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Abstract−This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating
local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated
based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization
according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained.
Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the
proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance
input data.
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1. Introduction

In this paper, we present a 2-phase solution for the
surface reconstruction problem: how to reconstruct a high
quality mesh surface from 3D point clouds without knowing
normal information. As the wide range of modeling applications
rely on surface reconstruction from scatted data points, many
automatic reconstruction algorithms were developed in the
past two decades. Most of them, however, require sufficient
sampling, and even some of them require additional accurate
surface normal estimations. Unfortunately, the real input data
does not always satisfy these precision requirements. Moreover,
large amount of imperfect factors, e.g. fake points, incomplete
data and different types of noise (see Fig. 1), may interfere
with the reconstruction process. As pointed out by [18], it is
still a difficult problem to reconstruct manifold surfaces from
unoriented point sets.

Previous dominant approaches mainly apply the theories
of Voronoi diagrams from computational geometry or use
of volumetric reconstruction techniques. Most Voronoi based
approaches reconstruct mesh by using the input points as
positions of vertices directly. Therefore it is difficult to produce
a smooth and manifold surface from a noisy and poorly
sampled point cloud. While volumetric methods, on the other
hand, tend to define distance functions to the point samples
and then retrieve level-set surfaces. They suffer the problems

of high memory storage consumption for extracting shape details

and unstable normal estimations when densely sampling around

sharp or thin features. 

We propose a novel two-step reconstruction approach in this

paper. Different from previous approaches, the main advantage
of our approach is that no normal information is required.
We leverage visibility information inferring surface orientation
instead of directly estimating surface normal vectors for the
purpose of robust surface reconstruction. In a human vision
system (HVS), shapes are mainly observed and recognized
by silhouette and depth. It is known that a visual hull can be
well constructed from silhouettes, and therefore global shape
orientation can be roughly learnt from it. Meanwhile depth
quantities provide accurate information, which can be used
to deal with concave aspects. So the major motivation of
our work is to analog the shape reconstruction process of
HVS for reconstructing topologically correct shape by taking
a set of depth snapshots (see Section 4).

Another concerning of our work is geometry details of
the target models. An ideal reconstruction process should
efficiently reconstruct shape details as much as possible from
noisy input. Volumetric approaches mainly use hierarchical
space subdividing to increase reconstruction resolutions for
extracting these details. However, it is a space consuming
solution. Contrary, our contribution is to directly refine mesh
surfaces so as to capture high frequency details via surface
up-sampling. Therefore our surface based refinement approach
consumes smaller storage spaces and can reach higher
resolution than volumetric based ones.

2. Related work

We briefly review typical approaches on surface reconstruction
from unoriented points and related techniques in this section.

Voronoi diagrams based methods, e.g. the “crust” algorithm
[2,3] and [6,12,13], reconstruct surface boundary by erasing
those cells that do not belong to the volume bounded by the
sampled surface. 

These methods are good at processing surfaces with high
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genus. And they work fairly well when the sampling data
are sufficiently dense and smooth. Many other methods
[5,27] tend to generate surfaces in an incremental manner.
In all those methods, however, the local topology may not
be correct and holes may appear due to under-sampling.
Recent work in this direction such as [23] can now dealing
with noisy input data.

Large amount of studies cast the surface reconstruction
problem as a data fitting mission for tackling noise. A specific
distance-like measure in general is formulated to find a best
fitting one. These methods in this field can be roughly classified
into parametric-based and implicit surfaces-based ones. 

Parametric-based approaches [16,17,28] assume that the
underlying topology of target surface is known, which is
homeomorphism to a given parametric domain. And they
mainly apply compact surface descriptions. Specifically, several
recent-developed methods [29] deform an initial surface along
an energy field induced by the input points. Such kind of
approaches is good for produce smoothed surfaces. However,
there exist two drawbacks when applying them: the potential
difficulties for generating initial topological-correct surface
in high genus cases, and finding appropriate surface fitting
parameters.

Approaches such as [10,11,14,19,25] reconstruct surface
based on implicit functions which indicate the outlier and
inside of the target surface. These algorithms depend on
relatively accurate estimations of surface orientation and
uniformed sampling of input data, which actually are crucial
for the real scanned data. In addition, they may introduce
topological artifacts for the data containing poorly aligned
scan patches due to the distance-like function definition.

In vision research, shape from X, e.g. from shading,
silhouette and stereopsis, are relevant topics of surface
reconstruction. Visual hulls [21] and photo hulls [20] are typical

approaches of volumetric carving to extract shape geometry
from image information. Although the first phase of our
approaches is also a space carving one. Different from them,
our input are point cloud data which maintain more accurate
shape information, and depth images are captured by a virtual
camera for providing plausible surface orientations.

The latest trend for combining vision techniques with
surface reconstruction is the graph cut optimization, e.g. [18,
26]. It is a global optimization technique to efficiently solve
image and discrete volumetric segmentation problems by
re-formulating them as a minimal cut problem of a spatial
graph structure [9]. Unfortunately, implementing these methods
usually require discrete volumetric descriptions. Therefore it
is difficult to reach high reconstruction resolution because
of cubic increased space consumption.

Surface tessellation by using Marching Cubes [22] and
Marching Tetrahedra [7] is a critical step in surface extraction.
Besides geometric accuracy may drop after this process,
result meshes are normally in low quality. These meshes
contain lots of thin and elongated triangles with ugly topological
connectivity. It is inconvenient for succeeded modeling
applications. Thus remeshing techniques always act as a
post-processing step for remedying this disadvantage. Recent
advances of remeshing [1] are mainly focused on creating
desired nice meshes after a high resolution surface has been
already known. Our methodology principle, alternatively, is
to directly reconstruct a satisfied mesh both in high mesh
quality and geometric accuracy.

3. Method Overview

Our algorithm consists of following two phases, i.e., coarse
model generation and progressive mesh refinement. An example
of the whole reconstructing process is illustrated in Fig. 2.

Phase I is initial mesh generation. In this phase, we generate
a coarse model, which is homeomorphism to the underlying
target surface, as the input data for the following process.
As illustrated in Fig. 2, the input points are observed by a
virtual camera from different positions and directions, resulting
a set of depth images. Then a confidence map is calculated
according to these depth images. Necessary user interactions
are also involved to guarantee the correctness of the output
surface. When the space confidence map is built up, we can
easily extract the initial mesh surface. Details are presented
in Section 4.

Phase II is progressive mesh refinement. In this phase, an
error function is introduced to measure the distance between
the reconstructed surface and input points. Then triangles in
relatively large error are split. And new generated vertices
are moved to the appropriate position according to input
points so as to decreasing distance error. A remeshing process
is also required in this phase. In Section 5, we will describe
the refinement process in detail. 

4. Coarse Mesh Generation

We present the process of generating coarse model in this

Fig. 1. Terra-cotta warrior. The left figure illustrates the challenging
problems of real scanned data. And the right model is a reconstructed
result by our proposed method.
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section. The whole process consists of taking depth snapshots,
data cleaning, confidence map computing and triangular mesh
extraction, consequently.

4.1. Depth snapshots
In our approach, the input data is a set of 3D points P

without knowing orientation information. Initially, all input
points are normalized by scaling
so that they fall into the cube [-1,1]3.

To capture geometric information, we take a group of
depth images for P by a virtual camera from different view
points and directions which are presented as {(vpi; vdi) | i =
1,2,…,m}. In our implementation, data P is rendered in a 3D
environment (based on OpenGL API) by using orthomorphic
projection with depth test. For each point pi, its color is
evaluated according to its depth value in the camera coordinate
system. That is Color(pi) = (z(pi); z(pi); z(pi)) with

Here the function Depth(p) returns the z value of point p
in the camera coordinate system. Larger z(p) means nearer
to the nearest plan. And we set background color of these
images as black, i.e., z(p) = 0. A set of snapshots which
indicates depth information are then obtained. We call them
depth snapshots.

The sampling manner {(vpi; vdi)| i = 1, 2,…,m} of above
virtual acquiring procedure is quite flexible. The only constraint
of a sampling manner is the whole visible hull of a give
data shall be covered. Commonly, we set sparse view points
on the bounding sphere of data P. The view points in our
prototype system are selected at vpi = (cos(iθ), sin(iθ),0)
with θ = 2π / (m-2). And two additional viewpoints are top
and bottom the sphere. The orientations of camera is then
set to be aimed at the sphere center, i.e., vdi = −vpi. Hence
the sampling process can be executed automatically. These
depth snapshots can also be specified by user, to reduce the
amount of images. In addition, few more depth snapshots may
be manually captured to emphasize sampling on specific parts.

Overall, capturing depth snapshots is very efficient. In all
our experiments, 8~15 depth snapshots are sufficient for

generating the coarse mesh, since depth information is more
accurate than solely visibility mask. And the average time
to process one depth snapshot is less than one second.

The advantage of using depth snapshots is twofold. One
is that visibility and orientations of underlying target surface
are well captured by these depth images. The other is that
concave shape features can be more accurately described
and less images are required comparing with the silhouette
or contour based image descriptions for space carving, e.g.
the visual hulls.

4.2. Confidence Map Estimation
Once a set of snapshots in hand, we compute a confidence

map in vicinity of these processed point samples, similar to
many volumetric based approaches (e.g. [11]). We compute
these confidence values as a distance-like function ϕ : v
→ c [-1,1] over the voxels v V in a volumetric grid,
where c can be viewed as the pseudo-distance of a voxel to
the visible boundary of underlying solid respected to the
point cloud P. The map ϕ represents confidence values which
is inside (negative) or outside (positive) of the unknown
watertight surface.

Its calculating is performed in a cumulative way. Simultaneous
to the sampling of depth snapshots, the value of confidence
map is updated when a new depth image is added. For the
k-th snapshots Ik, let dk(v) be the value to indicate whether
the voxel v is the distance between v and the ios-surface
(see Fig. 3). It is calculated by the following formula:

In Eqn. (2), the function ck(v) returns the first channel
value of the corresponding 2D pixel color of point v projected
in the k-th image. The value zk stands for the depth of v
computed by Eq. 1. Let m be the number of the sampling
images, the confidence map ö(v) is calculated as follow:

4.3. Data Cleaning
To obtain a well-defined confidence map, data cleaning

of point clouds is an essential pre-process step before that.
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Fig. 2. Illustration of method overview.
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When using optical scanning device, scanned data may contain
ghost aspects and incomplete parts as shown in Fig. 4. They
cause difficulties and unsatisfied results. Fortunately, a set of
2D depth image has been already captured. We apply following
image based operations to avoid above addressed problems.

Fake Points. Note that these fake points, which should
be discarded, can be well observed from depth snapshots.
We therefore paint all the pixels which correspond to fake
data in black. And simultaneously, corresponding points are
removed from the point set P. After that, we regenerate all
depth snapshots for the lack of sampling objects in reasonable
visible size. Here, notice that all the painted fake points in
the snapshots should be clearly observed and do not
occlude any actually data (see Fig 4).

Incomplete parts or holes. As the input points are
distributed sparsely in 3D space, pixels in depth snapshots
may be discontinuous, and may not group into regions (see
Fig. 4). Therefore, when processing snapshots Ii, we use an

additional rendering pass in the same view position to generate
a smoothed snapshots Id

i by increasing the point size, so as
to make continuous regions. We can cover all the small under
sampling parts simply by this method.

Regarding for large incomplete aspects or holes, following
operations are performed. As shown in Fig. 5, the foot part
of the baby model contains hole, where the sampling points
are unavailable. If it is not well fixed, the confidence map in
the next section will not be correctly calculated. Thus we
simply fill this hole in white color. To achieve this goal, the
region represent the hole is painted in white color, i.e. by
setting the confidence value to be 1. That means the distance
function dk(x) of the points projected into the region of hole
are not contributed to the D(x) in the k-th image. Although it
is a conservative estimation by doing so. The final confidence
values of these points, however, are corrected by other snapshots
from different view directions.

Topological correctness control. As mentioned above,
we covered all the small gaps in snapshots by increasing the
rendering point size directly. But sometimes, this straightforward
method may lead to merging of unexpected disconnected
regions. For this reason, we generate a binary image for each
depth snapshots by setting value 1 for these pixels with non
black color and 0 for black pixels. Then several steps of a
morphological dilation operator are performed to obtain a
visibility mask . In this step, some special tagged pixels may
be inserted into these binary images to constrain the dilation
regions (see Fig 4, the red pixels are tagged pixels).

4.4. Mesh extraction
The initial coarse mesh is extracted as the zero level-set

Fig. 3. Depth snapshots and confidence map. The dark gray region
H is a hole covered by the white color.

Fig. 4. Data cleaning for the terra-cotta warrior data.

Fig. 5. Fixing a hole in the rag baby model. The observed hole is painted with white color.
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of the confidence map. To generate this mesh, we employ a
marching cubes variant with a lookup table that resolves
ambiguous cases [24]. As we only need a mesh in low
resolution, the sampling voxel size can be relatively large.
This makes satisfied time and space efficiency at this stage.

5. Progressive Mesh Refinement

Once an initial mesh is obtained, the left issue is to
extracting geometry details from the original point cloud.
Inspired by previous surface based approaches, our solution
in principle is a data fitting one. That is to achieve low
approximating error as well as good shape quality. Precisely,
this optimization principle can be written as:

(4)

where Em is a distance measure to control reconstruction
precision, and Es is a smoothness term with weight w to
prevent self-intersection problem during fitting. However, the
optimization formulation is always non-linear and is seldom
in close form, i.e., the problem cannot be solved directly.
Further more producing high quality meshes are additional
requirement for solid modeling applications.

Based on above concerning, we propose an iterative algorithm
for detail extracting. The detailed pseudo code is listed in
Fig. 6. Decreasing Em is achieved in a greedy optimization
way. In each approximation iteration step, candidate vertices
are located at the positions where large local approximation
error are occurs. And then these vertices are inserted into the
target mesh to increase approximation accuracy. A successive
remeshing procedure is performed to provide good mesh
quality and to control sampling resolution.

5.1. Insert candidate vertices
In this paper, we utilize the Hausdorff distance function to

measure the errors between approximating mesh surface S
and the cleaned point cloud P’. That is

(5)

where dpi,f denotes the Euclidean distance between the point
pi and a triangle f of surface S.

According to the distance definition, we use following
procedure to find the candidate vertices to improve fitting
accuracy (please see Fig. 6). Firstly, for each point pi P’,
find the nearest face fj S, and calculate the distance value
dpi,fj. At the same time, the point pi is assigned as one of the
corresponding point of fj. Secondly, for each face fj S, find
the point pj with max distance value in all the corresponding
points of fj . Then the distance value is saved as the local
error ej of face fj and the point pj is stored as the target point
of fj. If there is no corresponding point for fj, the local error
εj is set to zero. Calculate the average local error ε. Finally,
insert a new vertex into the face fj if ε j > ε and move the
new generated vertex to the specific position.

As illustrated in Fig. 7, three situations will occur when
inserting new vertices. We call them: face subdivision, edge
cutting and vertex moving, respectively. The choice of splitting
operation depends on the distance between fj and its target
point pj. If the projection of pj onto the face fj is inside the
triangle fi, then face subdivision is applied. Otherwise,
calculated the distance dp,ek between pj to the edges ek (k =
a, b, c) of fj and the distance dp,vl between pj to the vertices
vl(l = a, b, c) of fj. If dp,ek < dp,vl, the edge cutting is applied,
otherwise we only move the vertex of fj, which is nearest to
the point pj.

The position of the new generated vertex vi is calculated
as follows:

(6)

where t is a tension parameter and k is the number of
adjacent vertices of vi. The new position of vi is determined
by two factors: (i) the position of its corresponding point pi;
and (ii) the affection from the adjacent vertices.

5.2. Remeshing
The above naive distance-based updating strategy can

only generate resultant meshes in low quality. The refinement
results are a little bit bumpy, and long thin triangles are
appeared because of the face spilt operations. Hence an
additional remeshing step is carried out after candidate vertices
are inserted in each updating cycle. The remeshing approach
we adopted is a variant implementation of [27]. Briefly
speaking, this remeshing technique is an iterative procedure.
In each processing pass, given a target length l, a remeshing
step consists of four consequent operations, namely OperatorS,
OperatorC, OperatorV and OperatorT respectively.

Em S P;( )+wEs S( )[ ]
S

lim  ,min

Em S P′,( ) min dp
i
, f{ }

pi P′∈

lim=max

∈
∈

∈
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k
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j 1=

k
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Fig. 6. The pseudo code of progressive mesh refinement.
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● OperatorS : For each edge e, if length(e) > 4/3 l, insert
the midpoint of e.

● OperatorC : For each edge e, if length(e) < 4/5 l,
collapse e to its midpoint.

● OperatorV : For each edge e, flip it if the average valence
of its four adjacent vertices (in its adjacent triangles) can
approach nearer to 6.

● OperatorT : For each vertex v, re-compute its position
on the surface by tangential smoothing.

In our approach, we use dynamic target edge length, 

(7)

with λk to be a tuning factor at k-th refinement pass for mesh
reconstruction. Let l0 be the average edge length of the
initial coarse mesh S0. Note that S0 is generated by the
marching cube. There are lots of long thin and zigzag
triangles on S0. Therefore l1 is chosen to be slightly longer
than l0 to achieve better mesh quality and smoothing effects
simultaneously. In our experience, λ1= 1.2 is appropriate.
And in the successive several passes, ¸k is set to be 1.0 until
the error value is stable. The major motivation is based on
the observation that the distance between refined mesh Mk

and target data points is quit large in the first several passes.
Then we turn to choose λ1 [0.7, 1.0) to achieve higher
mesh resolutions.

One crucial issue in the remeshing algorithm is the
topology preserving. When “OperatorC” is applied in refinement
procedure, it may potentially change the genus of shape and
produce degenerate connectivity. Therefore, an addition
function for connectivity checking is applied before performing
the “OperatorC” in our implementation.

The coupling of mesh refinement and remeshing implies
a mesh surface fitting procedure indeed. The mesh refinement
part takes care of position constraints. While the remeshing
step provides the smoothing function to prevent ugly approximated
meshes. In addition, the sampling resolutions of meshes are
well controlled by remeshing.

Although the remeshing step may slightly increase the
approximate error mainly due to the “OperatorT”. The trend
of the whole process will still decrease error E gradually. In
our approach, a new surface is generated after each refinement
pass. At last, besides the final reconstructed surface, we can
obtain a series of well constructed meshes in different resolutions.

6. Implementation and Results

We have performed our method on several challenging
point cloud data (e.g. Fig. 8, 9, 10 and 11). We also scanned
two models, the warrior (Fig.1) and the rag baby model
(Fig.12) for testing the robustness of our proposed algorithm
by using a FastSCAN hand-held laser scanner. 

In all our experiments, the resolution of depth snapshots

lk λklk 1– k, 1 2 …, ,= =

∈

Fig. 7. Insert candidate vertices.

Fig. 8. Happy Buddha.

Fig. 9. Dragon.
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is 800 × 600 to capture thin or flam features in point clouds.
The confidence map is defined in the cube [-1,1]3 and the
sampling step is set to be 0.02 unit along each axis. 

The statistic data are listed in Table 1. All the experimental
data were collected on a PC equipped with Dual Intel Xeon
2.4 GHz CPU processor and 3 GB memory. In Table 1, it
can be observed that the running time of Phase I mainly
depend on the number of depth snapshots due to the unified
rasterization resolution. This feature enables us to process
huge data efficiently.

In Phase II (cf. Table 1), our approach normally consumes
much longer time for later several passes, since the resolutions
of approximating meshes are increase. To overcome this
problem, a local updating trick can be used in our remeshing
procedure. That is we only perform remeshing around nearby
regions where triangles are recently refined. By using this
implementation trick, the whole processing time in our
experience is nearly half of the global remeshing version.
But results will be slightly worse than global updating version
both in mesh smoothness and topological connectivity. A
result comparison is demonstrated in Fig. 8.

Our presented results exhibit the abilities of our robust
reconstruction method. In Figs. 1, 8, 9 and 10, models are in
high shape complexity and full of details. These models can
be reconstructed by using moderately number of depth snapshots.

Meanwhile the final accurate outputs are in high quality in
terms of evenly sampling and near regular connectivity, as
illustrated in Fig. 9. Therefore the outputs of our approach
can be directly utilized in various computer graphics applications,
such as differential mesh modeling [30] and point-based
graphics.

In all our examples, data details are precisely recovered in
an evolution manner. For example, in Fig. 10, acetabula of
the octopus are appeared gradually when reconstruction
resolution is increased. Reconstructing leg ends of the octopus
and horns of the dragon are not easy for some other methods.

Comparing with stat-of-the-art reconstruction algorithms,
our algorithm still shows outstanding performance. Fig. 11(a)
demonstrates a comparison with the Poisson surface reconstruction
(PSR) algorithm [19], one of the best volumetric approaches

Fig. 10. Octopus.

Fig. 11. Algorithm comparisons of the Greek data. (a) The left image is the original scanned data. The middle image is our reconstructed
result, and the right one is obtained by Poisson surface reconstruction. (b) The left model is reconstructed by the tight cocone algorithm. And
the right one is our reconstruct result.

Fig. 12. The rag baby model. The upper row shows the scanned
point clouds viewed from front and left-side, respectively. The
lower row shows the reconstructed surface.



Hongxin Zhang et al. A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds 110

developed recently. In this example, we use default parameters
for PSR and no additional normal information are provided.
It is obvious that our reconstructed result (the middle image
of Fig. 11(a)) contains more details than [19] (the left image
of Fig. 11(a)). The major reasons are PSR requires initial
estimation of surface orientation and it contains a PDE based
optimization procedure to diffuse normal deviations. We also
compared our algorithm with the tight cocone (TC) [12], a
typical Voronoi-based approach. As illustrated in Fig. 11(b),
the result generated by TC (the left image) still contains
topological failures (below the chin) even the input data are
quite clean. While our algorithm produces correct result (the
right image of Fig. 11(b)) due to the visibility-based reconstruction
strategy.

The terra-cotta warrior (Fig. 1) and the rag baby model
(Fig. 12) demonstrate the ability of data repairing. To guarantee
the result surface to be manifold, we fix the holes and discard
all fake points during the depth sampling step. In Fig 1, the
base plat and several insufficient sampled part of the warrior are
well repaired, and unnecessary parts are discarded. Regarding
for the rag baby model illustrated in Fig. 13, the inner side
of the stick is unreachable by our hand-held laser scanner.

7. Discussion and Future Work

In this paper, a hybrid approach is presented for reconstructing
surfaces from unorganized points without knowing surface
orientation information. Actually, two sampling strategies are
seamlessly coupled in our approach. In the first phase,
uniform sampling based on visibility ensures correct surface
topology and implicitly provides robust surface orientation
estimation. User interactions are also able to be conveniently
performed for data repairing in this stage. In the second
phase, an area-equalizing surface sampling is carried out,
which is guided by surface distance measure. Therefore high
quality mesh surfaces with elaborate details are well recovered.

Our method is limited in recovering visible parts of a
closed object, which is identical to the human's perception
of what a surface is in most cases. As mentioned in Section
4.1, our sampling principle is to cover all visible parts of
input data. However, this rule may not work well if we
merely move and rotate a virtual camera on the bounding
sphere of a complex model with invisible parts, e.g., a
seashell. In this situation, a possible solution is to divide a
given point cloud into several parts, then to treat them
separately, and finally combing separated parts.

Several adaptive strategies may be useful to enhance the
ability of our reconstruction approach. The adaptively sampled
distance fields [15] can be used instead of the uniformly
sampling in Phase I. And also, an adaptively remeshing
method may be adopted according to specific properties of
the input point clouds, such as sharp features and/or curvature
measure. This improvement can reduce the number of triangles.
To achieve even higher reconstruction quality, we tested a
MLS projection technique for extracting details, which is
similar to the final projection step addressed in [29]. It is
promising direction to combine local surface fitting for the
purpose of denoising. In addition, the Edge-sharpener technique
[4] can be integrated into the mesh refinement procedure to
enhance features.
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