretically discover can-
didate isolines that would otherwise miss. However,
we observe that, since the sampled isolines are mostly
located along concave creases, they are insensitive to
small change in the orientation dictated by the two
constraints. This feature makes a small number of fields
suffices in capturing the desired candidate isolines for
subsequent robust voting process. In practice, we find
that sampling in four major directions (K = 4) sulffices
to ensure that all desired cutting boundaries are covered
by at least one of the computed fields (see Figure 13 for
an example).

Another parameter to evaluate is the number of iso-
lines sampled from each field. In practice, we find sam-
pling above 10 isolines would produce similar segmen-
tation results since the isolines mostly gather in small
concave regions. Hence, we sample a small number (15)
of isolines per field for all examples in this paper. This
suffices to render the method effective.

Validation We perform a rigorous experiment to fur-
ther validate the robustness of our dot scissor. Instead
of user-clicked points, we execute dot scissor using
points randomly chosen from boundary loops of human
segmentations. The aim is to validate how well the
dot scissor is able to faithfully re-produce the human
segmentations (with randomly selected boundary point
and a default circle size). First, we collect all the human
segmentation data from PSB which includes different
segmentations executed by different people for each of
the 380 models. We then randomly select one human
segmentation for each model and randomly pick a point
on each of the boundary loops and apply our dot scissor
using the point. To define the constraints for the fields,
we use a local geodesic disk with the radius fixed at
3 times the average edge length and uniformly sample
K(=4) pairs of points on the disk boundary. We apply
this randomized process to all the 380 models, and
quantitatively analyze the resulting segmentations using
the protocals of Xiao et al. [15]

Figure 14 shows some segmentation visual examples
and Figure 15 shows the quantitative results. The ex-
periment shows that our dot scissor performs well even
with all points randomly selected and the constraints
sampled with a fixed radius. For all the evaluation-
s, segmentations using randomly selected points give



Fig. 14. We validate the robustness of dot scissor by
showing that it is able to faithfully reproduce human
segmentations when executed using randomly selected
points on the boundary loops of human segmentations.
Models enclosed by rectangles are human segmentations
and the rest are segmentations produced by automatically
executing dot scissor (see Section 5 for details).

slightly larger errors than segmentations using user-
clicked points, except for the cut discrepancy (CD) error.
This is because the computation of the CD error is based
on proximity to the ground-truth human segmentations,
and our automated segmentations try to re-produce the
ground truth. In practice, we observe that errors are
mainly introduced by complicated features such as hair
and patch-like segments such as eyes. Nevertheless, our
dot scissor is generally robust and capable of producing
good segmentation results for most general models.

6 RESULTS AND DISCUSSION

This section presents experimental results of using dot
scissor to segment a large variety of models, including
the entire data set of Princeton Segmentation Benchmark
(PSB) [15]. Figure 6 shows the segmentation results of
some complex models. All the cuts were segmented
using only single clicks. It can be observed that the
cuts respect the geometric features. Each model takes
an average of less than a minute to segment. More
complicated models that need more cuts (e.g., the raptor
and the bozbezbozzel) take under 2 minutes. Note that
the dot scissor is able to segment flat patches such as
the faces in the centaur, the dancing children models
(Figure 6) and the Beethoven model (Figure 1).
Benchmark Evaluation. We use dot scissor to segment
all the 19 categories of 380 models in the PSB data set.
Each cut is executed with a single click, not following
any specific instructions (e.g., how many parts are ex-
pected for a model), i.e., we just segment based on our
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Fig. 15. Evaluation of segmentation results using the
protocols of [15]. The test data includes all the 380 models
in the PSB data set. Our results give lower or similar
errors than human segmentations. The validation results
used random points from human segmented boundaries
to execute dot scissor (see details in Section 5). Com-
paring with the state-of-the-art automatic methods, our
interactive tool gives the expected better results.

perception. Figure 7 shows samples of the segmenta-
tion results, where a representative model is selected
from each category. The quantitative evaluation results
in Figure 15 show that our dot scissor gives lower or
similar errors than the human segmentations in PSB.
This is because the evaluation for human segmentations
is carried out in a one-to-majority manner, indicating that
our segmentation qualities are more consistent with the
majority.

It is noteworthy that, while the cutting boundaries in
our case are isolines that could pass through faces, the e-
valuation protocols of Xiao et al. requires the boundaries
to be a subset of mesh edges (i.e. a face-based segmenta-
tion). Therefore before evaluation we adjust each cutting
boundary by assigning a foreground /background value
to each face according to ratio of the subareas divided
by the cut. This adjustment approach is simple but could
produce segmentation results with zigzag boundaries
that led to a relatively higher cut discrepancy (CD) error.

Comparison with other interactive tools. We com-
pare the dot scissor with the state-of-the-art interac-
tive segmentation tools. Figure 16 shows an example.
The cutting boundaries using the in-segments tools
of [2], [8], and [9] were obtained by drawing the same
foreground /background strokes. We observe that greedy
algorithms like the methods of [8] and [9] have a rela-
tively larger sensitivity to the stroke locations. To gain
better control over the cutting boundary, the user needs
to either specify more strokes or carefully draw strokes
that extend to the appropriate regions. The graph-cut
technique in [2] is sensitive to the areas of the source and
sink regions, often requiring large regions as seeds. The
methods of [4] and [5] obtain very good boundaries, but
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Fig. 16. Our dot scissor outperforms the state-of-art in-
teractive segmentation tools in both simplicity of use and
segmentation quality. Note the jaggy boundaries of the
method of [2] and [8], [9]. It requires three strokes using
the snapping tool of [4] and four strokes using the cross-
boundary tool [5] to locate the desired boundary whereas
ours is obtained with a single click without boundary
refinement.

require multiple strokes, thus involve rotating the model.
Also note that for the cross-boundary method [5], careful
attention is needed to ensure multiple strokes are drawn
in a consistent direction, which is not intuitive especially
when the model is rotated. Our dot scissor produces
high quality segmentation by using only a single click
(Figure 16 bottom right), and the resulting boundary
follows the geometry better than those of other methods.

Limitations. Our dot scissor produces high-quality
cutting boundaries in most cases. However, in cases
where no obvious concave region exists at the clicked
point (e.g., cutting out the smooth head of the dolphin in
Figure 5) or when multiple concave seams co-exist (e.g.,
the flake of the Asia dragon model in Figure 17), the
concavity-aware harmonic field may fail to distinguish
among different concave seams. As a complemental
tool for our dot scissor, we could include a state-of-
the-art boundary refinement tool (e.g., [27]) to refine
the segmentation boundaries. Another limitation is that,
since the design focus of the dot scissor is in cutting out
meaningful shape components, our tool is not suitable
to segment flat piecewise smooth patches such as faces
of CAD models. Like [5], our system is also built on
harmonic fields, hence it can not handle non-manifold
models or point cloud. This might be an interesting
future direction to explore.

Fig. 17. When multiple concave seams co-exist, placing
the dot circle at different places may lead to different
boundaries.

7 CONCLUSION

We have presented a very easy-to-use interactive tool for
mesh segmentation. We reduce the user effort of cutting
out a component to only requiring a single mouse click
roughly at where a desired cutting boundary lie. The
segmentation tool is built upon a concavity-aware har-
monic field that is able to effectively capture the local
concave shape features and a robust voting scheme that
selects the best cutting boundary from candidate isolines
sampled from the fields. The voting scheme increases
the robustness of our tool and enables its flexibility and
convenience of use. In addition, extensive experimental
results and quantitative analysis show that our tool
outperforms other interactive segmentation tools in both
ease of use and segmentation quality.

There is a lack of qualitative analysis and user studies
for comparing different kinds of interactive segmenta-
tion tools. We believe such user studies are essential
in providing guidance in selecting the right tool for
different applications. This remains as future work for
our study in interactive segmentation tools.
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