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Abstract. In this paper, we propose a novel mesh deformation approach via ma-
nipulating differential properties non-uniformly. Guided by user-specified mate-
rial properties, our method can deform the surface mesh in a non-uniform way
while previous deformation techniques are mainly designed for uniform mate-
rials. The non-uniform deformation is achieved by material-dependentgradient
field manipulation and Poisson-based reconstruction. Comparing with previous
material-oblivious deformation techniques, our method supplies finer control of
the deformation process and can generate more realistic results. We propose a
novel detail representation that transforms geometric details between successive
surface levels as a combination of dihedral angles and barycentric coordinates.
This detail representation is similarity-invariant and fully compatible with ma-
terial properties. Based on these two methods, we implement a multiresolution
deformation tool, which allow the user to edit a mesh inside a hierarchy in a
material-aware manner. We demonstrate the effectiveness and robustness of our
methods by several examples with real-world data.

1 Introduction
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Fig. 1. Mesh deformation with non-uniform control. (a) is the original model; (b)is the color plot
of user-specified materials, the green region is the handle and the blue region is the constraint; (c)
and (d) are results generated with and without non-uniform control respectively; (e) is the result
generated with the non-uniform propagation but with the uniform reconstruction.

Mesh deformation has been widely studied in computer graphics. Most existing tech-
niques, such as freeform deformations, multiresolution techniques and recently intro-
duced differential domain methods are mainly designed to propagate the deformation
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imposed by the user evenly into the influence region uniformly. However, real world ob-
ject often contains parts with different materials. Given outside forces, for a certain part
how it deforms is determined by its corresponding material properties. Using material-
oblivious deformation techniques to edit objects with non-uniform material properties
often produces implausible results with unnatural shape artifacts.

In this paper, we present a novel mesh deformation techniquethat allows the surface
mesh to be deformed in a non-uniform way. It is based on material-dependent Pois-
son equations and supplies non-uniform controls in both thepropagation process and
the reconstruction process. The user is involved into the deformation process by set-
ting material properties to indicate non-uniform regions while the rest takes the default
value. These user-specified material properties guide the propagation of local trans-
formations as well as the reconstruction to absolute coordinates. Our method inherits
the advantages of differential domain methods and providesmore flexible control of
the deformation process. In particular, surface details can be well preserved during the
deformation, and in a material-aware manner.

To facilitate the editing of large meshes, we further extendour non-uniform deformation
technique into a multiresolution version. Multiresolution techniques have been proved
to be powerful to process gigantic models. However, lack of material-dependent mech-
anism prevents existing multiresolution deformation approaches to be adapted for our
purpose. Instead we propose a novel detail representation that transforms geometric de-
tails between successive surface levels as a combination ofdihedral angles and barycen-
tric coordinates. This detail representation is similarity-invariant while existing repre-
sentations, such as local frame displacements [1–3] and displacement volumes [4], are
rigid-invariant. More importantly, the similarity-invariant detail representation is fully
compatible with material properties. Based on it, the user can edit the simplified base
mesh with our single-resolution non-uniform editor and obtain the detailed result auto-
matically.

The rest of this paper is organized as follows. After briefly reviewing the prior arts with
a focus on multiresolution techniques and differential domain methods in Section 2, we
present the non-uniform deformation technique in Section 3. In Section 4 we elaborate
how to perform non-uniform deformations in the multiresolution context. We demon-
strate that more realistic results can be generated with thehelp of material properties in
Section 5. Finally, we draw conclusions and point out possible future work in Section 6.

2 Related Work

Our approach builds on recently introduced differential domain methods [5] that repre-
sents surface details as differential properties. These approaches manipulate differential
properties and reconstruct vertex coordinates via solvinga sparse linear system. They
have a valuable feature that geometric details can be well-preserved during the edit-
ing process. Since differential properties are only translation-invariant, they must be
properly transformed according to user interactions. The determination of local trans-
formations can be achieved by either explicit interpolation [6–8] or implicit fitting [9].
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Zhou et al. [10] extend the Laplacian coordinates to the volumetric graph to address
problems with large mesh deformations. However, all of these approaches regard the
edited mesh to be made up of a uniform material, thus lacking of additional control
of the deformation process. Based on this observation, we extend differential domain
methods to supply position-dependent control by incorporating user-specified material
properties.

In the context of boundary constraint modeling, Botsch and Kobbelt [11] propose a
freeform modeling framework based on a family of linear differential equations. They
point out that the deformation in certain direction can be enhanced by explicitly shrink-
ing the underlying parameter domain in the same direction, which affects the discretiza-
tion of Laplacian operator consequently. Our method achieves more general control of
the deformation by allowing the user to specify per-face material properties, which im-
plicitly modifying the domain mesh in a non-linear manner. Material properties have
also been considered by Popa et al. [12] to control the propagation of local transfor-
mations. Our method differs in the way that we also consider material properties in the
reconstruction process (See Figure 1).

Multiresolution technique has been introduced into computer graphics community for
more than ten years [13]. Some approaches depend on semi-regular meshes [1] while
others work on irregular meshes directly [2, 3, 11]. Most multiresolution editing tech-
niques manipulate a static surface hierarchy, but vertex connectivity of the base sur-
face [14] or the hierarchy itself [15] can also be dynamically rearranged during large
deformations. These approaches share a common aspect that geometric details between
successive levels are encoded as local frame displacements. These displacements can
be scalars along the normal directions [16] or vectors [1–3]. Since local frame dis-
placements are handled individually, the reconstructed detailed surface may have unnat-
ural volume changes when the base surface endures large deformations. Consequently,
Botsch and Kobbelt [4] propose to use displacement volumes [4] instead. Displacement
volumes are kept locally constant during the reconstruction process to preserve volume
and avoid local self-intersections. However, both local frame displacements and local
volumes do not support material-dependent reconstructions, making us exploring a new
detail representation.

3 Mesh Editing with Non-uniform Control

Previous differential domain methods deform surfaces in a material-oblivious way. In
this section, we present how to enhance these techniques by incorporating user speci-
fied non-uniform materials. With the non-uniform control mechanism, the deformation
process can be tuned in a finer granularity than previous differential domain methods.
Therefore, more realistic results can be generated easily.
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3.1 Material-Dependent Poisson Equation

A simple form of Poisson equation have been successfully applied to the context of
mesh editing [6]. In physics a more general form of this elliptic equation is used to
describe the phenomena of steady-state heat conduction in a3D solid medium. Com-
monly, the exact form in 3D Euclidian space is

∆κ T =
∂
∂x

(

κx
∂T
∂x

)

+
∂
∂y

(

κy
∂T
∂y

)

+
∂
∂ z

(

κz
∂T
∂ z

)

= −qv. (1)

HereT is a steady-state temperature field,qv is the source term in the interior. Andκx, κy

andκz are speed functions, namely thermal conductivities along three axial directions.
Therefore, different solid medium result different steady-state temperature fields even
under the same set of boundary conditions. This basic observation motivates us to use
material-dependent control for differential mesh editing.

In this paper we only consider isotropic materials, i.e,κx = κy = κz = κ . Whenκ is con-
stant, Eq. (1) describes a uniform material case which is applied in [6]. In the following
we explore the Poisson equation defined on surfaces with non-uniform materials, and
the thermal conductivityκ is a scalar field on manifold surface.

Since we adopt triangle meshes as the underlying surface representation, we have to
discretize material-dependent differential operators on2-manifold meshes. For this pur-
pose, we first briefly review the uniform case, i.e., the standard differential operators
used in [6]. Given a piecewise linear scalar fieldf (v) = fiφi(v) defined on a 3D mesh,
the gradient operator is defined as∇ f (v) = fi∇φi(v), wherefi is the scalar value on ver-
tex vi, φi(v) is the piecewise linear basis and∇φi(v) is its gradient. Given a piecewise
constant vector fieldw, the divergence of the vector fieldw is defined as

∇ ·w(vi) = ∑
T∈NT (vi)

AT ∇φ T
i ·w, (2)

whereNT (vi) is the adjacent triangle set of the vertexvi andAT is the area of the triangle
T . Combining the gradient operator and the divergence operator, we get the Laplacian
operator

∆ f (vi) =
1
2 ∑

j∈Nv(vi)

(cotαi j +cotβi j)( fi − f j), (3)

whereNv(vi) is the adjacent vertex set of the vertexvi, αi j andβi j are two opposite
angles of the edge(vi,v j).

Now we extend the above procedure to the material-dependentcase. We assume that the
material propertyκ is a piecewise constant function i.e.,κ ≡ κT in a triangleT . Note
that the thermal conductivity terms are attached after firstpartial differential operator
in Eq.1. We thus define material-dependent gradient of basisφi(·) asκT ∇φ T

i . In other
words, the gradient of the pieces linear basis is resized according to its material property.
Then we can represent the material-dependent divergence operator as

∇κ ·w(vi) = ∑
T∈NT (vi)

κT AT ∇φ T
i ·w, (4)
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and the material-dependent Laplacian operator as

∆κ f (vi) =
1
2 ∑

j∈Nv(vi)

(κ2
j−1cotαi j +κ2

j cotβi j)( fi − f j). (5)

Given the guidance fieldw and boundary conditionsfi = f ∗i ,vi ∈ ∂Ω , we get the
material-dependent Poisson equations:

∆κ f = ∇κ ·w. (6)

3.2 Non-uniform Propagation

To ensure visually desirable deformation results, local transformations imposed by user
interactions must be propagated (weighted with a fall-off function) into the region of in-
terest (ROI) smoothly. Inspired by [7], we consider the material-dependent propagation
as a analogy of the heat conduction in a non-uniform medium. Here, material prop-
erties are interpreted as their thermal conductivity. The scalar field functionf guided
the propagation process can be computed by the following material-dependent Laplace
equation:

∆κ f = 0, (7)

where∆κ is material-dependent Laplacian operator (See Eq. 5).

Actually, the propagation fieldf is equivalent to the steady-state temperature field with
boundary temperatures set to be 1 on handle vertices and 0 on constrained vertices.f is
also the minimizer of the following energy function:

min
f

∫

Ω
‖κ(ω)∇ f‖2dω, (8)

whereκ(ω) is the user-specified material property as thermal conductivity. Intuitively,
if the user wants to keep some regions as rigid as possible, he/she can set the material
properties of these regions with a large value. On the contrary, if the user expects certain
regions to be freely deformed, he/she can set them with a small value.

After the propagation fieldf is solved, we use it as the fall-off function to weight
local transformations. For rotation transformation, we use f to multiply the rotation
angle while for scaling transformation, we adoptf to linearly interpolate between the
scaling ratior and 1 (no scale). Then we combine these local transformations together
according to the user-selected transformation option.

3.3 Non-uniform Reconstruction

The propagation process assigns a local transformation to each triangle and we obtain
guidance vectors by applying it to original gradient vectors. Unlike [6], we consider
material properties in the reconstruction process as well.The Poisson mesh solver used
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in [6] can be regarded as a special case of our material-dependent one. Our method is
equivalent to the minimization of the following energy:

min
f

∫

Ω
κ2(ω)‖∇ f −w‖

2
dω. (9)

Note that the material-dependent Laplacian operator (cf. Eq. 5) defined on a domain
meshM with a non-uniform material can be regarded as a standard one(cf. Eq. 3)
defined on another domain meshM

′
with a uniform material. The relationship between

M andM
′
lies in for each edge(vi,v j), the following equation is satisfied:

κ2
j−1cotαi j +κ2

j cotβi j = cotα
′

i j +cotβ
′

i j. (10)

From this aspect, we can think of that material properties act as the modifying factors
of the original domain meshM.

3.4 The User Interface

We adopt the handle-based editing metaphor. During editing, the user selects the region
of interest (ROI) and deforms the mesh by manipulating a small region inside the ROI,
called handle. The user manipulates the handle with a 9 degree-of-freedom manipulator.
Besides this editing interface, we design a simple pick-and-drag interface that only takes
the pure translation of the handle as the input. In addition,user can paint different parts
of ROI with different colors that represent corresponding materials. After the user drags
the handle, our method automatically induces the necessaryrotation and scaling for the
ROI as well as the handle itself.

EC H

H'

D

Fig. 2. Illustration of the determination of local transformations from the handle movement.

The basic idea of determining the rotation and scaling from the handle movement comes
from the Hermite interpolation, as shown in Figure 2. LetC denotes the center of the
boundary connecting constrained vertices and free vertices, H denotes the center of
handle vertices andH

′
denotes the new center of handle vertices after translation. Note

that the three pointsC, H andH
′
can uniquely determine a plane provided they are not

degenerate. The rotation axisa can be easily determined by the cross product of two

vectors
−→
HC and

−−→
H

′
C. The scaling factors is defined to be the ratio between the length
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of
−−→
H

′
C and that of

−→
HC. The left problem is to define the rotation angle. We consider

the circle passing through two pointsC and H
′

and tangent to the vector
−→
HC at the

pointC. Then, we define the rotation angleθ to be 6 (HEH
′
), where the pointE is the

intersection of the line
−→
HC and the perpendicular bisector of the line

−−→
H

′
C. Actually,

the angleθ is twice the angle6 (HCH
′
). Therefore, we do not need to construct the

circle at all. Provided the three pointsC, H andH
′
are coplanar, we simply ignore the

rotation transformation. We supply several options to support different combination of
these local transformations. These estimated local transformations are propagated into
the ROI (See Section 3.2) to generate guidance fields and the deformed surface mesh is
reconstructed with Poisson equations (See Section 3.3).

4 Multiresolution Non-uniform Editing

The multiresolution paradigm is an efficient way to deforming large meshes with com-
plex geometric details. Typically, a multiresolution editing framework consists of three
major components - the decomposition component, the reconstruction component and
the deformation component. Since the non-uniform control of mesh deformation is the
focus of this paper, in this section we show how to achieve this goal in the multires-
olution scenario. Note that the decomposition component isindependent to material
properties as a pre-processing step while the rest two are material-dependent.

4.1 Mesh Decomposition and Detail Encoding

Aiming at editing large meshes, we employ the Progressive Mesh (PM) [17] to rep-
resent the surface hierarchy. A PM is created by recursivelyapplying edge-collapse
operations to a detailed input mesh. In a PM representation,the edge-collapse and the
vertex-split are atomic operations for the decomposition component and the reconstruc-
tion component respectively. Note that in both operations,only the central one or two
vertices’ coordinates are modified while all the rest do not change their position. This
observation is particularly important since it allows us tolocalize the detail encoding
and decoding procedures only with respect to the local stencil of a given edge.

After the surface hierarchy is created, geometric details between successive levels need
to be encoded. Geometric details are typically defined as thedifference between the
original geometry and the approximated smoothed geometry.We consider the mem-
brane surface as the smoothed approximation, which can be obtained by solving a
Laplace equation defined on the local stencil of the given edge e, denoted asL(e)
with Dirichlet boundary conditions given by vertex coordinates on the boundary∂L(e).
Since only two free vertices in the local stencil, the corresponding Laplace equation is
a linear system with two equations:

[

a b
b c

][

v1

v2

]

=

[

u1

u2

]

, (11)
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wherea, b, c come from Eqn. 3 andu1 andu2 are boundary conditions.

We adopt the original geometry to define the Laplacian operator so that we can smooth
the geometry without affecting the underlying parameterization [18]. The correspond-
ing weights used to define the Laplacian operator can be stored or computed on the
fly, trading off speed versus memory. After the smoothed approximation is solved, we
define the detail coefficients between a pair of triangles coming from the original geom-
etry and the smoothed approximation respectively (see Figure 3).

Generally speaking, locating one detail triangleT1 = (w1,w2,w3) with respect to the
corresponding base triangleT2 = (v1,v2,v3) can be decomposed into two steps, which
are summarized by nine independent parameters(x,y,z,θ1,θ2,α1,β1,α2,β2) (See Fig-
ure 3). The first step aligns the vertexw1 to the vertexv1 and the offset vector is(x,y,z).
The second step rotates the triangleT1 along the axisdir defined by the cross product
of the normal vectorn2 andn1 so that both triangles are co-planar. The rotation angle
θ1 is equivalent to the dihedral angle between the two triangles. For the sake of the
reconstruction process, we need to encode the axisdir with respect to the base triangle
as well. Since the vectordir is co-planar with the base triangleT2, it can be located by
rotating the vectorv2− v3 around the axisn2 with a rotation angleθ2. After the sec-
ond step, we get the rotated detail triangleT

′

1 = (w
′

1,w
′

2,w
′

3) that lies in the same plane
with triangleT2. Now we can record the coordinates of verticesw

′

2 andw
′

3 with re-
spect to the triangleT2 = (v1,v2,v3) and results in the rest four barycentric coordinates
(α1,β1,α2,β2).

dir1
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2
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w
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n
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2
T

(a) (b) (c)
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Fig. 3. Encoding a detail triangleT1 w.r.t. a base triangleT2.

Actually, since our reconstruction method can automatically determine the position
of the detailed triangle from the base one, we do not need to record the offset vec-
tor (x,y,z). Therefore, our similarity-invariant detail coefficientsconsist of the rest six
parameters(θ1,θ2,α1,β1,α2,β2).

4.2 Detail Reconstruction

After the user performs a material-dependent deformation on a base mesh, we need
to reconstruct pre-recorded geometric details with respect to user-specified material
properties. There are two issues concerning material-dependent detail reconstruction
process. The first one is that material properties specified on the low-resolution mesh
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should be up-sampled. The second one is each refinement step should take the (up-
sampled) material properties into account. We present our solutions in the following
paragraphs in details.

Specifically, after a vertex-split operation is performed,we immediately up-sample the
material properties. The material property of a newly-split triangle is set to be the
weighted average of its adjacent triangles. We adopt the invert-distance as the weighting
scheme. Then, a three-step reconstruction process is employed to reconstruct geomet-
ric details from previously encoded detail coefficients. The first step is to generate the
approximated smoothed geometry by material-dependent Laplace equation(Eqn. 11)
with new Dirichlet boundary conditions given by the deformed base surface. Now we
can retrieve the detail triangles from the corresponding base triangles one-by-one. In
fact, the second step is carried out in the reverse order of the encoding process. First,
we determine the intermediate detail triangleT

′

1 = (w
′

1,w
′

2,w
′

3) using the barycentric
coordinates(α1,β1,α2,β2) with respect to the base triangleT2 = (v1,v2,v3). Note that
the vertexw1 is superposed on the vertexv1. Then, the axisdir is obtained by rotating
the vectorv2−v3 around the axisn2 with the rotation angleθ2. Finally, the intermediate
detail triangleT

′

1 is rotated around the axisdir with the rotation angle−θ1, resulting in
the detail triangleT1.

Since the detail triangles have been extracted from the corresponding base triangles
independently, the third step is to glue them together and generate the consistent vertex
position for the central two vertices come from the vertex-split operation. To serve
for the purpose, a local material-dependent Poisson equation is employed. We gather
gradient vectors from broken detail triangles as the guidance field, which determines
the vertex position together with the new boundary conditions:

[

aκ bκ
bκ cκ

][

v1

v2

]

=

[

u
′

1 +w1

u
′

2 +w2

]

, (12)

whereaκ , bκ andcκ come from Eqn. 5,u
′

1 andu
′

2 are new boundary conditions,w1 and
w2 are the material-dependent divergence of vertexv1 andv2 respectively.

Although multiresolution techniques [3] have been employed in the Poisson-based mesh
solver [6] for acceleration, our framework differs in the way that it can automatically
adapt geometric details to a scaled base surface via incorporating similarity-invariant
detail representation. Moreover, our detail reconstruction method is particularly suit-
able to material-dependent multiresolution editing whileprevious methods are gener-
ally difficult for this purpose.

5 Results and Discussions

Based on techniques presented in Section 3 and Section 4, we implement a multiresolu-
tion editing tool for surface meshes. It can work on the single-resolution mode as well
as the multi-resolution mode. Our editing tool can run interactively for moderate models
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with around 20k vertices in the single-resolution mode. In the multi-resolution mode,
comparing with local frame displacements, our material-aware detail-reconstruction
runs about 10-20% slower.

When editing CAD models, material properties can help certain feature regions to be
better preserved. Figure 1(c) demonstrates such a task. Thecentral feature region of the
Mechpart model need to be preserved during the resizing of the main body. We achieve
this goal by painting these feature regions with a large material valued 5 and perform
non-uniform deformation with our technique.

Changing the value of material properties can lead to different deformation effects under
the same user interaction. Figure 4 demonstrates several results obtained with different
material settings. The default value of material properties is set to 1 and we have found
the range[1,5] is enough to simulate most of real world material-dependentdeforma-
tions. We incrementally paint material properties on the crus part and the foot part with
the value 2, and on the thigh part with the value 5. At the same time, we get more and
more realistic results as shown in Figure 4 (b), (c) and (d).

(a) (b) (c) (d)

Fig. 4. Deforming the right leg of the Man model with different material settings.

Figure 5 illustrates and compares results obtained with different detail representations.
We simplify the Elephant model (Figure 5 (a)) and reconstruct geometric details from
a uniformly shrunken base mesh (Figure 5 (b)). This experiment is fairly simple, but
we can clearly distinguish the difference between the result generated with our method
(Figure 5 (c)) and that with local frame displacement (Figure 5 (d)). Note that fine de-
tails around the elephant’s ear are not well-preserved in Figure 5(d) due to the lack of
adaptation to arbitrary scaling. We also try to do some experiments, helping local frame
displacements to adjust automatically. One such attempt isto resize displacements ac-
cording the square root of the ratio between the area of the original base mesh and that
of the deformed one and we call itthe global adjustment. As shown in Figure 5 (e), we
note the Elephant’s ear is still disturbed. The other attempt is similar to the first one,
but the area considered here is confined to the local stencil and that is the reason for its
name -the local adjustment. However, this modification does not work as well (Figure 5
(f)). Figure 5 (c), (d), (e) and (f) are zoomed in two times forbetter visualization.
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(a)

(b)

(c) (e)

(d) (f)

Fig. 5. The ability of similarity-invariance is over-looked in existing detail representations.

(a) (b) (c) (d)

Fig. 6. After applying three non-uniform deformations, the Armadillo model (a)is now ready to
kick a soccer (b). (d) is the visualization of material properties on the detailed mesh, which are
automatically up-sampled from material properties specified by the user on the base mesh (c).

Figure 6 shows the Armadillo model kicking a soccer, which isgenerated with the
multiresolution editing mode. We decimate the original model (170k vertices) to a sim-
plified version (15k vertices). We perform three non-uniform edits on the both hands
and the right leg of the simplified model. The detailed editedversion is automatically
reconstructed by our tool with the help of similarity detailcoefficients and material
properties. See our video submission for the whole editing process.

6 Conclusions and Future Work

In this paper, we propose a novel technique to deform the surface mesh non-uniformly
by incorporating user-specified material properties. Thisgoal is achieved by overload-
ing previous material-independent discrete differentialoperators and Poisson equations.
Moreover, we allow multiresolution mesh editing in a material-aware manner by incor-
porating a novel similarity-invariant detail representation. Several real world examples
demonstrate that plausible material-dependent deformation results can be generated by
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our method easily. As pointed out in Section 3.3, designing atailored domain mesh for
a specific deformation task is a valuable research direction.
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3. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In:
Proceedings of ACM SIGGRAPH 1999, ACM Press (1999) 325–334

4. Botsch, M., Kobbelt, L.: Multiresolution surface representation based on displacement vol-
umes. Computer Graphics Forum (Eurographics 2003)22(3) (2003) 483–491

5. Sorkine, O.: Laplacian mesh processing. In: Eurographics 2005STAR report. (2005)
6. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-

based gradient field manipulation. ACM Trans. Graph.23(3) (2004) 644–651
7. Zayer, R., R̈ossl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation.

Comput. Graph. Forum24(3) (2005) 601–609
8. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for

meshes. ACM Trans. Graph.24(3) (2005) 479–487
9. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface
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