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Abstract A novel texture mapping technique is proposed based on nonlinear dimension reduction, called Bernoulli logistic
embedding (BLE). Our probabilistic embedding model builds texture mapping with minimal shearing effects. A log-likelihood
function, related to the Bregman distance, is used to measure the similarity between two related matrices defined over the
spaces before and after embedding. Low-dimensional embeddings can then be obtained through minimizing this function by
a fast block relaxation algorithm. To achieve better quality of texture mapping, the embedded results are adopted as initial
values for mapping enhancement by stretch-minimizing. Our method can be applied to both complex mesh surfaces and dense

point clouds.

Keywords

1 Introduction

Texture mapping is an essential task to enhance the
rendering quality by using texture images in computer
graphics. It can be viewed as an operation to planish a
State-
of-the-art methods adopt local adjacent connectivity of

3D surface onto a 2D domain in low distortions.

meshes, involving solving a large sparse linear system.
They suffer the problems of unnatural choice of boundary
conditions as well as the unavoidable global stretch and
central distortions. We propose a novel texture mapping
technique based on a generic nonlinear dimension reduc-
tion method, called Bernoulli logistic embedding (BLE).
This newly developed method preserves local adjacency
configuration and global similarity both with minimal
shearing effects.

2 Related Work

Dimension Reduction. The curse of dimensionality
is a central difficulty in machine learning and pattern
recognition. Instead of using linear approaches like Prin-
cipal component analysis and multidimensional scaling
(MDS)!| nonlinear dimension reduction techniques!?~7]
receive increasing interests in data processing and visu-
alization. Most of these techniques, also referred to as
spectral embedding!®"), typically begin with an affinity
matriz of pairwise relationship between the observations
or the variants, and introduce an eigen-decomposition.
Recently, Hinton and Roweis®! propose a nonparametric
probabilistic model called stochastic neighbor embedding
(SNE) for dimension reduction. Inspired by this work,
we use Bernoulli logistic random variables and develop a
parametric one instead. Rather than utilizing the unsta-
ble and slow steepest descent algorithm in SNE[®! our
block quadratic lower bound algorithm for parameter es-
timation adopts a second-order convergent Newton-like

dimension reduction, Bernoulli logistic embedding, texture mapping, parameterization

method. It is related to the boosting[®, and is a variance
of the EM algorithm!*®! without missing data.

Mesh Parameterization forms the basis of many ge-
ometry processing applications, such as texture map-
ping and mesh editing. It can be viewed as a simple
case of dimensional reduction, which maps 3D meshes
onto 2D domains. The dominant methods are based on
string energy minimization on vertex neighborhoods, pe-
nalizing either large angle shrinkages or area distortions.
Using boundary constraints, Harmonic mapping related
approaches!'1=13] provide stable results, but may cause
high distortions. Alternative approaches, e.g., [14, 15]
are suitable for arbitrary boundary conditions and result
low distortion mappings. Unfortunately, these methods
may produce triangle flips on parametric domain.

Zigelman et all'® recently adopt the Isomap
algorithm[®! in mesh parameterization applications. It is
well-known that parameterization will lead high distor-
tions when a complex 3D mesh is mapped onto a single
chart. Later, Zhou et al.l'” propose a multi-chart algo-
rithm by combining the Isomap, mesh segmentation and
stretch distortion minimization. However, there is no
control factor for the data variance in the classical MDS
which acts as the kernel of Isomap.

3 Bernoulli Logistic Embedding Model

In this section, we mainly describe our statistical em-
bedding model. Let Y = {y,,...,y,,} C R? be a given
set of points. Our goal is to embed them into a low-
dimensional space R? with ¢ < p. Let the embedding
result of Y be X = {x1,...,x,} C R For each pair
of points (y;,y;) (j # i), we define an affinity measure
pij € [0,1], which is a (generalized) Bernoulli random
variable with a parameter g;;, i.e.,

P(pij | i) = i’ (1 = i)' 7. (1)

*A preliminary version of this paper appeared in Proc. the 1st Korea-China Joint Conference on Geometric and Visual Computing.
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Natural Science Foundation of China (Grant Nos. 60021201, 60505001 and 60133020).
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To preserve the relationship between y, and y; when they
are projected into RY?, we treat g;; as the affinity of @;
and x; which can be defined on the logistic transforma-

tion as
7
1 LiT;

Qg = 1+ e(—TiTj) 1 1 ey’ (2)
It is clear that ¢;; is invariant under rotation transforma-
tion in R?. Given ii.d. observations {p;;: i =1,...,n;
j=1,...,n; j # i} from the Bernoulli distribution, we
have the following likelihood function

L=T]a (1 —a) 7, (3)
i
and the log-likelihood:

F = [pijlogqi; + (1 — pij)log(1 —gi;)l.  (4)
7]

The suitable embedding is obtained by finding the pa-
rameters which maximize the log-likelihood. Note that
pij is not necessarily symmetric. In symmetric case, we
only need to consider observations {p;; : ¢ < j}. In this
paper, we employ the standard Gaussian kernel to model
pij:

Pij = e*(yi*yj)’(yi*yj)/mT (5)
where o is a width factor concerning the data variance.
It is worth mentioning that the truncated version of the
Gaussian kernel®1% can be adopted here to accelerate
the computing processing. We call this embedding model
Bernoulli Logistic Embedding.

4 Block Quadratic Lower Bound Algorithm

Our proposed embedding model can be efficiently cal-
culated by a fast numerical procedure. Many algorithms
in computational statistics, including our algorithm pre-
sented below, can be viewed as optimization transfers.
For instance, the EM algorithm!'®! is an optimization
transfer algorithm depending on the notion of incom-
plete or missing data, and the iterative majorization/*?!
is a variance of EM without missing datal??!. These al-
gorithms are all proceeded by maximizing or minimizing
simple surrogates for objective functions. As pointed out
in [21], they can be unified as the framework of block-
relazation.

4.1 Quadratic Lower Bound

To solve the maximizing problem described by (4), we
introduce the quadratic lower bound technique. Given
an objective function F(6), e.g., (4), let VF(0) denote
the Fisher score vector and V2F(6) be the Hessian ma-
trix with § € R™ being the abstract parameter vector.
Bohning and Lindsay!?2 propose an algorithm under the
assumption that a non-negative definite m X m matrix
B can be found such that V2F(6) = B for all . Here
X > Y means that X —Y is non-negative definite. Con-
sider the Taylor series expansion of the objective function
F(0) at ¢ up to the second order term:

F(0) - F(¢) = (0 — ¢)'VF(¢)
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Here we utilize the property that V2F(6) = B. In gen-
eral, F'(¢)+ (0 —¢)'VF(¢) + %(0 — ¢)'B(6 — ¢), denoted
as Q(0 | @), is referred to as the surrogate function of
F(0). From (6), it follows that

F(6)- Q0] 6) = 50— 8/ K(6-6) >0,

with K = B — V2F (¢ + (0 — ¢)).

It is clear that F'(6) — Q(0 | ¢) attains its minimum
0 at & = ¢. Since Q(6 | ¢) is a quadratic function, its
convexity shows that it has only one maximum. The so-
called optimization transfer algorithm seeks to approxi-
mate the maximum of F'(#) with that of Q(0 | ¢) through
an iterative procedure. The quadratic lower bound al-
gorithm is a special case of optimization transfer algo-
rithms. Assume that ¢ is the ¢-th estimate of 6, i.e.,
# = 6® . Then maximizing Q(# | 1)) w.r.t. § yields

9+ =) — BTV F(9W). (7)

This iterative procedure shows that the quadratic
lower bound algorithm amounts to maximizing F(6)
by using Newton’s method through replacing the Hes-
sian matrix V2F(0) with B. Contrarily, the itera-
tive majorization/?*/ amounts to maximizing F(0) by us-
ing the steepest descent method through replacing the
fisher score VF(6) with VL(A®). Tt is well-known that
the Newton method is faster than the steepest descent
method because the former converges at second order
while the latter at first order. The following convergent
theorem for this algorithm is provided in [22]:

Theorem 4.1.

(i) (Monotonicity) F(6t1)) > F(0W) with “>” if
o(t+1) £ 9(t)

(ii) (Convergence) If F is bounded as above, then
[VF(O®)| —= 0 as t — co.

4.2 Block Relaxation Framework

In this paper, we apply the lower bound principle
to our Bernoulli logistic embedding problem. This tech-
nique has also been successfully applied to logistic regres-
sion, multinomial logistic and mixture models/?223l, In
order to maximize the log function F' defined by (4) w.r.t.
x;’s, we have the following block relaxation procedure/?!],
see Fig.1.

In Fig.1, either 7 = ¢t or 7 = t 4+ 1 is allowed.

When 7 = t, we refer to this procedure as parallel-
update scheme. Otherwise, we refer to it as serial-

update scheme. For the sake of simplicity, let F; =
F(a:(T) () (t)
1

(t) 0qij _
@, ®iy @y Ly, .., &y ). Because of o =
9qji

i (1 —gij)z; and Fz

= q;i(1 — ¢;s)@;, we have the first
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and second derivatives of F; w.r.t. «; as:

OF;
oz Z(pij +Pji — Gij — 4ji)Zjs
LA
82F, (8)
oz > laijlai; — 1) + a56(gji — 1)]=52),
L g

where z; = (™ if j < i, and z; = x® otherwise. Be-

cause of ¢;;(1 — ¢;;) < i and ¢;;(1 — gj;) < %, letting

2
B; = f% Zj# zjzg-, we conclude that ‘Zm? — B; is non-
negative definite. According to (7), we can obtain an
iterative algorithm to solve @; (i = 1,...,n) as follows
t+1 t 1 t
2! =2 _ BV (2l"). (9)
Begin | Start with wgo) €Rifori=1,...,n.
Step t.1 w§t+1) € argminF' (@1, azét), ceey zg));
Step t.2 wéﬂrl) € argminF(ng), T2, a:gt), ceey wg));
Step t.n wSJrl) € argminF(ng), wg—), ceey a:sbl)l, Tn).

Motor | t <+ t+ 1 and go to k.1.

Fig.1. Basic framework of our block relaxation algorithm.

Since this algorithm employs the quadratic lower
bound principle under the block relaxation, we refer to
it as block quadratic lower bound algorithm. Accord-
ing to the similar spirit of the successive over-relaxation
method?®, we introduce a relazation parameter w €
(0,2) giving rise to

2 = (1- w2l —wB'VE(@!").  (10)

4.3 Algorithm Summary

In summary, our BLE algorithm can be presented as
the following pseudo code program.

Step 1. Input a point set Y € RP, the relaxation coeffi-
cient w, the desired embedding dimension g and the maximal
iteration step itermax-.

Step 2. Calculate p;; by (5) and generate a random point
set X (0) € RY, iter < 0.

Step 3. Calculate g;; by (2), update VF'; and B;.

Step 4. Block relaxation, i.e., update X *"+1) by (10).

Step 5. If iter > itermax Or |X(“”+1) — X(it”)| < g, then
output X (#¢"). Otherwise iter < iter + 1 and goto Step 3.

4.4 Relationship to the Bregman Distance

Let FF: Q — R be a strictly convex function on a
convex set 2 C R™. The Bregman distancel®*!, induced
by F, between p,q € Q is

Br(plg) = F(p) — F(q) - VF(q)-(p—q). (11)

In our BLE model, it is easy to verify that the function
F defined in (4) is a strictly convex function. We then
have

)

Br({pu{as)) = 3 [pusln (22)

J#i *
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+(1 *pij)ln(i :Z;)] (12)

Therefore, maximizing the log-likelihood function F' de-
fined in (4) is equivalent to minimizing the Bregman dis-
tance Br({pij}|{g:;}). This shows the relationship be-
tween the boosting algorithm and our method. Recently,
[26] studies a class of over-relaxed bound optimization al-
gorithms and analyze the convergence in [27]. The relax-
ation version of our algorithm (refer to (10)) can also be
regarded as an over-relaxed bound optimization method
in [26].

5 Texture Mapping Based on BLE

In this section, we describe our texture mapping
method based on the BLE model. Given a 3D geome-
try model, we can sample it by a set of points y, € R?
(1 =1,...,n). And the BLE model is used to find cor-
responding points «; (i = 1,...,n) in R®. To obtain
the desired mapping, all relation coefficients p;; are com-
puted using y, first, and «; are then obtained by our
iteration method. Moreover, we generalize the comput-
ing coefficients p;; (refer to (5)) by

_diet2 . X
Dij :p(yiayjaa) = e dist (yzvy])/20' (13)

where dist(-,-) denotes a distance measure. Because ver-
tex connectivity is not concerned in BLE model. Thus,
there will be few flipped triangles on the result para-
metric domains. To adjust the parameterization around
these flipped triangles, we adopt stretch based parame-
terization optimization.

5.1 Geodesic Distance Computing

In our early experiments, we adopt Euclidian distance
to compute p;;. Obviously, it will not provide satisfying
results when y, are sampled from High curvature sur-
faces. Similar to Isomap, we use geodesic distance in
(13). This strategy minimizes geodesic distance distor-
tions.

In point cloud data cases, we can use Dijkstra’s al-
gorithm to compute geodesic distance. To calculate
the geodesic distances between surface points of polyg-
onal models more precisely, we use the fast marching
method8). It is similar to Dijstra’s algorithm, except
propagating distance along triangles rather than along
vertices in the later algorithm. Both algorithms can cal-
culate all the necessary geodesic distances in O(n?logn),
where n is the number of vertices of input model.

It is well-known that multi-chart texture mapping
methods are more suitable for large complex models than
just using one single chart, since later strategy cannot
avoid high distortions for complex shapes. Therefore,
we exploit a similar spectral segmentation method de-
scribed in [17] when dealing with complex models. To
accelerate the computation, landmarks are selected be-
fore computing geodesic distance and segmenting model
into pieces. In our current implementation, k = an < n
with a = 0.01 vertices are selected as landmark points.
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Suppose the segmentation step results in s patches. Then
the geodesic distance computing step can be processed
only among vertices belonging to the same patch. In
summary, the geodesic distance computation is reduced
to O(knlogn) + O(sm?logm), where m is the maximal
number of vertices of segmented patches.

To adjust those flipped triangles after using BLE, we
apply stretch-minimization(?! to optimize parameteriza-
tions for all patches created by spectral analysis, similar

o [17].

6 Results

We implemented all parts of the algorithm described
above. The BLE part is implemented in MATLAB 6.5,
and we integrate our method with the iso-charts pro-
gram by data file communication. To fairly compare our
method with iso-charts, we also implemented the Isomap
algorithm in MATLAB. In all experiments, our algorithm
shows the similar and even better running performance.
Figs. 2 and 3 illustrate our experimental results. For
all experiments, the stretch threshold is set at L? = 1.1.
To generate the final texture atlases in Fig.3, we use the
method proposed by Sander et al.l*% to pack all charts
together. The results demonstrate that our method pro-
duces low-stretch atlases with a small number of charts.
Although it is not easy to obtain similar chart configura-
tion for comparing with iso-charts, it still can be observed
from our results that our embedding method provides the
high-quality mesh flattening for texture mapping appli-
cation.

In Fig.2(a), a face model with around 1,000 vertices is
flattened by 10 iterations of block relaxation within 50ms.
Note that the result is unique up to a rotation angle,
since the BLE model only concerns relative angles. This
problem can be easily avoided by an additional SVD-
based axes alignment. Figs. 2(b)-2(e) demonstrate the
advantage of using additional stretch-minimization. As
we known, the BLE model only minimizes distance dis-
tortions, and cannot avoid triangle flips. Within the ad-
ditional stretch-minimization step, flipped triangles are
removed from the final results, the minimization of the

distance and stretch distortion are balanced.

Texture atlas of complex models in Fig.3 are gener-
ated by our modified iso-charts algorithm. That is, in-
stead of using standard Isomap in [17], we use BLE for

2
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the patch flattening part. Our method is a paramet-
ric one and can naturally introduce an iterative numer-
ical algorithm. These factors provide user more control
power when dealing with complex shapes. Comparing
with the results in [17], our method can generate evenly-
sized patches for the same models with comparable com-
putational time.

(@)

Fig.2. (a) Face model and its flattening result based on BLE. (b)
Original patch. (c) and (d) Texture mapping results before and
after optimization, respectively. (e) and (f) Mesh flattening effects
before and after optimization, respectively. ((b)—(e) BLE optimiza-

tion of a simple mesh patch.)

7 Conclusions

In this paper, we present a novel texture mapping
technique based on BLE. The newly developed proba-
bilistic embedding model uses Bregman distance to mea-
sure the similarity between two relational matrices. In
texture mapping, this embedding model can be employed
for minimizing geodesic distance distortions. Different
from previous Isomap based algorithm, a data variance
parameter is introduced in the BLE model so as to pro-
vide more control. Moreover, an efficient iterative block
relaxation algorithm is derived naturally for numerical
calculation of BLE. To achieve even better quality of
texture mapping, the embedded results are adopted as
good initial values for mapping enhancement by stretch-
minimizing parameterization. Finally, the BLE model
can be used as an alternative gear instead of classi-
cal MDS, and can be seamlessly integrated with the
iso-charts framework. And we will explore the resent
progress of BLE[ in near future.

2
—,

w5

(@) L?>=1.04 (b) L?>=1.06

(c) L?=1.05

Fig.3. (a) Skull model and its atlas. (b) Textured Goblin model and its texture atlas. (c) Cat model.
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