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Mesh Segmentation
with Concavity-aware Fields

Oscar Kin-Chung Au Youyi Zheng Menglin Chen Pengfei Xu Chiew-Lan Tai

Abstract—This paper presents a simple and efficient automatic mesh segmentation algorithm that solely exploits the shape concavity
information. The method locates concave creases and seams using a set of concavity-sensitive scalar fields. These fields are computed
by solving a Laplacian system with a novel concavity-sensitive weighting scheme. Isolines sampled from the concavity-aware fields
naturally gather at concave seams, serving as good cutting boundary candidates. In addition, the fields provide sufficient information
allowing efficient evaluation of the candidate cuts. We perform a summarization of all field gradient magnitudes to define a score for
each isoline and employ a score-based greedy algorithm to select the best cuts. Extensive experiments and quantitative analysis have
shown that the quality of our segmentations are better than or comparable with existing state-of-the-art more complex approaches.

Index Terms—Concavity-aware Field, Mesh Segmentation, Isolines.
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1 INTRODUCTION

Segmentating 3D models into meaningful parts is a
fundamental problem in geometric processing. Many
mesh algorithms such as mesh editing, shape retrieval,
and object rigging, require shape segmentation as a
preprocessing step. However, automatically segmenting
3D models into components that are consistent with
human perception is an extremely difficult task due to
the lack of semantic information.

As humans generally perceive desirable segmentations
at concave creases and seams, which have negative
minima principal curvature, this minima rule serves
as a basis for many previous automatic segmentation
approaches. Most of these approaches extensively use
concavity information as the basic setup data in the un-
derlying mathematical model for segmentation [1], [2],
[3], [4], [5]. Normal variation, dihedral angle, complex
fitting approaches are often employed to measure the
concaveness of the shape geometry.

Recently, statistics-driven automatic segmentation al-
gorithms have been proposed, attempting to solve the
segmentation problem by combining existing approach-
es or learning from training data. Promising results have
been obtained, but with high computational cost and
sophisticated techniques. For instance, the randomized
method of Golovinskiy and Funkhouser [4] explicit-
ly leverages several existing segmentation methods to
generate a random set of segmentations and measure
the likelihood of each edge lying on a segmentation
boundary in the randomized set. This approach aims at
identifying the most consistent cuts obtained by different
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automatic segmentation methods and thus eliminate any
potential undesired bias of individual method. Disre-
garding the complexity of any individual methods and
the parameters needing to be tuned, combining dif-
ferent approaches already introduces computation and
implementation overhead. The data-driven approach of
Kalogerakis et al. [5] simultaneously segments and labels
parts of 3D models using an objective function learned
from a collection of labeled training meshes. This method
produces segmentations of better quality than other
existing automatic methods. However, the requirement
of training data and the complex features used in their
method leads to long computation overhead (typically a
couple of minutes for moderate sized models.

In this paper, we present a simple, fully automatic
mesh segmentation method that exploits the shape con-
cavity information as the key information to achieving
high-quality segmentation. Our method relies on a set of
concavity-aware scalar fields with large field variation
at the concave regions where desirable segmentation
boundaries lie. We call these fields segmentation fields as
they provide concise information for segmentation.

The fields are computed by solving a Laplacian system
with a novel concavity-sensitive weighting scheme. We
place small capacities on edges with high curvature and
concaveness, making the resulting fields exhibit large
variation at concave seams located along the propagation
paths, thus differentiating these regions from flat and
convex ones. To discover all possible concave seams (as
segmentation boundaries) on the surface, we compute
multiple segmentation fields that propagate along differ-
ent directions of the model’s surface. We design a robust
approach to set boundary constraints of the multiple
fields such that every concave seam can be discovered
by at least one segmentation field.

We consider the isolines of the fields as possible
boundary cuts since along an isoline the variation of
the field is minimized, thus obeying the minima rule.
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Multiple isolines lying along different concave regions
are selected from each segmentation field to form a set
of candidate cuts. The gradient magnitude of the fields
serve as important information to identify the candidate
isolines. Specifically, since our fields are designed to ex-
hibit large variations in the concave regions, such regions
have large field gradients. This enables the design of a
simple selection scheme for choosing the isolines with
local maximum gradient magnitudes as candidate cuts.
To choose the best final cuts from the candidate set, we
again exploit the segmentation fields. Since each field
only discovers the concavity information of some parts
of the shape, we summarize the gradient magnitudes
of all the segmentation fields to determine the quality
of each candidate cut. A score is assigned to each cut
based on the summarized gradient field and local shape
variation. Finally, a simple greedy algorithm is applied
to select the set of segmentation cuts based on their
assigned scores.

The proposed method is sufficiently easy to implemen-
t, involving only solving Laplacian systems and using
simple procedures to identify the isoline candidate cuts
and select the final cuts. It is computationally efficient
because all the segmentation fields are in fact solved
from the same linear system with different boundary
conditions, thus factorization needs to be performed
only once. Further, the method is fully automatic, not
requiring the users to adjust any parameters.

We have tested our method extensively and compared
our segmentation results with those of the state-of-the-
art methods using the Princeton Segmentation Bench-
mark (PSB) [6]. In terms of segmentation quality, our
method outperforms the more complex state-of-the-art
randomized cuts method [4] and is comparable to the
learning approach of Kalogerakis et al. [5].

2 RELATED WORK

Existing mesh segmentation algorithms can be catego-
rized into two classes based on the types of models
they aim to segment. The first class includes methods
designed to segment CAD models, mainly for reverse en-
gineering purposes. They segment models into patches,
with each patch as the best fit choice from some prede-
fined mathematical surfaces, such as cylinders, spheres
and planes. The second class of segmentation algorithm
aims at segmenting organic shapes into semantic part
components, respecting human understanding of object
components. Our method falls into the second class.

Guidance for mesh segmentation algorithms has pre-
dominantly been the minima rule proposed by Hoffman
et al. [7], [8], which states that human perception tends
to cut a shape along concave regions in the direction
of minimum principal curvature. Many existing mesh
segmentation methods leverage the concavity informa-
tion as a key measure for the underlying algorithm-
s. For example, the K-mean clustering [9], graph cut-
based fuzzy clustering [1], random walk algorithm [3],

the primitive-fitting-based method of Attene et al. [10]
and spectral clustering methods [11], [12] use normal
variance, dihedral angle or pair-wise distance to de-
sign the concavity measurements. Note that all these
methods use a single set of seeds / cluster centers
to directly find the segmentation cuts, thus they de-
pend heavily on the number of seeds / clusters and
the initial settings. In addition, these methods [1], [3],
[9], [11], [12] often formulate the segmentation problem
as optimization problems that directly seek a single
segmentation solution, without considering or reusing
other potential segmentation solutions. However, single
optimization-based methods usually do not suffice to
generate high quality segmentation results for all kinds
of models. Quantitative experimental results using the
Princeton benchmark [6] show that, the randomized
cuts method [4] which combines multiple optimization
based segmentation algorithms with randomized initial
settings can generate better segmentation results.

There are other segmentation methods which use more
complex information and analysis tools. For example,
methods based on core extraction [2] and critical point
analysis [13] use centricity information to determine
the prominent parts of the models. The shape diameter
function [14] and the part-aware metric [15] are used
to compute local visibility information and determine
the diameter of the parts of objects. Other methods that
use tubular analysis [16] or skeleton-based methods [17]
have also been proposed. Kalogerakis et al. [5] employ
a conditional random field classifier for simultaneous
segmentation and labeling of parts in 3D meshes. It
integrates hundreds of informative features such as cur-
vature, shape diameter function, etc, in the training pro-
cess. Most of these alternative methods involve complex
procedures, leading to high computation cost.

Our method resembles the randomized method [4] in
that we also select the final cuts from a set of candi-
date cuts. However, in [4] several existing segmentation
methods are used to compute the candidate cuts, thus
it is time consuming and depends on the selected un-
derlying segmentation methods. Our method is based
only on different segmentation fields solved from the
same linear system with different boundary conditions.
Multiple potentially desirable candidate cuts on differ-
ent concave regions can be directly extracted from a
single segmentation field, making the process efficient
and scalable. In addition, instead of considering a large
set of randomized candidate cuts, our method selects
the candidate isolines based on maximum concavity
variation. Most selected isolines are good candidates for
segmentation boundaries and the final selection process
picks the best ones among them.

The isolines of smooth scalar fields have been used in
many geometric applications. In particular, feature pre-
serving harmonic fields with different Laplacian weight-
ing schemes have been introduced for interactive mesh
segmentation [18], [19], [20]. However, to the best of
our knowledge, concavity-aware fields have not been
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exploited. We show in this paper how concavity-aware
fields can be applied to automatic segmentation.

3 OUR APPROACH

The key idea of our approach is to use a set of concavity-
aware segmentation fields to capture concave regions for
segmentation. We introduce inverse Gaussian curvature
weighting to design concavity-aware fields that exhibit
large field variations along concave and high curvature
regions. To faithfully explore the entire model surface
for all potential concave regions, we identify a small set
of extreme points on the model surface where we set
boundary conditions of the Laplacian system defining
the fields such that they have with sufficient variation
along paths between the extreme points. From each
computed segmentation field, we select a set of isolines
as potential cuts. All these selected cuts form a pool of
candidate cuts, from which, we evaluate, summarize and
select the final segmentation cuts.

The key ingredient of our approach is the concavity-
aware segmentation fields. This shape analysis tool cap-
tures the model’s global shape information and serves
two purposes. First, isolines sampled from the fields
are potential cuts. Second, the field provides sufficient
information for evaluating the quality of isolines as good
cutting boundaries.

3.1 Concave-aware Segmentation Field
Our method relies on several desirable properties of the
segmentation fields. Specifically, we require the fields to
be sufficiently smooth and are curvature-sensitive such
that denser isolines of the fields can be sampled at the
concave regions (where desired segmentation cuts lie).
We define the segmentation field as a variant of the
surface harmonic field, which is computed by solving the
Poisson equation ∆Φ = 0, where ∆ denotes the discrete
Laplacian operator [21].

Solving the Poisson equation in the least-squares sense
leads to the matrix equation AΦ = b, with

A =

[
L
C

]
and b =

[
0
B

]
. (1)

Here B and C are the vector and matrix expressing the
boundary conditions, respectively, and L is the Laplacian
matrix:

Lij =


−1 if i = j

ωij∑
(i,k)∈E ωik

if (i, j) ∈ E

0 otherwise.
(2)

where E denotes the mesh edge set. The behavior of
the computed field depends on the weighting scheme
for the Laplacian operator, i.e., the wij . For example, the
cotangent-weighting scheme leads to a smooth transit-
ing harmonic field which is well-suited for applications
such as deformation and shape approximation. Howev-
er, such fields can not identify the local shape variation,
making them not suitable for segmentation purposes.

Our goal is to induce a field that faithfully captures
the concave seams of the given shape. To achieve this,
we put small capacities on edges that lie in the concave
regions to allow the field to have large variations in these
regions. Specifically, we introduce a concave-sensitive
weighting scheme defined as follows:

ωij =
|eij | · β
Gij + ε

, (3)

where |eij | is the length of the edge (i, j), Gij is the sum
of the absolute Gaussian curvature at vertex i and vertex
j, ε is a small constant to prevent zero division and β is
the concave weight of edge (i, j). We use the Gaussian
curvature so that the computed fields are propagated
following the underlying geometry. We take the inverse
of Gaussian curvature such that high curvature regions
will have a relatively larger field variation than flat
regions.

The concave weight β is the key component in the
design of the weighting scheme. The intuition is that
smaller values (capacities) will lead to smaller field
throughput, hence larger field variation. In our exper-
iments, we set β to a small constant (0.01) when either
vertex i or vertex j is a concave vertex, and 1 otherwise.
A vertex i is considered concave if there exists at least
one adjacent vertex j such that the following inequality
holds

(vi − vj)
‖vi − vj‖

· (nj − ni) > ς. (4)

Here ni and vi are the normal and position of vertex i
respectively and ς is a small constant (1e-3 in our experi-
ments). This weighting scheme ensures that the field has
large variation in concave regions, hence leading to the
effect of denser isolines gathering at these regions when
sampled uniformly (see Figure 1). Note that inverse
Gaussian curvature weighting produces segmentation
fields that may contain values outside the range of the
predefined boundary conditions. Therefore the solved
segmentation fields are generally not harmonic fields.

We use the one-ring neighbors of a vertex to determine
its concavity. This implies that noise or fine details can
influence the determination of the concave vertices and
hence cause local vibration in the field propagation. (see
Figure 2). A more sophisticated curvature computation
method [22] or geometry fitting [23] may be adopted to
alleviate the influence of noise and local detail. We took
an alternative approach of adding a preprocessing step
to smooth the mesh normals before computing the con-
cave vertices (Figure 2 right). We use a fixed 5 iterations
of Gaussian smoothing with kernel 0.1 throughout our
experiments and find this simple approach to work well.

3.2 Multiple Segmentation Fields
Our segmentation fields have strong differentiating pow-
er on components. A single segmentation field can iden-
tify multiple components of a given model, as shown
in Figure 1. However, a single field cannot discover
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Fig. 1. (Top row) Curvature-aware segmentation fields.
The fields are defined by setting boundary conditions
at the highlighted extreme points (0 at red point and 1
at green point). Observe that the visualized fields have
clear boundaries which coincide with the concave seams.
Furthermore, one segmentation field can identify multiple
concave seams. (Bottom row) The isolines (50) sampled
from the field. Uniform sampling leads to dense isolines
at the concave seams.

Fig. 2. We apply normal smoothing to more robustly
distinguish the concave vertices, leading to better seg-
mentation results.

all components of a model. Therefore it is necessary
to define multiple fields with values propagating in
different directions in order to detect all possible concave
creases and seams on the shape.

Each segmentation field is defined by boundary con-
ditions specified at two surface points. They are mesh
vertices located at prominent parts so that the paths
connecting them can pass through all possible surface
regions where desirable cutting boundaries lie. We call
such vertices extreme points. A possible way to identify
these extreme points is to employ the sophisticated
method used in [24] which first computes an average
squared geodesic distance field, followed by using an
iterative poisson disk sampling scheme to select the
shape extremities. However, this method is time con-
suming and requires tuning of thresholds to control the
feature size. We opt for a simpler method for this task.
In particular, we leverage the field propagation to detect
the extreme points. We observe that by propagating

Fig. 3. Automatic identification of shape extremities. (a)
From the field computed with a randomly selected point,
we select the most prominent point as the start point for
computing another field whose local minima and maxima
are identified as the shape extreme points (b). (d) shows
that a set of similar extreme points are found when a
different random point is used (c).

a field from a single point to the rest of the shape,
all the prominent parts of an object will have local
maximum/minimum field values.

To start, we randomly select a surface point p and
compute a field that propagates from p to the rest of
the shape by constraining the value at p to be 0, and
the values at its one-ring neighbors to be 1. This makes
the field propagate from the selected point in a breadth-
first manner. We consider the point q with maximum
field value as the most prominent point of the shape.
To make the selection robust against the random point
selected, we then use q as the new starting point and
compute a field again based on it. All the points with
local maximum/minimum field values (i.e., those with
the largest or smallest field value among its one-ring
neighbors), including point q, are then selected as the
extreme points. These selected points are mostly located
at prominent parts of the shape due to the propagation
behavior.

The above process typically suffices to identify all
shape extremities for most models. However, for shapes
without obvious extruding components (e.g., the fish
model in Figure 10), the above process may not capture
all the necessary extremities. To ensure that sufficient
number of extreme points are discovered as boundary
constraints, we repeat the above selection process with
another random starting point, and filter out any newly
detected point if it is close to an existing one measured
by the geodesic distance. In particular, we ignore the
newly found extreme point if it is within 0.15L of any
existing extreme point, where L is the longest geodesic
distance between any two detected extreme points. The
iteration stops if no new extremity is found. From our
experience, 1 or 2 such iterations suffice to discover all
extreme points in most cases. In Figure 3, we show
that the extremity identification process is robust against
different random starting points.

Denote the set of extreme points as U. For each pair of
extreme points (u, v) in U, we compute a corresponding
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Fig. 4. Five (out of a total of C6
2 ) segmentation fields for

the teddy model. Each field is defined by the two highlight-
ed extreme points (0 at red point and 1 at green point).
Note that all components can be faithfully differentiated
by these fields.

segmentation field Φuv by constraining the value of
one point to be 1 and the other 0. These segmentation
fields serve as the basis for the subsequent segmentation
process. Note that there are a total of Cn2 fields, where
n is the number of extreme points. Since n is usually
a small number, the field computation is very efficient
using the factorization updating scheme of [25].

Figure 4 shows some segmentation fields of a model.
Observe that, within each component of the model,
the color is mostly constant. Moreover, there are clear
boundaries between the different colored regions and
these boundaries coincide with the concave creases,
demonstrating the effectiveness of our weighting scheme
in identifying concave creases.

3.3 Candidate Isolines Selection
Our next goal is to locate candidate cutting boundaries
at concave regions (Figure 1, 4). Following the minima
rule, we consider the isolines of the fields as the potential
boundary cuts. Along an isoline, the field variation is
minimized, so is the curvature variation.

Since concave regions have large field variation, we
exploit the field gradient magnitudes for selection of
candidate cuts. In each field Φ, we first uniformly sample
a set of isolines I = {I1, I2, · · · , Iτ}. and compute the
gradient magnitude GIi of each isoline.

We assume that the segmentation field has linear
variation on each face, i.e., each face has a constant
gradient magnitude. Denote the gradient field of the
segmentation field Φ as G = {gi|fi ∈ F}, where gi is the
gradient magnitude of the face fi in the segmentation
field. We define the gradient magnitude GIi for an isoline
Ii as the normalized average gradient magnitude of all
the faces through which it passes:

GIi =

∑
j∈F̂i

ˆ̀
jgj∑

j∈F̂i
ˆ̀
j

, (5)

where F̂i is the set of faces that isoline Ii passes through,
ˆ̀
j is the length of the isoline segment within the face
fj , and gj is the gradient magnitude of face fj of the
segmentation field Φ.

Isolines lying on concave regions can now be easily
identified by their large gradient magnitudes. However,

Fig. 5. (Left) The segmentation field computed with the
extreme points at the left foot and the right hand. (Middle)
The candidate isolines found from that field. (Right) The
candidate isolines correspond to local maxima (circled) in
the histogram of the gradient magnitudes of the sampled
isolines.

since there are denser isolines at concave regions, there
will be multiple isolines in the same region with large
gradient magnitudes. Our idea is to pick the isoline with
the local maximum gradient magnitude in each concave
region as a candidate cut. We introduce a simple his-
togram filtering algorithm for this purpose. Specifically,
we obtain a histogram of the gradient magnitude of all
isolines of each field (see Figure 5 for an example) and
consider an isoline as a candidate cut if its gradient
magnitude is a local maximum, that is, we select the
isoline Ii if GIi > GIk , k ∈ {i− 2, i− 1, i+ 1, i+ 2}.

For models with several nearby concave regions form-
ing a consecutive concave seam, lengthy isolines may
pass through all the concave regions (see the insect mod-
el in Figure 8 left). Such isolines are not good boundary
cuts but they may have large local gradient magnitude
due to the high concavity of the region on which they lie.
To filter out these loose and lengthy isolines, we reject
an isoline as a candidate cut if it is η (=1.5) times longer
than any other isoline that passes through any common
face.

For models with no clear prominent parts, such as
the cup model in Figure 8 and some CAD models,
the improper location of shape extremities may intro-
duce candidate isolines on some flat patch-type regions
(Figure 8). Recall that our method is mainly designed
for detecting concave regions of part-type components,
so candidates on flat patches should be rejected. We
employ a simple heuristic approach to eliminate them.
We measure the flatness of an isoline by analyzing the
portion of face normals of the isoline which lie on the
same semi-sphere and reject the isoline if the portion
exceeds a certain range τ (=80%).

The selection process identifies a set of candidate iso-
lines from each segmentation field (Figure 6). However,
the isolines selected from different fields may overlap
and lie in the same regions. In the next subsection, we
introduce a summarization process to select the best final
cuts from the candidate cuts.
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Fig. 6. (Top row) Our algorithm successfully locates the
candidates isolines at desired boundary regions. (Bottom
row) The final cuts selected from the candidates isolines.

Fig. 7. Summing up the normalized gradients of all fields
reveals a set of regions with clear boundaries.

3.4 Final Cuts Selection

Denote the collection of candidate cuts selected from
all fields as C = {c1, c2, · · · , cM}. We assign a score
to each of the candidates representing its quality as a
cut boundary. For this purpose, we again exploit the
field gradient magnitude. A face with a large gradient
magnitude in any segmentation field means it is likely
to lie in a concave region between two components of
the object. Hence, we perform a summarization process
on all the field gradients for each face. Specifically, we
define a score Si for each face fi as the sum of the face’s
normalized gradient magnitudes in all the segmentation
fields:

Si =
∑
(u,v)

(ḡuvi ) (6)

Fig. 8. Filtering candidate isolines. (Left) reject loose
and lengthy candidate isolines. (Right) reject candidate
isolines lying on flat patches.

ḡuvi denotes the normalized gradient magnitude (by the
largest gradient value in that field) of face i in the
segmentation field Φuv . The normalization gives each
field equal importance. Figure 7 visualizes the summed
gradient field. We can see that large values appear
consistently at the desired cutting regions, which again
demonstrate the differentiating power of our concavity-
aware segmentation fields.

With the scores of all faces, we next compute the
gradient score sg,i for each candidate cut ci as the average
weighted sum of the scores of all faces through which
the candidate cut passes:

sg,i =

∑
j∈F̂i

ˆ̀
jSj∑

j∈F̂i
ˆ̀
j

. (7)

The gradient score sg,i only considers the local con-
cavity along the candidate cut, but not the local shape
variation across the cut. To make the measure more
robust against local shape variation, we introduce a shape
variation score sv,i that measures the local shape variation
across the candidate cut. Specifically, for each candidate
cut ci, we extend its face strip (the faces that it passes
through) on both sides by k steps. This leads to k face
strips on each side. Denote the length of a candidate
isoline i as li, we compute the shape variation score sv,i
in a multi-scale manner similar to [20]:

sv,i =

k∑
j=1

e−
j2

2σ2 ∆i
j (8)

where ∆i
j is defined as follows:

∆i
j =

llij + lrij − 2li

lmax
, (9)

with llij and lrij denoting the length of the jth strips to
its left and right, respectively, and lmax is the maximum
length of the candidate cuts in C. The multi-scale con-
volution using Gaussians makes the measure insensitive
to the choice of k [20]. In practice, we select similar
parameters as in [20] (k = 5 and σ = 2). Although more
accurate computation with geodesic rings propagating
from each side can be employed, we found this simple
setting to work well in experiments. Note that we do
not directly use the approach in [20] for sv because in
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Fig. 9. Evaluation of segmentation. Evaluations using
the protocols of [6] and the human segmentations in the
Princeton Segmentation Benchmark. Our method outper-
forms existing state-of-the-art non data-driven automatic
segmentation methods. The bottom right graph includes
a comparison with the approach of Kalogerakis et al. [5]
in terms of Rand Index error. SBx refers to x number of
models in the training set per category.

our case the nearby isolines in the same field may be too
close or too far away depending on the local concavity.

The final score assigned to each of the candidate cuts
is defined as

si = sg,i × sv,i. (10)

Note that this score could be positive or negative. A
higher score means a higher chance that the candidate
cut is a desirable final cut. Next, we iteratively select
a candidate cut ci with the highest score from the
candidate set C to form the final boundary set Γ. To
avoid selecting nearby or overlapping cuts in the same
boundary region, we reject a new cut if it introduces a
new segment whose area compared to the object total
area is smaller than a certain ratio χ. That is, this pa-
rameter controls the minimum scale of cut-out segments.
Since it is mainly designed to filter out the intersecting
or overlapping candidate cuts, we simply set χ to 0.02.

The process stops either when C is empty or the score
of the newly selected candidate cut shows a sudden
decrease compared to the previous one, i.e., when the
score compared to the previous cut is smaller than a ratio
(0.1 in our experiments). The sudden decrease in score
means that the newly found one has very low concavity,
hence it is safe to reject it and stop the iteration.

3.5 Parameter Analysis
In this section, we analyze the parameters used in our
automatic segmentation method. We did not try to op-
timize the parameters, instead we fixed them at specific
values that we observe to produce fairly good results.
For example, for the parameters used in the normal
smoothing part, we could have used more sophisticated

Human Rand Shape Norm Core Rand SB19 SB12 Isoline
Cuts Diam Cuts Extra Walks Cut

Average 10.3 15.7 17.6 17.8 21.1 22.9 9.4 10.7 12.7
Human 13.5 15.8 17.9 18.2 22.5 29.5 11.9 12.9 12.3

Cup 13.6 22.4 35.8 23.6 30.7 33.4 9.9 9.9 21.1
Glasses 10.1 9.7 20.4 14.2 30.1 31.6 13.6 14.1 9.8

Airplane 9.2 11.5 9.2 18.6 25.6 26.1 7.9 8.2 12.7
Ant 3.0 2.5 2.2 4.7 6.5 6.8 1.9 2.2 3.9

Chair 8.9 18.9 11.1 9.3 18.7 16.7 5.4 5.6 12.1
Octopus 2.4 6.7 4.5 6.3 5.1 6.9 1.8 1.8 4.1

Table 9.3 37.4 18.4 9.8 24.4 13.9 6.2 6.6 6.5
Teddy 4.9 4.5 5.7 12.1 11.4 12.7 3.1 3.2 5.3
Hand 9.1 9.7 20.2 15.6 15.5 22.2 10.4 11.2 11.5
Plier 7.1 10.9 37.5 18.3 9.3 23.0 5.4 9.0 7.3
Fish 15.5 29.7 24.8 39.9 27.3 40.6 12.9 13.2 24.3
Bird 6.2 11.4 11.5 21.2 12.4 28.0 10.4 14.8 9.7

Armadillo 8.3 8.1 9.0 12.0 14.1 10.7 8.0 8.4 10.6
Bust 22.0 25.1 29.8 33.2 31.5 33.5 21.4 22.2 24.4
Mech 13.1 28.3 23.8 17.5 38.7 24.4 10.0 11.8 12.2

Bearing 10.4 12.9 11.9 17.9 39.8 27.1 9.7 17.6 17.7
Vase 14.4 16.0 23.9 26.8 22.6 28.7 16.0 17.1 16.8

FourLeg 14.9 17.7 16.1 18.9 19.1 20.8 13.3 13.9 18.1

TABLE 1
Per-category Rand Index errors of segmenting the PSB

using our method and previous methods

approaches as in [26] to adaptively optimize the Gaus-
sian kernel. Instead, for simplicity and efficiency, we
opt for a fixed kernel approach which works well for
a large variety of models tested in PSB (Figure 10) or
other common data sets (Figure 12). For the parameters
used in candidate cuts selection (i.e., the parameter to
reject a lengthy isoline, the parameter to measure the
flatness of an isoline) and in the final cut selection (i.e.,
the parameter to reject overlapping isolines and the
parameter to stop the selection), we tested the following
parameter ranges and found that the results are largely
the same: τ in 0.8-0.9, χ in 0.02-0.05, η in 1.5-2.0.

We evaluated two important parameters in our ex-
periments. The first one is the concave weight β which
is designed to increase the segmentation field variation
in concave regions. Smaller β values cause the isolines
to appear more densely in the concave regions (see
Figure 14). However, too small values (e.g. β = 0.001)
lead to an ill-conditioned linear system. For all examples
in this paper, we set β = 0.01.

The second important parameter is the number of
isolines extracted from each field. Our concavity-aware
segmentation field induces denser isolines at concave
seams, however sampling more isolines does not neces-
sarily improve the quality of the segmentation results.
It suffices to set the number of isolines to be large
enough to distribute isolines on all concave regions along
paths between extreme points. We tested 20 through
200 isolines per field for the models in Figure 10 and
observed that sampling >100 isolines per field leads
to undesirable cuts included as candidate cuts (due to
obscure local maximum gradients caused by shape noise
and variation) and degraded segmentation results (e.g.,
Figure 15). We fix our sampling at 50 isolines for all our
experiments.

4 RESULTS AND DISCUSSION

Results. We have applied our system to segment a wide
variety of models, including the whole set of models
in the Princeton Segmentation Benchmark (see Figure
10) and other models with complex structures (see Fig-
ure 12). For most models, our automatic segmentation
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Fig. 10. Segmentation results of representative models in the Princeton Segmentation Benchmark. All results
are obtained fully automatically. It can be observed that our segmentation boundaries follow naturally the concave
geometry.

method is able to generate boundary cuts that follow
the shape geometry well.

We tested all 19 categories of 380 models in the Prince-
ton Segmentation Benchmark. Our method performs
well in all categories, especially for the categories that
contain models with obvious protruding components,
such as bear, ant, table, birds and octopus. We evaluated
the segmentation results using the proposed protocol
in [6]. Figure 9 shows the quantitative results of our
method compared with other automatic segmentation
methods. The results show that our simple and efficient
method consistently outperforms existing state-of-the-art
methods, including complex methods like randomized-
cuts [4]. We also compared the Rand Index error of our
results with those reported in [5] (see Figure 9, bottom
right). Our method performs slightly worse than theirs,
however note that their approach involves complicat-
ed training-based learning which integrates numerous
informative features and user labeling input. In terms
of computation requirements, our approach is much
more efficient. For a typical model of 100K triangles, the
computation of shape extremities and the updating of
all segmentation fields takes less than 10 seconds, and
the rest of the steps take less than 2 seconds, on an Intel
2.2GHZ laptop with 2GB memory.

Table 1 reports the Rand Index errors of our method
and previous methods across all categories in the PSB.
Note that our method has similar errors across all cate-
gories, demonstrating its stability and general segmen-
tation ability. Other methods have variant performance
in different categories, for example, note the large Rand
Index error in the table category for the randomized cut
method [4] and the plier category for the shape-diameter
method [14].

Sensitivity to mesh tessellation. Since our concavity-
aware segmentation fields are built upon local curvature

Fig. 11. Our approach is largely insensitive to mesh
tessellation. However, very coarse tessellations could
significantly influence the estimation of concavity and
curvature which will affect the segmentations (see one ear
of the rightmost teddy).

and concaveness, it is interesting to see how differ-
ent mesh tessellations affect the segmentation results.
We have tested different examples and found that our
method is largely insensitive to different tessellations.
We conjecture that this insensitivity is due to the fields
being solved for in a global sense. Figure 11 shows an
example. It can be seen that the results for different
tessellations are almost the same until the mesh becomes
very coarse and significantly affects the estimation of
curvature and shape concavity. Applying a more robust
estimation scheme that builds on multi-scale surface
fitting may solve this problem.

Comparison with other weighting schemes. We
implemented other common Laplacian weighting
schemes [18], [19] and tested them with our framework.
Figure 13 shows the resulting isoline distributions and
the final segmentations of a typical part-based model
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Fig. 12. Segmentation results of complex shapes.

Fig. 13. Our concavity-sensitive weighting scheme pro-
duces denser isolines at concave regions compared with
other weighting schemes, hence leads to better segmen-
tation results.

using the various weighting schemes. We can see that
the existing weighting schemes produce isolines that are
more uniformly distributed on the mesh surface, making
it difficult to extract candidate cuts simply based on
the density of the isoline distribution. In contrast, our
concavity-sensitive weighting scheme produces isolines
that are gathered at the concave regions, leading to
better segmentation results (Figure 13 bottom).

Limitations. The computation of the Gaussian curva-
ture and the concaveness relies on local shape informa-
tion. Thus our method is inappropriate for highly noisy
models or models with many fine surface details (e.g.,
Figure 16 left). More sophisticated curvature computa-
tion methods [22], [23] could alleviate the sensitivity to
noise and surface detail but will not solve the problem.
For efficiency, we chose to apply a preprocessing step to
smooth the vertex normals and a simple way to estimate
the local concaveness.

In some cases, when a boundary region does not
contain sufficient concavity to cause a sudden decrease
in the throughput of the field propagation, our method

Fig. 14. The effect of concave weight parameter β.
Smaller β produces denser isolines at concave seams.

Fig. 15. Effect of different number of isolines per field
on segmentation results. Increasing the number of iso-
lines leads to more candidates being detected. However,
over-sampling may cause undesirable candidates being
selected due to shape noise and variation.

may fail to detect any candidate isoline in that region
(Figure 16, middle). This is a limitation of our method,
which may result in inconsistent segmentations for mod-
els in different poses (e.g., different models in the same
category of PSB) due to variations in local geometry. For
example, our method fails to detect a cut along one leg of
the female model in Figure 16. Nevertheless, evaluation
results show that our method still gives low per-category
rand index error (Table 1).

Our method is designed for segmenting protruding
components separated by concave creases and seams.
It is not suitable for segmenting parts or patches with
non-concave boundaries such as a diamond shape or
facets in CAD models (Figure 16, right). Finally, our
method relies solely on shape concavity information,
without any semantic or hierarchical information, thus
it cannot generate segmentation hierarchies. Generating
segmentation hierarchies that truly agree with shape
semantics remains a challenging problem.

5 CONCLUSION

We present a simple, fully automatic mesh segmen-
tation method that directly relies on shape concavity
information. The proposed concavity-aware segmenta-
tion fields capture the shape geometry along local con-
cave creases and seams where desirable segmentation
boundaries lie. Exploiting the information provided by
these segmentation fields, we can easily sample a set of
candidate isolines at concave regions and select the final
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segmentation cuts. Our method produces high-quality
segmentation results better than more complex existing
methods and comparable with the state-of-the-art data-
driven approach. For future work, a possible extension
is to improve the segmentation quality by considering
more informative measures such as the Shape Diameter
Function (SDF) in the design of the segmentation fields.
Finally, we believe that the differentiating power of the
proposed concavity-aware segmentation fields offers an
effective means for understanding shapes, making the
fields applicable to other geometry processing applica-
tions, such as skeleton extraction [1], region selection
[27], shape tagging and shape retrieval.
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