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Abstract. In this paper, we propose a novel mesh deformation approach via ma-
nipulating differential properties non-uniformly. Guided by user-gjeet mate-

rial properties, our method can deform the surface mesh in a noaromifiay
while previous deformation techniques are mainly designed for unifoatem
rials. The non-uniform deformation is achieved by material-depergieaient
field manipulation and Poisson-based reconstruction. Comparing witiopse
material-oblivious deformation techniques, our method supplies fingralof

the deformation process and can generate more realistic results. Yesera
novel detail representation that transforms geometric details betweeessive
surface levels as a combination of dihedral angles and barycentnidicates.
This detail representation is similarity-invariant and fully compatible with ma-
terial properties. Based on these two methods, we implement a multiresolutio
deformation tool, which allow the user to edit a mesh inside a hierarchy in a
material-aware manner. We demonstrate the effectiveness andnessisf our
methods by several examples with real-world data.

1 Introduction
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Fig. 1. Mesh deformation with non-uniform control. (a) is the original model;jgtihe color plot

of user-specified materials, the green region is the handle and the fiae i®the constraint; (c)
and (d) are results generated with and without non-uniform contrpeisely; (e) is the result
generated with the non-uniform propagation but with the uniform recactsn.

Mesh deformation has been widely studied in computer geapiilost existing tech-
niques, such as freeform deformations, multiresoluti@hnéues and recently intro-
duced differential domain methods are mainly designed opagate the deformation



imposed by the user evenly into the influence region unifpriibwever, real world ob-

ject often contains parts with different materials. Givertside forces, for a certain part
how it deforms is determined by its corresponding materiapprties. Using material-
oblivious deformation techniques to edit objects with nmiform material properties
often produces implausible results with unnatural shafiaets.

In this paper, we present a novel mesh deformation techrtltateallows the surface
mesh to be deformed in a non-uniform way. It is based on natddpendent Pois-
son equations and supplies non-uniform controls in bottpthpagation process and
the reconstruction process. The user is involved into tHera®tion process by set-
ting material properties to indicate non-uniform regiortsle/the rest takes the default
value. These user-specified material properties guide ibgagation of local trans-
formations as well as the reconstruction to absolute coatds. Our method inherits
the advantages of differential domain methods and providese flexible control of
the deformation process. In particular, surface detaitsbeawell preserved during the
deformation, and in a material-aware manner.

To facilitate the editing of large meshes, we further extemdnon-uniform deformation
technigue into a multiresolution version. Multiresolutitechniques have been proved
to be powerful to process gigantic models. However, lack afemal-dependent mech-
anism prevents existing multiresolution deformation aphes to be adapted for our
purpose. Instead we propose a novel detail representaairansforms geometric de-
tails between successive surface levels as a combinataihedral angles and barycen-
tric coordinates. This detail representation is simijaiitvariant while existing repre-
sentations, such as local frame displacements [1-3] apthdsment volumes [4], are
rigid-invariant. More importantly, the similarity-inviant detail representation is fully
compatible with material properties. Based on it, the useredit the simplified base
mesh with our single-resolution non-uniform editor andamibthe detailed result auto-
matically.

The rest of this paper is organized as follows. After briedlyiewing the prior arts with
a focus on multiresolution techniques and differential donmethods in Section 2, we
present the non-uniform deformation technique in Sectidn $ection 4 we elaborate
how to perform non-uniform deformations in the multiresmo context. We demon-
strate that more realistic results can be generated witheheof material properties in
Section 5. Finally, we draw conclusions and point out pdssikiure work in Section 6.

2 Redated Work

Our approach builds on recently introduced differentiahdm methods [5] that repre-
sents surface details as differential properties. Thegmaphes manipulate differential
properties and reconstruct vertex coordinates via solaisgarse linear system. They
have a valuable feature that geometric details can be wedigoved during the edit-
ing process. Since differential properties are only trathsh-invariant, they must be
properly transformed according to user interactions. Téterdnination of local trans-
formations can be achieved by either explicit interpola{®-8] or implicit fitting [9].



Zhou et al. [10] extend the Laplacian coordinates to the meliic graph to address
problems with large mesh deformations. However, all of ¢hagproaches regard the
edited mesh to be made up of a uniform material, thus lackirgdditional control
of the deformation process. Based on this observation, wenexifferential domain
methods to supply position-dependent control by inconagauser-specified material
properties.

In the context of boundary constraint modeling, Botsch athb€lt [11] propose a
freeform modeling framework based on a family of linearatifntial equations. They
point out that the deformation in certain direction can bleagrted by explicitly shrink-

ing the underlying parameter domain in the same directitnichvaffects the discretiza-
tion of Laplacian operator consequently. Our method a@sienore general control of
the deformation by allowing the user to specify per-faceamal properties, which im-

plicitly modifying the domain mesh in a non-linear mannesatktial properties have
also been considered by Popa et al. [12] to control the pijmyof local transfor-

mations. Our method differs in the way that we also considatennal properties in the
reconstruction process (See Figure 1).

Multiresolution technique has been introduced into corapgtaphics community for
more than ten years [13]. Some approaches depend on saumtasregeshes [1] while
others work on irregular meshes directly [2, 3, 11]. Most tinesolution editing tech-
nigues manipulate a static surface hierarchy, but vertewectivity of the base sur-
face [14] or the hierarchy itself [15] can also be dynamicadlarranged during large
deformations. These approaches share a common aspecatonatic details between
successive levels are encoded as local frame displacenTématse displacements can
be scalars along the normal directions [16] or vectors [1S&)ce local frame dis-
placements are handled individually, the reconstruct¢aildd surface may have unnat-
ural volume changes when the base surface endures largendgifins. Consequently,
Botsch and Kobbelt [4] propose to use displacement voludiesgtead. Displacement
volumes are kept locally constant during the reconstraqtimcess to preserve volume
and avoid local self-intersections. However, both locahfe displacements and local
volumes do not support material-dependent reconstrigstinaking us exploring a new
detail representation.

3 Mesh Editing with Non-uniform Control

Previous differential domain methods deform surfaces iragenal-oblivious way. In
this section, we present how to enhance these techniquegbsporating user speci-
fied non-uniform materials. With the non-uniform controlehanism, the deformation
process can be tuned in a finer granularity than previousréifitial domain methods.
Therefore, more realistic results can be generated easily.



3.1 Material-Dependent Poisson Equation

A simple form of Poisson equation have been successfulljieappo the context of
mesh editing [6]. In physics a more general form of this &lligquation is used to
describe the phenomena of steady-state heat conductioBnsalid medium. Com-
monly, the exact form in 3D Euclidian space is
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HereT is a steady-state temperature figjglis the source term in the interior. Amg, ky
andk; are speed functions, namely thermal conductivities albnegtaxial directions.
Therefore, different solid medium result different steatigte temperature fields even
under the same set of boundary conditions. This basic ois@nvmotivates us to use
material-dependent control for differential mesh editing

In this paper we only consider isotropic materials, k6= Ky = Kz = K. Whenk is con-
stant, Eq. (1) describes a uniform material case which ifiexpm [6]. In the following
we explore the Poisson equation defined on surfaces wittundarm materials, and
the thermal conductivityk is a scalar field on manifold surface.

Since we adopt triangle meshes as the underlying surfacesemtation, we have to
discretize material-dependent differential operator&-omanifold meshes. For this pur-
pose, we first briefly review the uniform case, i.e., the staddlifferential operators
used in [6]. Given a piecewise linear scalar fiéld)) = fi@(v) defined on a 3D mesh,
the gradient operator is defined@$(v) = fi@(v), wheref; is the scalar value on ver-
texv;, @(v) is the piecewise linear basis ail (v) is its gradient. Given a piecewise
constant vector fieldv, the divergence of the vector fieldis defined as
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whereNy (v;) is the adjacent triangle set of the vertgxandAr is the area of the triangle
T. Combining the gradient operator and the divergence operse get the Laplacian
operator

1
Af(vi) == z (cotaij +cotfj)(fi — fj), 3)
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whereNy (v;) is the adjacent vertex set of the vertgx ajj and 3jj are two opposite
angles of the edgey;, v;j).

Now we extend the above procedure to the material-depedsat We assume that the
material property is a piecewise constant function i.&.= ky in a triangleT. Note
that the thermal conductivity terms are attached after ffiastial differential operator
in EQ.1. We thus define material-dependent gradient of asisaskrOq". In other
words, the gradient of the pieces linear basis is resizearditg to its material property.
Then we can represent the material-dependent divergermratopas

Oc-wvi)= Y krArOq" -w, @)
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and the material-dependent Laplacian operator as

Acf (Vi) = +
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Given the guidance fieldv and boundary condition$; = f*,v; € dQ, we get the
material-dependent Poisson equations:

3.2 Non-uniform Propagation

To ensure visually desirable deformation results, lo@igformations imposed by user
interactions must be propagated (weighted with a fallafiction) into the region of in-
terest (ROI) smoothly. Inspired by [7], we consider the matalependent propagation
as a analogy of the heat conduction in a non-uniform mediuare Hmaterial prop-
erties are interpreted as their thermal conductivity. Téeas field functionf guided
the propagation process can be computed by the followingna&tdependent Laplace
equation:

AT =0, @)

whereA, is material-dependent Laplacian operator (See Eq. 5).

Actually, the propagation field is equivalent to the steady-state temperature field with
boundary temperatures set to be 1 on handle vertices anddhstrained verticed. is
also the minimizer of the following energy function:

mfin/f'2 Ik (@) Of |2de, (8)

wherek (w) is the user-specified material property as thermal condtictintuitively,

if the user wants to keep some regions as rigid as possiblEhdiean set the material
properties of these regions with a large value. On the copiféhe user expects certain
regions to be freely deformed, he/she can set them with d salaé.

After the propagation field is solved, we use it as the fall-off function to weight
local transformations. For rotation transformation, we iso multiply the rotation
angle while for scaling transformation, we addpto linearly interpolate between the
scaling ratior and 1 (no scale). Then we combine these local transfornsatagether
according to the user-selected transformation option.

3.3 Non-uniform Reconstruction

The propagation process assigns a local transformatioadio &iangle and we obtain
guidance vectors by applying it to original gradient vestddnlike [6], we consider
material properties in the reconstruction process as Wie#.Poisson mesh solver used



in [6] can be regarded as a special case of our material-depéone. Our method is
equivalent to the minimization of the following energy:

min / k2(w)||0f - w| do. 9)
f Ja

Note that the material-dependent Laplacian operator (@f.5¢ defined on a domain
meshM with a non-uniform material can be regarded as a standardadné&q. 3)
defined on another domain melgh with a uniform material. The relationship between
M andM’ lies in for each edgévi,vj), the following equation is satisfied:

k?_; cotaij + k7 cotffj = cotay; + cotB). (10)

From this aspect, we can think of that material properti¢athe modifying factors
of the original domain meshi.

3.4 TheUser Interface

We adopt the handle-based editing metaphor. During edlitireguser selects the region
of interest (ROI) and deforms the mesh by manipulating alsmagion inside the ROI,
called handle. The user manipulates the handle with a 9 degfrreedom manipulator.
Besides this editing interface, we design a simple pick-@dwad interface that only takes
the pure translation of the handle as the input. In additiser can paint different parts
of ROI with different colors that represent correspondiragenials. After the user drags
the handle, our method automatically induces the necessttyon and scaling for the
ROI as well as the handle itself.
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Fig. 2. lllustration of the determination of local transformations from the handleement.

The basic idea of determining the rotation and scaling fioerhiandle movement comes
from the Hermite interpolation, as shown in Figure 2. Cetlenotes the center of the
boundary connecting constrained vertices and free vertidedenotes the center of
handle vertices and’ denotes the new center of handle vertices after translatiote
that the three point§, H andH' can uniquely determine a plane provided they are not
degenerate. The rotation axascan be easily determined by the cross product of two

2
vectorsHC andH'C. The scaling factos is defined to be the ratio between the length
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of H'C and that ofHC. The left problem is to define the rotation angle. We consider
the circle passing through two poini&sand H' and tanggnt to the vectdiC at the
pointC. Then, we define the rotation andgleto be /(HEH ), where the poinE is the
—_—

intersection of the linddC and the perpendicular bisector of the liHeC. Actually,
the angle@ is twice the angle/(HCH'). Therefore, we do not need to construct the
circle at all. Provided the three poin@s H andH’ are coplanar, we simply ignore the
rotation transformation. We supply several options to supgifferent combination of
these local transformations. These estimated local wamsitions are propagated into
the ROI (See Section 3.2) to generate guidance fields andfbented surface mesh is
reconstructed with Poisson equations (See Section 3.3).

4 Multiresolution Non-uniform Editing

The multiresolution paradigm is an efficient way to deforgiiarge meshes with com-
plex geometric details. Typically, a multiresolution éatit framework consists of three
major components - the decomposition component, the racmtiosn component and
the deformation component. Since the non-uniform controhesh deformation is the
focus of this paper, in this section we show how to achieve gioal in the multires-

olution scenario. Note that the decomposition componenidependent to material
properties as a pre-processing step while the rest two aerisadependent.

4.1 Mesh Decomposition and Detail Encoding

Aiming at editing large meshes, we employ the ProgressiveiM@M) [17] to rep-
resent the surface hierarchy. A PM is created by recursiapplying edge-collapse
operations to a detailed input mesh. In a PM representatienedge-collapse and the
vertex-split are atomic operations for the decompositimmgonent and the reconstruc-
tion component respectively. Note that in both operatioméy the central one or two
vertices’ coordinates are modified while all the rest do ratnge their position. This
observation is particularly important since it allows uddoalize the detail encoding
and decoding procedures only with respect to the local Btefa given edge.

After the surface hierarchy is created, geometric deta@ita/ben successive levels need
to be encoded. Geometric details are typically defined aglifference between the
original geometry and the approximated smoothed geom@teyconsider the mem-
brane surface as the smoothed approximation, which can taéneld by solving a
Laplace equation defined on the local stencil of the givereeglglenoted ad (e)
with Dirichlet boundary conditions given by vertex cooralies on the boundagi (e).
Since only two free vertices in the local stencil, the cquoesling Laplace equation is
a linear system with two equations:

o o)=L a»



wherea, b, c come from Egn. 3 and; andu, are boundary conditions.

We adopt the original geometry to define the Laplacian opesat that we can smooth
the geometry without affecting the underlying parametgian [18]. The correspond-
ing weights used to define the Laplacian operator can bedstmreomputed on the
fly, trading off speed versus memory. After the smoothed @gpration is solved, we
define the detail coefficients between a pair of trianglesiogrftom the original geom-
etry and the smoothed approximation respectively (seer&igl

Generally speaking, locating one detail triandle= (w1, w2, w3) with respect to the
corresponding base triangle = (v1,V2,Vv3) can be decomposed into two steps, which
are summarized by nine independent paramétessz, 61, 82, a1, B1, a2, B2) (See Fig-
ure 3). The first step aligns the verteyx to the vertexy; and the offset vector i&, y, z).

The second step rotates the triangjealong the axiglir defined by the cross product
of the normal vecton, andn; so that both triangles are co-planar. The rotation angle
6, is equivalent to the dihedral angle between the two trismdter the sake of the
reconstruction process, we need to encode thedaisith respect to the base triangle
as well. Since the vectdtir is co-planar with the base triangleg, it can be located by
rotating the vectow, — v3 around the axis, with a rotation angled,. After the sec-
ond step, we get the rotated detalil trian@{e: (Wll,W,z,Wé) that lies in the same plane
with triangle T,. Now we can record the coordinates of vertivesandw; with re-
spect to the triangl&, = (v1,V2,v3) and results in the rest four barycentric coordinates

(a1,B1,02,B2).

Fig. 3. Encoding a detail triangl&; w.r.t. a base triangl&,.

Actually, since our reconstruction method can automdsicadétermine the position
of the detailed triangle from the base one, we do not needdordethe offset vec-
tor (x,Y,2). Therefore, our similarity-invariant detail coefficiertsnsist of the rest six
parameter$6y, 6>, a1, 1,02, 32).

4.2 Detail Reconstruction

After the user performs a material-dependent deformatiom dbase mesh, we need
to reconstruct pre-recorded geometric details with resfreaser-specified material
properties. There are two issues concerning materialraigre detail reconstruction
process. The first one is that material properties specifiethe low-resolution mesh



should be up-sampled. The second one is each refinementtsiafd sake the (up-
sampled) material properties into account. We present alutisns in the following
paragraphs in details.

Specifically, after a vertex-split operation is performeeg,immediately up-sample the
material properties. The material property of a newlytsplangle is set to be the
weighted average of its adjacent triangles. We adopt tretitistance as the weighting
scheme. Then, a three-step reconstruction process is gaaplo reconstruct geomet-
ric details from previously encoded detail coefficientseTinst step is to generate the
approximated smoothed geometry by material-dependeriat@gquation(Eqn. 11)
with new Dirichlet boundary conditions given by the defodhmse surface. Now we
can retrieve the detail triangles from the correspondirgglisangles one-by-one. In
fact, the second step is carried out in the reverse ordereoéticoding process. First,
we determine the intermediate detail triangle= (W, W,, W;) using the barycentric
coordinategas, 31, a2, B2) with respect to the base triandgle = (v1,Vv2,v3). Note that
the vertexw; is superposed on the vertex. Then, the axigir is obtained by rotating
the vectow, — v around the axig, with the rotation anglé,. Finally, the intermediate
detail triangIeTl/ is rotated around the ax@r with the rotation angle-0;, resulting in
the detail triangldl;.

Since the detail triangles have been extracted from theegponding base triangles
independently, the third step is to glue them together andigge the consistent vertex
position for the central two vertices come from the vertphtoperation. To serve

for the purpose, a local material-dependent Poisson equitiemployed. We gather
gradient vectors from broken detail triangles as the guiddield, which determines

the vertex position together with the new boundary condgio

aK bK V]_ _ ul1+W1 (12)
be cx||Vv2 Ulz—l—Wz ’

whereay, by andc, come from Egn. 51,1'l andu'2 are new boundary conditions; and
w» are the material-dependent divergence of vevteandv, respectively.

Although multiresolution techniques [3] have been empthbipehe Poisson-based mesh
solver [6] for acceleration, our framework differs in theyahat it can automatically
adapt geometric details to a scaled base surface via in@iinpg similarity-invariant
detail representation. Moreover, our detail reconstonctnethod is particularly suit-
able to material-dependent multiresolution editing wipitevious methods are gener-
ally difficult for this purpose.

5 Resaultsand Discussions

Based on techniques presented in Section 3 and Section fplement a multiresolu-
tion editing tool for surface meshes. It can work on the sfgisolution mode as well
as the multi-resolution mode. Our editing tool can run iatéively for moderate models
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with around 20k vertices in the single-resolution mode.h@ multi-resolution mode,
comparing with local frame displacements, our materiagdw@ndetail-reconstruction
runs about 10-20% slower.

When editing CAD models, material properties can help aeffiz@ture regions to be
better preserved. Figure 1(c) demonstrates such a taskentel feature region of the
Mechpart model need to be preserved during the resizingeafin body. We achieve
this goal by painting these feature regions with a large rratealued 5 and perform
non-uniform deformation with our technique.

Changing the value of material properties can lead to diffedeformation effects under
the same user interaction. Figure 4 demonstrates sevetdigebtained with different
material settings. The default value of material propeiitieset to 1 and we have found
the rang€1,5] is enough to simulate most of real world material-dependefarma-
tions. We incrementally paint material properties on thesqrart and the foot part with
the value 2, and on the thigh part with the value 5. At the same,twe get more and
more realistic results as shown in Figure 4 (b), (c) and (d).

(a) (b) (c) (d)

Fig. 4. Deforming the right leg of the Man model with different material settings.

Figure 5 illustrates and compares results obtained wiferaiit detail representations.
We simplify the Elephant model (Figure 5 (a)) and reconstggometric details from
a uniformly shrunken base mesh (Figure 5 (b)). This expertrieefairly simple, but
we can clearly distinguish the difference between the temrerated with our method
(Figure 5 (c)) and that with local frame displacement (Fégbind)). Note that fine de-
tails around the elephant’s ear are not well-preserveddargi5(d) due to the lack of
adaptation to arbitrary scaling. We also try to do some ewpats, helping local frame
displacements to adjust automatically. One such attentptnssize displacements ac-
cording the square root of the ratio between the area of figenal base mesh and that
of the deformed one and we calltite global adjustment. As shown in Figure 5 (e), we
note the Elephant’s ear is still disturbed. The other attespimilar to the first one,
but the area considered here is confined to the local stamtithet is the reason for its
name thelocal adjustment. However, this modification does not work as well (Figure 5
(). Figure 5 (c), (d), (e) and (f) are zoomed in two timeslbetter visualization.
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(a) (b) (c) (d)

Fig. 6. After applying three non-uniform deformations, the Armadillo modeligajow ready to
kick a soccer (b). (d) is the visualization of material properties on theleé@taesh, which are
automatically up-sampled from material properties specified by the nsbedase mesh (c).

Figure 6 shows the Armadillo model kicking a soccer, whiclgémerated with the
multiresolution editing mode. We decimate the original lqd 70k vertices) to a sim-
plified version (15k vertices). We perform three non-umfoedits on the both hands
and the right leg of the simplified model. The detailed editetsion is automatically
reconstructed by our tool with the help of similarity detedefficients and material
properties. See our video submission for the whole edithoggss.

6 Conclusionsand Future Work

In this paper, we propose a novel technique to deform thaseirhesh non-uniformly
by incorporating user-specified material properties. Goial is achieved by overload-
ing previous material-independent discrete differemsrators and Poisson equations.
Moreover, we allow multiresolution mesh editing in a matkdware manner by incor-
porating a novel similarity-invariant detail represeittat Several real world examples
demonstrate that plausible material-dependent defoomagisults can be generated by
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our method easily. As pointed out in Section 3.3, designitajlared domain mesh for
a specific deformation task is a valuable research direction
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