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Abstract Inferring the functionality of an object

from a single RGBD image is difficult. The difficulties

are twofold: the lack of semantic information of the

image object, and the missing data due to occlusion.

In this paper, we present an interactive framework

to recover the 3D functional prototype from a single

RGBD image. Instead of precisely reconstructing the

object geometry for the prototype, we focus more on

recovering the object functionality along with their

geometry. Essentially, our system allows users to

scribble on the image to create initial rough proxies

for the parts. Then after the user annotation of high-

level relations among parts, our system automatically

optimizes the detailed junction parameters (axis &

position) and part geometry parameters (size &

orientation & position) in a joint manner. Such

recovery of prototype enables a better understanding of

the underlying image geometry and allows for further

physically plausible manipulation. We demonstrate our

framework on various indoor scene objects with simple

or hybrid functions.

Keywords functionality, cuboid proxy, prototype,

part relations, shape analysis.

1 Introduction

That form ever follows function. This is the
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Louis Sullivan

With the popularization of commercial RGBD

cameras such as Microsoft’s Kinect, people can easily

acquire 3D geometry information for an RGB image.

However, due to occlusion and noise, recovering

meaningful 3D contents from single RGBD images

remains one of the most challenging problems in

computer vision and computer graphics. Over the

past years, many research efforts have been devoted

to recovering high-quality 3D information from RGBD

images [7, 9]. Most of these approaches, starting

either from a single image or multiple images, are

dedicated to recovering the faithful 3D geometry

of image objects, while their semantic relations,

underlying physical settings, or even functionality are

overlooked. In recent, researches have been developed

to explore high-level structural information to facilitate

3D reconstruction [18, 19, 26]. For example, Shao

et al. [18] leverage physical stability to hallucinate

the interactions among image objects and obtain a

physically plausible reconstruction of objects in RGBD

images. Such high-level semantic information plays an

important role in constraining the underlying geometric

structure.

Functionality is the central of object design and

understanding. Objects in man-made environments

Fig. 1 Objects in man-made environments are often designed

for one or multiple intended functionalities.
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are often designed for one or multiple intended

functionalities (Fig. 1). That form ever follows function

is the law of physical manufacturing [20]. In this paper,

we develop an interactive system to recover functional

prototypes from a single RGBD image. Our goal is to

allow a novice user to be able to quickly lift the image

objects into 3D using 3D prototypes, with just a small

amount of high-level annotations of junction types

and geometric/functional relations; and meanwhile

explicitly explore and manipulate its function. We

focus on prototypes with simple proxies (e.g. cuboids)

representing their parts as a means to alleviate the

difficulties in precise 3D reconstruction which is a

harder problem. By taking physical functionality into

consideration, we could gain a much more faithful

interpolation of the underlying objects. The functional

properties could further be used for applications like

in-context design and manipulation.

It is a challenging problem to infer the object

function just from user annotated junction types

and geometric/functional relations. Our system

should automatically optimize the detailed junction

parameters (axis & position) in order to make the

parts move correctly, whereas this task is typically done

in CAD softwares through repeatedly adjusting the

parameters by the user. Besides, initial proxies from

user-segmented depth is often rough with incorrect

orientation and position, and would be incomplete

because of the occlusion. Hence initial proxies often

fail to satisfy the functional relations such as A covers

B. Therefore our system should also optimize the proxy

parameters (size & orientation & position), in order to

make parts satisfy functional relations.

Our method starts with a single RGBD image.

We let the user segment the image object into parts

by scribbling on the image using simple strokes or

polygons. Then each segmented part is assembled

with a 3D proxy. We use simple cuboid in this

paper [12]. Given the initial proxies, our system

then allows the user to annotate the junction types

and functional/geometric relations among parts. In

a key stage, our algorithm simultaneously optimizes

the detailed junction parameters (axis & position) and

the proxy parameters (size & orientation & position).

Finally, a functional prototype is produced with moving

parts satisfying the user annotated relations.

We tested our system on a variety of man-made

hybrid functional objects taken from various sources.

Our results show that even with only a few user

annotations, the proposed algorithm is capable of

faithfully inferring geometry along with the functional

relations of the object parts. In summary, this paper

makes the following contributions:

• Identifying and characterizing the problem

of integrating functionality into image-based

reconstruction;

• Simultaneous optimization of detailed junction

and geometry parameters from user’s high-

level annotation of junction types and

functional/geometric relations;

• Developing an interactive tool for functional

annotation, and testing in on a variety of indoor

scene images and physical designs.

2 Related Work

Proxy-based analysis. There has been a significant

amount of work that leverages proxies to understand

objects or scenes. Li et al. [14] and Lafarge et al. [13]

consider global relationships as constraints to optimize

initial RANSAC-based proxies to produce structured

outputs; similarly, Arikan et al. [1] use prior relations

plus user annotations to create abstracted geometry.

For scene analysis, a lot of approaches encode input

scenes as collections of planes, boxes, cylinders, etc. and

study their spatial layout [5, 6, 8, 10, 11, 25]. Recently,

proxies were commonly used for the functionality

analysis of a design. Umetani et al. [21] use physical

stability and torque limits for guided furniture design in

a modeling and synthesis setting. Shao et al. [17] create

3D proxy models from a set of concept sketches that

depict a product from different viewpoints and with

different configurations of moving parts. Our work is

inspired by Koo et al. [12], who annotate cuboids with

high-level functional relationships to fabricate physical

works-like prototypes. Different from their algorithm,

our framework does not require explicitly creating

junction postions, as we consider larger search space to

automatically infer the junction and part parameters.

To our knowledge, we are the first to focus on the

proxy-based functionality recovery from a single RGBD

image, particularly recovering how the object works

by jointly optimizing the part geometry along with

functional relationships based on user annotations.

Constraint-based modeling. Our work is related

to the constraint-based modeling research in the

graphics and CAD communities. Similar graphics

work involves the automatical determination of the

relevant geometric relationships between parts for

high-level editing and synthesis of 3D models [2, 4,

22, 26]. Previous mechanical engineering research

introduces declarative methods for specifying the

2
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Fig. 2 Algorithmic pipeline. Given the input RGBD image (left), our system generates initial proxy cuboids (middle-left) from

the parts segmented by user with strokes or polygon tools. Then the user annotates a set of high-level relations among the proxies

including junction types and geometric/functional relations (middle-right). Finally our system simultaneously optimizes the junction

parameters (axis & position) and the part parameters (orientation, position and size) to get the functional prototype with parts

moving as user expected (right).

relevant geometric constraints for a mechanical

design [3, 24]. Some professional CAD softwares

like AutoCAD and SolidWorks contain constraint-

based modeling modules, but the users are required to

manually adjust the low-level part/junction parameters

to specify the relationships. In contrast, our system can

automatically interpret the user annotated high-level

functionalities into the specific geometric constraints.

3D modeling from single RGBD images. Many

efforts have been devoted to obtaining high-quality

geometry information from a single RGBD image [7,

23]. To recover structure information, Shen et al. [19]

extract suitable model parts from a database, and

compose them to form high-quality models from one

RGBD image. Shao et al. [18] adopt physical stability

to recover unseen structures from a single RGBD image

using cuboids. However, their techniques focus on

creating static 3D geometry and structure, whereas our

goal is to produce models with correctly moving parts.

3 Overview

As illustrated in Fig. 2, given a single RGBD image,

we first let the user scribble strokes over the image

objects to cut out functional parts of the object. Those

parts, being either a semantic component or an additive

object, will finally take place in the function recovery.

To segment the parts, we use a depth-augmented

version of the GrabCut segmentation [15] similar to

[18]. Optionally, if the color and depth are too similar

which makes it difficult to separate the parts with

GrabCut, we provide a polygon tool like in PhotoShop

to do segmentation (see the accompanying video). We

assemble a set of proxies (cuboids in our case) to fit

each individual part. We then let the user annotated

the high-level relations among these cuboids. The

relations consist of three categories: junction relations

(e.g., hinge, sliding), functional relations (e.g., cover, fit

inside, support, flush, connect with) [12], and geometric

relations (e.g., equal size, symmetry).

Given the user annotated relations, in a key step,

our method recovers the cuboid orientation, position

and size along with the junction parameters using a

joint optimization. We choose the joint optimization

strategy because the cuboid parameters are always

coupled with the junction parameters. That is, given

a set of junctions, the cuboid geometry should change

accordingly to satisfy the functional constraints.

The optimization is done using a two-stage sampling

strategy. In the first stage, our algorithm samples

possible cuboid edges as junction candidates [17] for

the specified junction type. Given one set of possible

junction candidates, the cuboid orientation is aligned

and the cuboid position is refined, by adjusting the

corresponding junction edges. We assume that the

junction must be snapped to the nearest cuboid face

and be parallel to the nearest cuboid edge (as in [12]).

With one set of adjusted junctions and cuboid

orientation and position, our method further samples

a set of possible candidate rest configurations for the

cuboids. A rest configuration is a state where the

object is in a closed state [12]. Because the cuboid

size is not certified yet, the system does not known

which state is the closed state. Thus we sample

possible candidates for the rest configurations, as shown

in Fig. 6. For each possible rest configuration, we

optimize the cuboid size parameters according to the

user annotated functional/geometric relations as in

[12]. Finally, the optimized cuboids which lead to the

minimal difference against the initial point cloud are

3
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Fig. 3 Initial proxy generation. The user is allowed to scribble

strokes on the image (left), and based on the scribbles, depth-

augmented GrabCut is applied to segment the input object to

different parts (middle). Initial cuboids are then fitted to the

corresponding points (right).

selected, and the best prototype with best junction and

cuboid parameters is produced. We next describe the

detailed algorithm.

4 Algorithm

Our method takes as input an RGBD image of a

functional object. By functional we refer to objects

those have particular moving parts, such as rotatable

cover, slidable window, etc. Such objects are very

commonly seen in our daily life, for instances, rolling

chairs, foldable tables, printers, seesaws etc.

Initial cuboids generation. Given the input

RGBD image, our first task is to anchor the object

functional parts. Automatically identifying image

object and object parts in RGBD images has been

explored in recent works, however, without any prior

knowledge the performance is still not satisfactory for

our purposes. We resort to an interactive solution. As

in [18], we let the user to scribble on the image object

to specify object parts. In particular, we allow the user

to draw free strokes over parts to indicate a segment

(part). We perform the depth-augmented GrabCut

algorithm [18] to the underlying point cloud along with

their pixel and adjacency information. Optionally, if

the color and depth are too similar which makes it

difficult to separate the parts with GrabCut, we provide

a polygon tool like PhotoShop to do segmentation.

We then run the Efficient RANSAC algorithm [16] on

the selected points to generate candidate planes. The

largest plane is selected as the primary plane, and the

second largest plane is made orthogonal to the primary

one. We extract the initial cuboids determined by these

orthogonal directions (the third direction is the cross

product of the two plane normals). Fig. 3 illustrates

the process of generating the initial cuboids. Note that

the generated cuboid could have erroneous orientation,

position and size. In the next steps, our goal is to

simultaneously optimize these parameters along with

the junction parameters so that the extracted cuboids

Fig. 4 User annotated junction types and some typical

functional relations. From left to right: hinge junction, sliding

junction, exactly cover, just fit in, and support.

form a prototype whose functionality closely follows the

image object.

Relation annotation. Denote the set of initial

cuboids as (B1, ..., BN ), in an important step, we let

the user to annotated the high-level relations among

cuboids. To this end, we define three categories of

relations. Category I is the junction relations (types)

(e.g., A has a hinge relation w.r.t. B), and Category II

is functional relations (e.g., A covers B) and Category

III is geometric relations (e.g., symmetry, equal size,

etc.). To specify the Category I relation, the user selects

a pair of cuboids and right click a button to indicate a

junction type. The same interface is used for Category

II and III.

To further classify the relations, we define two main

types of junction relations, namely, hinge and sliding.

For functional relations, similar to [12], we define the

following function types: A covers B, A fits inside

B, A supports B, A is flush with B, and A connects

with B. For geometric relations, we mainly use 2 types:

symmetry and equal size. These relations pose different

geometric constraints on the following optimization

stage and some relations might be dependent on each

other. For example, if both A and C covers B, A

is geometrically constrained w.r.t. B and C. Fig. 4

shows the junction types and some typical types of

functional relations. Note that unlike the method

of [12], we do not need to explicitly specify the junction

position and axis as well as cuboid orientations and

positions, instead, we optimize these parameters in a

joint manner.

Joint optimization of cuboids and junctions.

We now detail our cuboid optimization algorithm.

Our goal is to jointly optimize the cuboid orientation

and their shape parameters (i.e., positions, sizes) as

well as the detailed junction parameters according to

the user annotated relations. The optimized cuboid

configuration should deviate little from the input point

cloud and move correctly as user expected. Essentially,

given the input point cloud I and initial cuboids B =

(B1, ..., BN ), along with the user annotated junction

types J = (J1, ..., JM ), functional relations F =

(F1, ..., FP ) and geometric relations G = (G1, ..., GQ),

we want to obtain the best junction parameters Θ∗ =

4
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Fig. 5 Junction configuration graph. Each cuboid corresponds

to the node with the same color, while each annotated junction

type corresponds to the multiple connections between nodes.

One connection is associated with one candidate junction

parameter.

(Θ∗1, ...,Θ
∗
M ) for the junction types J along with

the best cuboids B∗ = (B∗1 , ..., B
∗
N ), satisfying the

functional relations F and geometric relations G. The

formulation is defined as:

argmin
B,Θ

E(B,Θ, I) s.t. B,Θ satisfy J ,F ,G. (1)

Here E(B,Θ, I) measures the deviation from the

optimized cuboid configuration to the input point

cloud, which is defined as

E(B,Θ, I) =
∑
j

∑
k

dist(Bj − pkj ), (2)

where
∑
k dist(Bj−pkj ) gives the deviation from cuboid

Bj to its containing points pkj .

The challenge is how to wrap down the annotated

relations to geometric constraints while retaining the

cuboids’ conformity with respect to the input point

cloud. Since the annotated relations are high level

specifications, this leads to large search space in the

optimization due to the potential ambiguities raised

from the loose annotations. Another challenge is that

the cuboid parameters are highly coupled with the

junction parameters. That is, given a set of junctions,

the cuboid geometry should change accordingly to

satisfy the functional constraints. Thus we cannot

optimize the parameters locally and separately, but

instead do it in a global manner. To solve the

above challenges, we device a multi-stage optimization

paradigm to first populate the solution space with a

two-step sampling algorithm and then jointly optimize

the cuboid parameters and junction parameters.

In the first stage, we sample the possible junction’s

parameters, i.e., axial position and orientation. Let us

denote the set of junction types as (J1, ..., JM ), and

the parameters we wish to estimate as (Θ1, ...,ΘM ).

We start by building a junction configuration graph.

For each cuboid we create a graph node and for each

junction type Ji, we create multiple graph connections,

with each connection associated with a candidate

Algorithm 1 Building Junction Configuration Graph

Input: N initial cuboids (B1, ..., BN ); M junctions (J1, ..., JM )

with unknown parameters (Θ1, ...,ΘM );

Output: Multi-connection junction Graph G := (V,E), where

each connection eji corresponds to a parameter Θj
i for Ji;

G← ∅
for i = 1 to N do

Vi ← Bi

end for

/*** Building multi-connections between nodes ***/

for i = 1 to M do

Bc ← child cuboid of Ji

Bp ← parent cuboid of Ji

l← 1

/*** Test each edge of the child cuboid ***/

for j = 1 to 12 do

Ej ← j-th edge of Bc

Dj ← direction of Ej

Cj ← center of Ej

for k = 1 to 6 do

Fk ← k-th face of Bp

Nk ← normal of Fk

if dist(Ej , Fk) < εd and (abs(dot(Dj , Nk)) < εa or

abs((dot(Dj , Nk)− 1) < εa) then

Θl
i ← (Cj , Dj) //set candidate parameter for the

Ji

eli ← Θl
i //add a connection eli

l← l + 1

end if

end for

end for

end for

parameter Θl
i for Ji. If A forms a hinge relation with

B, each cuboid edge of A can be a candidate hinge

axis. We choose only those cuboid edges which are

closely attained to B. More specially, we only choose

the edges parallel to the face if there is also a cover

relation, and only choose the edges perpendicular to

the face if there is a fit inside or support relation.

This leads to a configuration graph where any traversal

path of the graph represents a possible configuration

of junctions. Fig. 5 shows such a graph. Algorithm 1

gives the pseudo-code of this state.

Given the junction configuration graph, for each

junction configuration we optimize the cuboids

orientation, position and size based on annotated

functional/geometric relations. The cuboid orientation

and position are firstly adjusted based on the current

candidate junction configuration, by adjusting the

corresponding junction edges. We assume that the

junction must be snapped to the nearest cuboid

face and be parallel to the nearest cuboid edge (as

in [12]). Then we optimize the cuboid size to satisfy

the functional/geometric relations from the current

junction configuration. Note that the functional

relations typically indicate the geometry of the cuboids

5
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Algorithm 2 Optimizing cuboids and junctions

Input: input point cloud I; N initial cuboids B = (B1, ..., BN );

junction configuration graph G; functional relations F ;

geometric relations G
Output: N optimized cuboids B∗ = (B∗1 , ..., B

∗
N ); M optimized

junction parameters Θ∗ = (Θ∗1 , ...,Θ
∗
M );

/*** Sampling candidate junction parameters from G and

accordingly optimizing the cuboid orientation, position and

size ***/

err ← INF //deviation from cuboids to input point cloud

while 1 do

Gather an connection combination (ek1 , ..., e
l
M ) from G

if no more connection combination then

break

end if

Create junctions with parameters Θ′ = (Θk
1 , ...,Θ

l
M ) from

(eki , ..., e
l
M )

adjust the cuboid position and orientation by snapping the

junction edge

/*** Calculating possible angles for rest configurations ***/

for i = 1 to M do

calculate candidate angles (α1
i , ..., α

w
i ) to parallelize

parent and child

end for

/*** Sampling possible rest configurations ***/

while 1 do

Gather an angle combination (αu
1 , ..., α

v
M )

if no more angle combination then

break

end if

Transform to rest configuration with (αu
1 , ..., α

v
M )

Optimizing the cuboid size satisfying F and G to get an

solution B′ = (B′1, ..., B
′
N )

if E(B′,Θ′, I) < err then

err ← E(B′,Θ′, I)
(B∗1 , ..., B

∗
N )← (B′1, ..., B

′
N )

(Θ∗1 , ...,ΘM∗)← (Θk
1 , ...,Θ

l
M )

end if

end while

end while

satisfying certain constraints in a closed configuration

(i.e., a rest configuration [12]. For instance, if A

covers B, this typically means that one face of A

is rotated about the hinge junction to be in close

agreement with a face of B (Fig. 6). Since we don’t

know which face covers B, we enumerate through

multiple possible cuboid faces to sample a set of rest

configurations (Figure 6) and for each rest configuration

we optimize the cuboid parameters. Specifically,

given a rest configuration of cuboids, we are able to

employ the optimization strategy of [12] to optimize

the cuboid parameters (B∗1 , ..., B
∗
N ). We then compute

the optimization cost from Eq. (2). Finally, the

configuration which leads to the least deviation from

the point cloud is selected as the best configuration and

the optimized cuboids are then computed. The overall

algorithm is detailed in Algorithm 2.

Model Hinge Slide Fxn Geom Int. Time (s) Opt. Time (s)

Cabinet 2 2 4 2 62 18

Drawer 0 2 2 1 29 1

Fire box 2 0 2 0 27 16

Chair 2 0 3 0 90 2

Tool box 1 3 6 0 108 3

Dining table 4 0 6 2 55 241

Tab. 1 Statistics for recovered functional prototypes.

5 Results

We used our system to recover functionality

prototypes for 6 different objects (Fig. 7). The first

4 examples (cabinet, drawer, firebox and chair) are

real RGBD images captured with Microsoft Kinect,

while the last 2 examples (toolbox and dining table)

are synthetic depth data captured from existing 3D

designs. Please check our submission video to see how

the various parts move and fit together. Creating

one functional prototype took 0.5-5 minutes for our

experimental examples. The time for user interaction

(segmenting points with strokes and specifying part

relationships, plus the waiting time for the plane

detection for initial cuboid generation) ranges from

27 seconds to 108 seconds, and the optimization time

varies a lot from 1 second to 241 seconds, depending

on the sampling space of junction parameters and

rest poses. The experimental statistics (including

the annotation numbers of hinge junctions, sliding

junctions, functional relations and geometric relations)

are listed in Table 1.

As shown in Fig. 2, though the geometry of

our prototypes may appear simple, the relationships

between the moving parts are often complex. Manually

adjusting the geometry and relation parameters would

be rather time and labor consuming. Our system

automatically infer the junction parameters (position

& axis) and the geometry parameters (size & position

& orientation) by jointly optimizing them together

under the user annotated high-level constraints. All

the desired part parameters and junction parameters

are obtained in our experiment data. For example, in

Fig. 7 (1), our algorithm automatically places the hinge

Fig. 6 Possible rest poses for the hinge junctions. Since we

don’t know which face of the cabinet door should cover the

cabinet, we rotate the hinge junctions to sample a set of rest

configurations to guess possible covering faces. (Figure 6)

6
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Fig. 7 Experimental results. From left to right: the input RGBD image, initial cuboids, optimized cuboids and junctions, and how

parts move and fit after the optimization (3 configurations).

junctions to the correct edges of the cabinet doors,

adjusts their orientations accordingly by aligning the

hinge junctions onto the nearest cabinet face and makes

them parallel to the nearest cabinet edges. The size

of the doors are also optimized to be equal size and

cover the cabinet. The drawers in Fig. 7 (1) and (2)

obtain the desired orientation by aligning their sliding

junctions with the cabinet, and the size is optimized

to just fit inside the cabinet and be equal. In Fig. 7

(3), the top cap and the front door are both optimized

to just cover to the boundary of the firebox. For the

chair example (Fig. 7 (4)), due to occlusion, the initial

cuboids for the leg and the armrest have smaller size

than real, but our algorithm successfully extends the

leg to support the seat, and extend the armrests to

connect with the back. Similarly, the occluded leg in

Fig. 7 (5) is extended to support the box and has the

same size as other legs. In Fig. 7 (6), the orientation

and the size of the two doors are optimized to support

the table top, and the orientation of the top is optimized

to be horizontal.

User study. To better evaluate whether our approach

can recover correct functional prototypes, we showed

7



8 First A. Author et al.

Fig. 8 Top two rows: comparison results with the captured real data; bottom row: comparison results with the 3D design model.

We can see that our system can faithfully recover the functionality as user expected.

our system to 20 students. 5 of them are computer

science undergraduate, and another 4 students are

master candidates in industry design. The rest ones

are 8 master candidates and 3 PhD candidates in

computer science. We showed them the captured

RGBD images and asked them to imagine how the

objects work. Then these students used our system

to add annotations to the pre-generated initial cuboids

based on their imagination. All the students reported

that our system successfully recovers the functional

prototypes with the parts moving as they expected.

Besides, the optimized part geometry also satisfies their

imagination. One exception is that 6 students said they

imagined the hinge junction on the cabinet door (Fig. 7

(1)) was exactly on the boundary edge of the cabinet,

while our optimization did not consider it as the best

configuration.

Comparison with real objects and 3D design

models. We also check the recovered prototypes

with the captured real objects and 3D design models.

As illustrated in the top 2 rows in Fig. 8, the

generated prototypes have similar functionality as the

real objects, and they can move parts to generate

almost the same configurations as the real ones.

Besides, the optimized simple cuboids can approximate

the real geometry well, with almost the same size,

orientation and position. We also compare our

recovered prototypes with the 3D design models whose

junctions are added and adjusted manually in Autodesk

3ds Max (bottom row in Fig. 8). We can see our

recovered prototype from user’s high-level annotation

has very similar functionality as the manually designed

model.

6 Conclusions

In this work, we present a novel approach to

recover functional prototypes from user’s high-level

annotations on relationships. By providing the junction

types and other functional/geometric relations, the

junction parameters and part geometry parameters are

jointly optimized. With such interface, we allow users

to focus on the functional goals of the target object

rather than working on low-level geometry and junction

parameters. The results demonstrate that our system

can generate functional models with a small number

of user annotations. In the user study, the recovered

prototypes work correctly as the users expected. The

comparison with the real objects and 3D design models

also prove the feasibility of our system.

Limitations and future work. The main limitation

of our approach is that we use cuboids as proxies to

approximate the part geometry. While compositions

of cuboids are sufficient for the understanding of

functionality of many products, users often like higher

fidelity geometry to better understand the geometry

and relationships. Rough proxies might also cause

inaccurate reconstruction. Similarly, the restricted set

of junction types is another limitation. In the future,

we will add other primitives for part proxy, such as

cylinder and sphere. We also plan to integrate more

8
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junction types between parts, like ball junctions and

simple mechanical units. The current optimization

framework may need to be modified to handle more

geometry and junctions. Another future direction is to

consider other high-level functional constraints among

parts. Exploring more high-level relationships would

help the further exploration of the functionality as well

as the geometric properties.
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