
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Mesh Decomposition with Cross-Boundary Brushes

Youyi Zheng and Chiew-Lan Tai

The Hong Kong University of Science & Technology

Abstract
We present a new intuitive UI, which we call cross-boundary brushes, for interactive mesh decomposition. The user
roughly draws one or more strokes across a desired cut and our system automatically returns a best cut running
through all the strokes. By the different natures of part components (i.e., semantic parts) and patch components
(i.e., flatter surface patches) in general models, we design two corresponding brushes: part-brush and patch-
brush. These two types of brushes share a common user interface, enabling easy switch between them. The part-
brush executes a cut along an isoline of a harmonic field driven by the user-specified strokes. We show that
the inherent smoothness of the harmonic field together with a carefully designed isoline selection scheme lead
to segmentation results that are insensitive to noise, pose, tessellation and variation in user’s strokes. Our patch-
brush uses a novel facet-based surface metric that alleviates sensitivity to noise and fine details common in region-
growing algorithms. Extensive experimental results demonstrate that our cutting tools can produce user-desired
segmentations for a wide variety of models even with single strokes. We also show that our tools outperform the
state-of-art interactive segmentation tools in terms of ease of use and segmentation quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Geometry/Mesh
Segmentation—User Interface

1. Introduction
Mesh decomposition is a classical problem in computer

graphics. Geometry applications such as parameterization,
morphing, shape retrieval, matching, modeling, often in-
volve segmentation as an initial step. Automatic decompo-
sition of a mesh into meaningful semantic components that
match human intuition is a hard problem. The reasons are
twofold. First, it is hard to define a measure that captures the
semantic information of a given shape. Second, human per-
ception on segmentation is subjective even towards the same
object.

In recent years, interactive tools for mesh decomposi-
tion have become increasingly popular due to their ease
of use. Previous interactive mesh decomposition systems
provide interfaces that specify the cuts via either explicit
(with along-cut strokes) or implicit ways (with in-segment
strokes). These interactive segmentation systems share three
common objectives: interactive response, easy-to-use and
user-intention driven. However, whether the latter two ob-
jectives are met is arguable. Interfaces that rely on along-cut
strokes [LLS∗04, FKS∗04, CGF09] provides good user con-
trol by allowing the user to specify a set of sparse points

Figure 1: Our user interface: the user draws a single cross-boundary
stroke to execute a cut in most cases. Left: a part-brush stroke (in
red) is drawn to segment out a semantic part-component; Right: a
patch-brush stroke (in blue) is drawn to segment out a flatter surface
patch.

(either by sketching or clicking) along the cutting bound-
ary. This however could be a laborious task since the user
inputs have to lie on the cutting boundaries and it usually
involves multiple rotations and sketching. The tools based
on in-segment strokes [JLCW06,WPP∗07,MJL08,BMB09]

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

strive in terms of ease of use by allowing free strokes to spec-
ify the foreground/background regions. However, the user
loses control over the cutting boundaries. In addition, their
underlying region growing algorithms tend to get stuck at lo-
cal minima, making the segmentation results unpredictable.

We present here an intuitive UI, called cross-boundary
brushes, which aims at achieving both ease of use and good
user-control. The user draws strokes roughly across a desired
boundary. We minimize the user inputs by requiring only a
single stroke to execute a cut in most cases. When neces-
sary, additional strokes are sketched to refine a cut locally.
We observed that real world objects contain two main types
of components that merit cuts. The first type are semantic
part-components with protruding shapes such as legs and
arms (Figure 1 left). The second type are patch-components
which are flatter such as the eyes, chests of character models
and facets of CAD models (Figure 1 right). Their significant
geometrical differences motivate the design of two different
tools in our system, namely, part-brush and patch-brush. A
common user interface is shared by these two brushes, en-
abling easy switch between them.

The key to the design of our part-brush is using the iso-
lines of a harmonic field as cutting boundaries. Harmonic
field has been found useful in geometry applications such
as deformation and quadrilaterization [ZRKS05, DBG∗06].
By constraining the harmonic field with the user strokes, the
isolines of the field all run across the user strokes, serving as
good cutting boundary candidates. We design a robust selec-
tion scheme to locate the best isoline as the cutting boundary.
This choice of design is motivated by three reasons. First,
each isoline is a smooth connected loop, thus is well suited to
serve directly as a cutting boundary. Second, the underlying
harmonic field as well as the extracted isolines are inherently
smooth, insensitive to noise, pose, tessellation, and variation
in user’s stroke. Third, the computation of the harmonic field
is rather efficient, involving only a sparse linear system. With
modern numerical tools, each new stroke merely invokes a
fast updating of the factorization in the linear system, pro-
viding interactive feedback to the user.

The part-brush by itself already provides a powerful tool
for segmenting general models with semantic part compo-
nents. However, it cannot segment flatter patches that con-
tain sharp boundaries such as the embossed characters on
the bunny model (Figure 2) or facets of CAD models (Fig-
ure 13), since no isoline runs along the sharp boundaries,
even when multiple strokes are drawn. Therefore, to com-
plement the functionality of the part-brush, we introduce the
patch-brush, which is based on a region-growing algorithm.
The design rationale is that sharp edges form local extrema
that are ideal for a greedy algorithm to stop at. We define a
novel face-based metric applied on a filtered normal field for
our region-growing algorithm. We show that such design al-
leviates the common problem of sensitivity to noise and fine
surface details in greedy region-growing algorithms.

Figure 2: Usage of our system: the user first cuts out the bunny’s
ears using the part-brush (left), then cuts out the character ‘H’ using
the patch-brush (middle left), then switch back to the part-brush to
cut out the head with two strokes (middle right), the final segmenta-
tion result (right).

The main contribution of this work is an easy-to-use and
effective interactive mesh segmentation system, including

� A new user interface requiring only a single stroke for most
cuts;

� A novel segmentation algorithm based on cutting along an
isoline of a harmonic field;

� A robust face-based surface metric defined on a filtered
normal field for an improved region-growing algorithm.

2. Related Work
We classify the previous mesh segmentation methods into

two classes: fully automatic methods and interactive meth-
ods.

Automatic mesh segmentation A variety of methods for
automatically partitioning a mesh into parts have been pro-
posed in the last decade. They are commonly classified
into part-based and patch-based [Sha08]. We exclude patch-
based methods here, since unlike our patches which are
meaningful flatter regions that merit cuts, a patch in these
patch-based techniques refers to a collection of connected
faces used for further processing (i.e., parameterization,
morphing etc.).

A majority of methods rely on clustering mesh vertices or
faces using either top-down (hierarchical) [STK02,GWH01,
GG04, KT03] or bottom-up (region growing) [MW99,
Zuc02] approaches. Other methods use some primitive ex-
traction [MPS∗04] or fitting [AKM∗06] techniques to find
semantic components. Mesh segmentation methods based on
structural information [LKA06,ATC∗08,BDBP09] or shape
analysis tools [LZ07,GF08] have also been proposed. We re-
fer to [APP∗07, Sha08] for recent surveys and [CGF09] for
a comprehensive study.

Recently, Shapira et al. [SSCO08] use the Shape Diam-
eter Function(SDF) to segment mesh surfaces. Like ours,
they define a certain surface field and cut the surface along
isovalues. However, their method is slow as computing the
SDF function requires local ray-tracing. Besides, while the
harmonic field supports the user’s dynamic control through
drawing new strokes, the SDF field is generally static and
not suited for interactive segmentation framework.

Automatic methods implicitly require the users to adjust

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

parameters, such as the number of components in the seg-
mentation or the termination condition. Yet, the segmenta-
tion results often do not agree with what the user has in mind.
Besides, most automatic methods require a post-processing
step to refine segmentation boundaries, using algorithms
such as graph-cut [KT03,KT05], geometric snake [LLS∗04]
and active contour [KT09].

Interactive Mesh Segmentation There have been few
methods proposed for interactive mesh segmentation. Ear-
lier work of [FKS∗04] and [LLS∗04] use intelligent scissor-
ing tools to cut the mesh. To execute a cut, the user needs
to sketch along the cut boundary to specify a sparse set of
points. This task could be quite tedious when the cutting
boundary is complicated such as the head of Neptune (Fig-
ure 14). In addition, such tools may fail to achieve desirable
boundaries for regions with noise or fine geometric details.

Recently, several interactive mesh cutting tools were pro-
posed for fast and easy mesh decomposition [JLCW06,
WPP∗07, MJL08, BMB09]. The user draws strokes to spec-
ify foreground/background regions for each cut. These ap-
proaches have similar interfaces and employ either region-
growing [JLCW06,WPP∗07] or graph-cut [MJL08,BMB09]
algorithms. Our patch-brush complementary tool shares sim-
ilar properties with [JLCW06, WPP∗07] in the underlying
algorithm, but it uses a more robust face-based metric and is
applied to the dual domain (i.e., mesh facets). Like our part-
brush, the method in [MJL08] uses a harmonic field for seg-
mentation, but it takes the field directly as input for graph-
cut whereas our method considers isolines as cutting bound-
aries, avoiding common problems of greedy algorithms. In
contrast with these previous interactive works, our novel
cross-boundary brushes allow direct control over the cutting
boundaries, thus simplifies the interactive segmentation task.

3. System Tools
Our interface is simple and easy to use. To execute a cut,

the user draws a stroke using a simple mouse click-drag-
release operation, and our system returns a cut automati-
cally. The system allows the user to switch between part-
brush vs. patch-brush, single-stroke vs. multiple-stroke eas-
ily by pressing a button. Figure 2 illustrates the use of the
two brushes to segment different components of the bunny
model. We now introduce the underlying algorithms of the
two brushes provided by our system.

We introduce the formulation of our part brush for mul-
tiple strokes here, even though in most cases a single
stroke is sufficient to segment a component. Denote U =
{p1, p2, ..., pc} and V = {q1,q2, ...,qc} as the corresponding
sets of start and end mesh vertex indices of the user strokes,
here c is the number of strokes. A harmonic field is com-
puted by solving the following Poisson equation:

∆Φ = 0 (1)

with boundary constraints Φ(x) = 1,x∈U and Φ(x) = 0,x∈

Figure 3: Overview of part-brush interface. (Left) user-drawn stroke
and generated harmonic field; (middle) extracted isolines running
across the stroke; (right) best cut isoline and segmentation result.

V (or the other way round), where ∆ is the Laplace operator
with cotangent weighting [MDSB02].

3.1. Part-brush

The Poisson equation can be solved in the least-squares
sense through the matrix form AΦ = b, with

A =
[

L
WP

]
and b =

[
0
WB

]
, (2)

where L is the cotangent Laplacian matrix, W =
diag{w, ...,w} is a 2c×2c positional weighting matrix (w =
1000 in our experiments). P is the positional matrix of size
2c×n, with n denoting the number of mesh vertices:

Pi j =
{

1 if (i, j) ∈ {(0, p1),(1, p2), ...,(2c−1,qc)}
0 otherwise,

(3)

and B is a 2c× 1 matrix [1,1, ...,0,0]T . Solving the above
system is equivalent to solving the following normal equa-
tion Φ = (ATA)−1ATb.

The generated harmonic field is a smooth field (Fig-
ure 3). Each mesh vertex i is associated with a harmonic
value Φ(i). We uniformly distribute a set of isolines ISO =
{I1, I2, ..., IN} (N = 15 in our experiments) on the gener-
ated harmonic field, with the ith isoline Ii having the iso-
value i/(N +1). The resulting isolines generally run across
the user’s stroke (Figure 3).

It is noteworthy that for meshes containing tunnels, there
might be multiple isolines corresponding to a single iso-
value. To constrain the desired cut to lie across the user
strokes, we simply discard the isolines that do not run
through any user stroke. A key characteristic of the isolines
is that each isoline is a connected loop dividing a mesh into
two-subparts. Besides, the isolines extracted from such har-
monic field are smooth, requiring no post-processing. This
property holds even for noisy models, as we show in Sec-
tion 3.1.3. Note that the isolines are transparent to the user.
We design a multi-scale isoline-selection scheme to auto-
matically select the best isoline as the cutting boundary
based on two factors: user’s intention and local shape infor-
mation.

� User intention Our system assumes that the user’s strokes
convey certain reasonable information. When the user
draws a stroke across a region that merits a cut, it signals
that the best cut should runs across somewhere in the mid-
dle of the stroke, but not near its two ends. We therefore

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

introduce a term called centerness that measures the loca-

tion of each isoline along the stroke: Ci = e−
(i−t)2

2t2 with
t = N/2. When multiple strokes are drawn, we simply use
the first Ci.

� Local shape information The minima rule suggests cuts
on concave regions [HRP∗84,HS97]. It is true that from the
human perception, a protruding branch (part component)
always introduces concave boundaries, this motivates us
to design a metric that captures the local shape’s concave-
ness, as in our case the concaveness of isolines. Specifi-
cally, for each isoline, we first compute its local radius ri
as its length l divide by 2π. The radius distribution of the
isoline set represents the local volume variation of the un-
derlying object (radius serves as local thickness). Then, we
compute a metric 4i = 2ri − ri−1 − ri+1 for each isoline
Ii. Small negative4i values mean large concave regions. A
similar formulation is defined in the segmentation method
of [ATC∗08]. However, this fact may be violated when the
isolines lie too close to each other since 4i tends to zero.
In that case, it would be necessary to use a larger step by
considering4ik = 2ri−ri−k−ri+k for some k > 1. There-
fore, instead of considering only adjacent isolines, we use
a multi-scale metric 4i = ∑k4ik. To penalize isolines of
large distances from Ii, we convolve 4i with a Gaussian

function f (k) = e−
(k−1)2

2σ2 (σ = 2 in our experiments). The
final 4i is defined as

4i = ∑k f (k)4ik

∑k f (k)
. (4)

Combining the two terms, the final metric for each isoline is
Mi = Ci4i. The isoline with the smallest Mi is identified as
the best cut.

3.1.1. Dynamic Updating of Harmonic Field

Each time the user draws stroke(s) to execute a new cut, our
system updates a harmonic field and identifies the best iso-
line cut. Although solving the linear system once could be
super-linear using modern sparse linear solvers, for an inter-
active application, it is still slow if each updating requires
refactorization of a new linear system. We observe that each
time new strokes invoke an update of the linear system, it
only affects the positional constraints, while the Laplacian
matrix remains unchanged. In particular, consider the fol-
lowing equation:

ATA = [LT QT]
[

L
Q

]
= LTL+QTQ, (5)

with Q = WP and note that QTQ = GTG where G is a di-
agonal matrix with entities:

Gi j =
{

w if i = j and i ∈ {U ∪V}
0 otherwise

(6)

Thus, each update of the user constraints bring changes
to matrix G only, which contains merely 2c non-zero ele-
ments. By precomputing the Choleskey factorization FTF of

Figure 4: User can refine a cutting boundary to follow the geometry
more closely by drawing additional strokes.

ATA, only F needs to be factorized for each updating. This
can be solved quite efficiently using some numerical factor-
ization downdating and updating techniques [XZCOX09].
We use the CHOLMOD package [Dav08] which contains
an implementation of fast Cholesky factorization downdat-
ing/updating technique.

Although the dynamic updating scheme guarantees inter-
active rates, the initial factorization process may still take
several seconds for large models. We further improve user’s
real-time experience by adding a preprocessing step. Upon
loading a mesh model, we compute a harmonic field with
two randomly selected mesh vertices as the boundary con-
straint. This process factorizes the linear system once so that
the dynamic updating scheme can be immediately applied
when the user draws a part-brush stroke.

Figure 5: Insensitivity of our part-brush to pose variation.

3.1.2. Boundary Mollification

Our part-brush produces smooth boundaries. However, with
a single cross-boundary stroke, the cutting boundary may
not closely follow the shape geometry (Figure 4). Instead
of using some graph cut algorithms or geometric snakes to
enforce a cut boundary that respects the local geometric fea-
tures, we resort to a strategy consistent with our user inter-
face. Specifically, we let the user draw additional strokes to
locally refine a boundary if it deviates from the user’s ex-
pectation. More strokes means adding more user constraints
to our system, enabling more control of the cutting bound-
ary. Figure 4 right shows an example of boundary refinement
(see also the accompanying video).

Since the cutting isoline passes through mesh faces, to

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

Figure 6: Our part-brush is robust against noise. From left to right,
the walrus model is coupled with 0.1, 0.5 and 1.0 mean edge-length
Gaussian noise, respectively.

Figure 7: Segmentation results of our part-brush applied to the rap-
tor model with different tessellations. From left to right: 25k ver-
tices, 12k vertices, 3k vertices.

keep the cutting boundary taut and smooth, we need to sub-
divide these faces along the cutting isoline. However, as any
modification in mesh connectivity results in a change of the
linear system affecting the real-time performance, we dis-
play the subdivided faces but use the original mesh in the
linear system.

3.1.3. Insensitivity to Pose, Noise, Tessellation and
Stroke Variation

Segmentation using our part-brush has several good prop-
erties. Our carefully designed shape metric 4i captures the
volume variation, thus is robust against isometric deforma-
tion, noise and different tessellation. Moreover, the gener-
ated harmonic field is always smooth even in the presence
of isometric-deformation, noise and coarse tessellation be-
cause the cotangent weighted Laplacian depends only on the
angles of the triangles. Figure 5 shows that similar segmenta-
tion results are obtained for the Armadillo model in different
poses. The user draws a stroke at similar locations for all the
three Armadilo models and our system identifies consistent
cutting isolines for all of them. Figure 6 and 7 demonstrate
the insensitivity of our part-brush against noise and tessel-
lation, respectively. Observe that all the cutting boundaries
are smooth and have similar locations even for models with
noise or coarse tessellations.

Our part-brush is also insensitive to variation in user’s
stroke. Figure 8 shows a cactus model segmented with
slightly different user strokes. The four strokes vary in ori-

Figure 8: Similar segmentation results are obtained despite varia-
tion in the user’s stroke.

entation, length and start-end positions. Yet, similar segmen-
tation results are obtained in all these cases.

3.2. Patch-brush

Our part-brush works well for segmenting part-
components, but not for segmenting flat regions with
sharp corners or creases. This limitation stems from the con-
tinuous nature of the harmonic field, making the extracted
isolines fail to strictly capture sharp features which are
piecewise smooth. Therefore we introduce the patch-brush
to complement the usage of the part-brush.

By observing that flatter patch components usually con-
tain sharp features which form local extrema, we build our
patch-brush based on a region growing algorithm. Similar
to [JLCW06, WPP∗07], our patch-brush uses a greedy algo-
rithm to grow two groups of competitors. Each pair of adja-
cent faces i and j is associated with a merge-cost costi j. Like
the part-brush, our system also supports multiple-strokes for
the patch-brush. Initially, the first group contains all the start-
ing faces corresponding to the user strokes and the second
group contains all the ending faces. Then we let each group
grow step by step by absorbing its neighboring ungrouped
faces. In each step, the ungrouped face with the smallest
costi j is absorbed by its neighboring group. The competition
process stops when all the faces in the mesh are grouped.

Like many greedy algorithms, the optimal solution could
fall into a local minimum, resulting in an undesirable cut-
ting boundary. When this happens, the user can draw ad-
ditional strokes to add more initial faces, which is similar
to [JLCW06, WPP∗07]. Note that the above group compe-
tition algorithm can be applied locally instead of the whole
mesh. In practice, we always assign a new group label to
all the faces of the newly cut-out mesh part. Then the next
competition process is applied only to the local mesh region
where the strokes lies.

The key in designing the group competition algorithm lies
with defining a good cost function costi j. Several surface-
based cost functions have been introduced [JLCW06,
WPP∗07, BMB09, LZSCO09], but most of which are either
vertex-based or costly to compute. We define a simple face-
based cost function which performs well in all our experi-
ments:

costi j = (1+‖ϑi j‖)‖~ni−~n j‖, (7)

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

Figure 9: Combining the two terms (in Equation 7) of our face-
based metric gives better results than the single terms. Using (1)
term I only, (2) term II only, (3) terms I & II and (4) the face-based
metric in [BMB09].

where

ϑi j =
~ni ·~ei j

‖~ei j‖
, (8)

with ~ei j denoting the edge connecting the centers of face i
and face j. The term ϑi j is a discrete approximation of the
normal curvature in the direction of ~ei j in the dual domain
and the term ‖~ni −~n j‖ is an approximation of curve length
on a unit Gaussian sphere [WPP∗07]. Both favor sharp fea-
tures. Since the term ϑi j tends to be relatively small, we add
1 to ϑi j to balance the influence of the two terms. We ob-
serve that patch components may be either slightly protrud-
ing (e.g., the ‘H’ character in Figure16) or sinking (e.g., the
‘i’ character in Figure16). Thus we take the absolute value of
ϑi j so as to give similar weights to both convex and concave
edges. As demonstrated in Figure 2, our patch-brush suc-
ceeds in cutting out both characters. Figure 9 shows that the
combination of the two terms in Equation 7 produces better
results than the single terms alone. In Section 5, we compare
with previous vertex-based surface metrics, and show that
our face-based metric produces better segmentation results
(Figure 16).

Normal Filtering We observe that all region growing meth-
ods are sensitive to noise, so is ours. Noise or fine features,
as in the Armadillo model, introduce local minima at which
the region growing algorithms could get stuck, resulting in
undesirable boundaries (Figure 10 top row). To make our
face-based metric more robust against surface fine details
or noise, we filter the surface normal field before applying
our group competition algorithm. Specifically, we replace~ni

and~n j in Equation 7 with an updated~n
′

i and~n
′

j respectively,

Figure 10: Normal filtering improves the segmentation results even
when the models are coupled with noise (the fandisk).

where

~n
′

i = normalize(∑
j∈NII(i)

wi j~n j). (9)

Here NII(i) denotes the neighborhood of face i defined as
all the faces that share common vertices with face i and wi j

is a Gaussian function wi j = e−
‖~ni−~n j‖

2

2σ2 . Such a weighting
scheme gives smaller influence to face normals that have
larger difference with face i (i.e., preserve features) while ig-
noring small normal differences that might be introduced by
noise. Again, σ is the kernel width which controls the fall-off
of the Gaussian norm. Theoretically, σ should be tuned prop-
erly according to the noise level in order to obtain the best
results. However, we found that a fixed parameter σ = 0.35
performs well in all our experiments. Figure 10 shows the
improved segmentation results with normal field filtering.
Note that the normal filtering step can be done as prepro-
cessing.

Although the normal filtering improves the performance
of our patch-brush, it is still not easy to segment complex
geometry features such as hair since the region-growing al-
gorithm could still get stuck at some local minima. In these
cases, it often requires multiple user strokes to control the
boundary locally as shown in Figure 11.

Figure 11: Complex geometric features such as hair often require
multiple strokes to segment. In these two examples, the hair is sep-
arated from the head using 6 and 7 patch-brush strokes respectively.

4. Experimental Results
We have applied our system to segment a vast variety of

models, including the recently introduced 3D Segmentation
Benchmark of Chen et al. [CGF09] and other models with
complex structures as well as CAD models. For all the mod-
els we tested, our interactive segmentation tools can effec-
tively fulfill the user’s intention. It usually takes less than
1 second to execute a cut and no more than half a minute
to finish segmenting a model. In our experiments, the user’s
usage of the two types of brush generally agree with their
design purposes. In some cases, both brushes can be used
to achieve similar cutting results, e.g., legs of table, arms of
octopus and base of the Eros head shown in Figure 12. So in
these cases the user is free to use either brush. We found that
our patch-brush is well-suited for segmenting CAD models
since many of which contain flat patches as demonstrated in
Figure 1 and Figure 13.

Princeton Segmentation Benchmark. Figure 12 shows our
segmentation results for the Princeton Segmentation Bench-
mark [CGF09]. This benchmark contains 380 models in 19

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

Figure 12: Results of applying our method to Princeton Benchmark models. Most cuts are executed using single-stroke mode except the face
of Eros, left arm of teddy, upper and bottom parts of cup and some tunnels in teapot. Observe that our boundaries follow the geometry features.

Figure 13: Results of applying our method to CAD models. All
models are segmented using patch-brush using single stroke. Mod-
els are from National Design Repository, Drexel University.

classes. We have tested hundreds of these models, but show
only one representative model from each class in Figure 12.
When drawing strokes, we aim to achieve the segmentation
results provided in [CGF09]. Our final cutting results visu-
ally agree with their results. However, in most cases, our
cutting boundaries follow the shape geometry better. This
is because their method forms cut by geodesic shortest path,
making their boundaries disregard local geometry. Whereas
in the our case, the isolines are smooth and we could draw
additional strokes, enforcing the isolines to better respect the
local geometry. For all the models shown in Figure 12, we
use only a single stroke to cut out each segment except for
the following: upper-part of cup (3 strokes), face of Eros
(3 strokes), left hand of Teddy bear (2 strokes) and some

Figure 14: Our tools can successfully cut out all the desired com-
ponents for complex models, including those that are hard to detect
automatically, such as suction cups and eyes of octopus.

tunnels in the teapot model (2-3 strokes). For all the mod-
els tested, our brushes suffice to obtain good segmentation
results using at most 4 strokes to execute each cut except
for some models in the head class (Figure 11). Neverthe-
less, our system is still able to cut out the face of Eros head
(Figure 12) using three strokes of our patch-brush. Finally,
our user interface is easier to use than theirs, which requires
the user to rotate the model and click multiple times on the
cutting boundary to obtain a cut.

Other Models Figure 13 show our segmentation results for

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

Figure 15: Comparison of our part-brush with [JLCW06, WPP∗07,
BMB09] without applying boundary refinement. For their meth-
ods, two strokes specifying the foreground and background parts are
drawn. Note the jaggy cutting boundaries. For our method, a single
cross-boundary stroke is drawn.

some CAD models. Note that, in all these examples, the cut-
ting boundaries follow the sharp features. Besides, for all
the CAD models tested, we use only a single stroke to ex-
ecute a cut. Figure 14 shows the segmentation results of
other complex models containing multiple loops or complex
structures. Our system successfully cut along all the desired
boundaries. In the dancing-children and Neptune models, we
use a single patch-brush stroke to cut out the base plate. For
the base plate of the fertilty model, we use the part-brush (2
strokes) to execute the cut because the bottom region of the
model is very smooth. All the other cuts are executed using
single stroke except for the head and upper-leg of Neptune (4
strokes and 2 strokes), legs of dancing-children (2-3 strokes)
and eyes, suction cups and arms of octopus (2-3 strokes). For
models with complex geometry features, precisely locating
a cut usually requires several rotations and strokes. For ex-
ample, it took about 2 minutes to precisely locate all cuts for
the octopus and Neptune models.

5. Comparison with Previous Methods
With automatic segmentation methods Our extensive ex-
perimental results have demonstrated the discriminative
power of the two brushes of our system. We believe that our
tools are very useful for cutting out components that are hard
for existing automatic segmentation methods to detect and
segment. For example, our part-brush is able to cut out the
suction cups on the octopus’ arms (2 part-brush strokes) as
well as its eyes (2 part-brush strokes) (Figure 14). Another
example is the chest of the Armadilo model shown in Fig-
ure 10, where we use a single patch-brush stroke.

With interactive segmentation methods To demonstrate
the performance of our segmentation framework over
existing interactive tools, we compare our system with
three recent interactive segmentation methods proposed
in [JLCW06, WPP∗07, BMB09]. We compare both of our
brushes with their tools. Since our approach requires no
post-processing, we do not apply boundary refinements to
their results either. Figure 15 shows the comparison results

Figure 16: Comparison of our face-based metric and the vertex-
based metrics of [JLCW06,WPP∗07]. No boundary refinements are
applied. For their methods, the two mesh vertices associated to the
endpoints of each user stroke specify the foreground/background
information. Our method uses the two mesh faces of each stroke.
No normal filtering is applied. Observe that our cutting boundaries
strictly follow the geometry features.

of our part-brush with all three methods. It shows that our
part-brush successfully obtains a user desired cut while their
cut boundaries are all jaggy [JLCW06, WPP∗07] due to the
sensitivity of their underlying algorithms towards fine de-
tails.

For the patch-brush, we compare our metric with previous
metrics. In Figure 9, we compare it with the face-based met-
ric defined in [BMB09]. Figure 16 shows a comparison with
the vertex-based metrics used in [JLCW06, WPP∗07]. Both
figures demonstrate that our face-based metric performs bet-
ter along sharp features. Observe that in Figure 16 the meth-
ods of [JLCW06,WPP∗07] fail to cut out the character ‘i’ in
the bunny model. This is because their metrics tend to locate
cutting boundaries at local concave regions while our metric
favors both convex and concave regions over flat regions.

6. Conclusions
We have presented an effective interactive system with

an easy-to-use UI for mesh segmentation. The system pro-
vides easier user control over the cutting boundaries than
previous interactive systems, and produces better segmen-
tation results. Our main contribution is in the design of the
part-brush. With part-brush, the cutting boundaries are iso-
lines, which are a robust shape representation, giving several
desirable properties. The part-brush provides sufficient dis-
criminative power for cutting out protruding semantic parts.
Complemented by the patch-brush designed for cutting flat
regions with sharp boundaries, our system is capable of deal-
ing with a large set of real world objects.

Our approach has its own limitations. Since our part-brush
relies on the isolines of harmonic field, as a limitation, our
system can not process non-manifold mesh surfaces which
do not have good harmonic fields. Our current system is ca-
pable of dealing with meshes containing hundreds of thou-
sands of vertices at interactive rates, however, for models

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Youyi Zheng & Chiew-Lan Tai / Mesh Decomposition with Cross-Boundary Brushes

of larger size, solving the linear system would become a
bottleneck even with advanced numerical solvers. Multi-
resolution strategies may be used in such cases. Another lim-
itation comes from the underlying region-growing algorithm
of our patch-brush. The inherent sensitivity to local minima
hinders the greedy algorithms from reaching the global op-
timum, requiring more strokes to segment complex geomet-
ric details such as hair. This problem may be alleviated by
designing a more robust surface metric or a more powerful
part-brush that makes the isoline acts like a geometric snake
to automatically attach to the local geometry features.

Acknowledgement: We would like to thank the anony-
mous reviewers for their valuable comments. We also thank
Hongbo Fu and Oscar Kin-Chung Au for insightful discus-
sion, Ligang Liu for the code of Easy Mesh Cutting, and
Pedro Sander for video narration. This work is supported
by the Hong Kong Research Grant Council (Project No:
GRF619908).

References

[AKM∗06] ATTENE M., KATZ S., MORTARA M., PATANE G.,
SPAGNUOLO M., TAL A.: Mesh segmentation - a comparative
study. In SMI ’06 (2006), p. 7.

[APP∗07] AGATHOS A., PRATIKAKIS I., PERANTONIS
S., SAPIDIS N., AZARIADIS P.: 3D mesh segmentation
methodologies for cad applications. Computer-Aided Design &
Applications 4, 6 (2007), 827–841.

[ATC∗08] AU O. K.-C., TAI C.-L., CHU H.-K., COHEN-OR
D., LEE T.-Y.: Skeleton extraction by mesh contraction. ACM
Trans. Graph. 27, 3 (2008).

[BDBP09] BERRETTI S., DEL BIMBO A., PALA P.: 3D mesh
decomposition using Reeb graphs. Image Vision Comput. 27, 10
(2009), 1540–1554.

[BMB09] BROWN S., MORSE B., BARRETT W.: Interactive part
selection for mesh and point models using hierarchical graph-cut
partitioning. In GI ’09 (2009), pp. 23–30.

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A
benchmark for 3D mesh segmentation. ACM Trans. Graph.
(2009), 1–12.

[Dav08] DAVIS T.: User Guide for CHOLMOD: a sparse
Cholesky factorization and modification package, 2008.

[DBG∗06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI
V., HART J. C.: Spectral surface quadrangulation. ACM Trans.
Graph. (2006), 1057–1066.

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN
P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Mod-
eling by example. ACM Trans. Graph. (2004), 652–663.

[GF08] GOLOVINSKIY A., FUNKHOUSER T.: Randomized cuts
for 3D mesh analysis. ACM Trans. Graph. (2008), 1–12.

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation using
local slippage analysis. In SGP ’04 (2004), pp. 214–223.

[GWH01] GARLAND M., WILLMOTT A., HECKBERT P. S.: Hi-
erarchical face clustering on polygonal surfaces. In I3D ’01
(2001), pp. 49–58.

[HRP∗84] HOFFMAN D., RICHARDS W., PENTL A., RUBIN J.,
SCHEUHAMMER J.: Parts of recognition. Cognition 18 (1984),
65–96.

[HS97] HOFFMAN D. D., SINGH M.: Salience of visual parts.
Cognition 63, 1 (1997), 29–78.

[JLCW06] JI Z., LIU L., CHEN Z., WANG G.: Easy mesh cut-
ting. Computer Graphics Forum (Proc. of EuroGraphics 2006)
25, 3 (2006), 283–291.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts. ACM Trans. Graph. (2003), 954–
961.

[KT05] KATZ S. L. G., TAL A.: Mesh segmentation using fea-
ture point and core extraction. In The Visual Computer (2005),
vol. 21, pp. 649 – 658.

[KT09] KAPLANSKY L., TAL. A.: Mesh segmentation refine-
ment. In PG ’09 (2009), vol. 25, p. to appear.

[LKA06] LIEN J.-M., KEYSER J., AMATO N. M.: Simultaneous
shape decomposition and skeletonization. In SPM ’06 (2006),
pp. 219–228.

[LLS∗04] LEE Y., LEE S., SHAMIR A., COHEN-OR D., SEIDEL
H.-P.: Intelligent mesh scissoring using 3D snakes. In PG ’04
(2004), pp. 279–287.

[LZ07] LIU R., ZHANG H.: Mesh segmentation via spectral em-
bedding and contour analysis. Computer Graphics Forum (Proc.
of Eurographics 2007) 26, 3 (2007), 385–394.

[LZSCO09] LIU R. F., ZHANG H., SHAMIR A., COHEN-OR D.:
A part-aware surface metric for shape processing. Computer
Graphics Forum, (Proc. of Eurographics 2009) 28, 2 (2009),
397–406.

[MDSB02] MEYER M., DESBRUN M., SCHRÖDER P., BARR
A. H.: Discrete differential-geometry operators for triangulated
2-manifolds. Visualization and Mathematics III (2002), 35–57.

[MJL08] MENG M., JI Z., LIU L.: Sketching mesh segmen-
tation based on feature preserving harmonic field. Journal of
Computer-Aided Design & Computer Graphics (in Chinese) 20
(2008), 1146–1152.

[MPS∗04] MORTARA M., PATANÈ G., SPAGNUOLO M., FALCI-
DIENO B., ROSSIGNAC J.: Plumber: a method for a multi-scale
decomposition of 3D shapes into tubular primitives and bodies.
In SMA ’04 (2004), pp. 339–344.

[MW99] MANGAN A., WHITAKER R.: Partitioning 3D sur-
face meshes using watershed segmentation. IEEE Trans. Vis. &
Comput. Graph. 5, 4 (1999), 308–321.

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539–1556.

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent
mesh partitioning and skeletonization using the shape diameter
function. The Visual Computer 24, 4 (2008), 249–259.

[STK02] SHLAFMAN S., TAL A., KATZ S.: Metamorphosis of
polyhedral surfaces using decomposition. In Computer Graphics
Forum (2002), pp. 219–228.

[WPP∗07] WU H.-Y., PAN C., PAN J., YANG Q., MA S.: A
sketch-based interactive framework for real-time mesh segmen-
tation. CGI ’07 (2007).

[XZCOX09] XU K., ZHANG H., COHEN-OR D., XIONG Y.:
Dynamic harmonic fields for surface processing. Computers and
Graphics (SMI ’09) 33 (2009), 391–398.

[ZRKS05] ZAYER R., RÖSSL C., KARNI Z., SEIDEL H.-P.:
Harmonic guidance for surface deformation. Computer Graphics
Forum (Proc. of EUROGRAPHICS 2005) 24, 3 (2005), 601–609.

[Zuc02] ZUCKERBERGER E.: Polyhedral surface decomposition
with applications. Computers and Graphics 26, 5 (2002), 733–
743.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

