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Abstract In this paper, we present
a material-aware mesh deformation
method using a sketching interface.
Guided by user-specified material
properties, our method can deform
the surface mesh in a non-uniform
way, while previous deformation
techniques are mainly designed
for uniform materials. The non-
uniform deformation is achieved by
material-dependent gradient field
manipulation and Poisson-based
reconstruction. Compared with pre-
vious material-oblivious deformation
techniques, our method supplies
better control of the deformation
process and can generate more
realistic results. We propose a novel
detail representation that transforms
geometric details between successive
surface levels as a combination of

dihedral angles and barycentric coor-
dinates. This detail representation is
similarity-invariant and fully compat-
ible with material properties. Based
on these two methods, we implement
a multi-resolution deformation tool,
allowing the user to edit a mesh
inside a hierarchy in a material-
aware manner. We demonstrate the
effectiveness and robustness of our
methods by several examples with
real-world data.

Keywords Mesh deformation ·
Non-uniform · Sketching

1 Introduction

Surface deformation has been widely studied in com-
puter graphics. Mainstream techniques, such as freeform
deformations, multi-resolution techniques and recently
introduced differential domain methods are mainly de-
signed to propagate the deformation imposed by the user
evenly into the influence region uniformly. However,
a real world object often contains parts with different ma-
terials. Given outside forces, for a certain part how it
deforms is determined by its corresponding material prop-
erties. Using material-oblivious deformation techniques
to edit objects with non-uniform material properties of-
ten produces implausible results with unnatural shape
artifacts.

In this paper, we present a novel mesh deformation
technique that allows the surface mesh to be deformed
in a non-uniform way. It is based on material-dependent
Poisson equations and supplies non-uniform controls in
both the propagation process and the reconstruction pro-
cess. The user is involved in the deformation process by
setting material properties to indicate non-uniform regions
while the rest takes the default value. These user-specified
material properties guide the propagation of local trans-
formations as well as the reconstruction to absolute coor-
dinates. Our method inherits the advantages of differential
domain methods and provides more flexible control of
the deformation process. In particular, surface details can
be well preserved during the deformation using a user-
friendly sketching interface.
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To facilitate the editing of large meshes, we further ex-
tend our non-uniform deformation technique into a multi-
resolution version. Multi-resolution techniques have been
proved to be powerful to process gigantic models. How-
ever, lack of material-dependent mechanism prevents
existing multi-resolution deformation approaches to be
adapted for our purpose. Instead we propose a novel detail
representation that transforms geometric details between
successive surface levels as a combination of dihedral
angles and barycentric coordinates. This detail representa-
tion is similarity-invariant while existing representations,
such as local frame displacements [6, 10, 18] and displace-
ment volumes [1], are rigid-invariant. More importantly,
the similarity-invariant detail representation is fully com-
patible with material properties. Based on it, the user can
edit the simplified base mesh with our single-resolution
non-uniform editor and obtain the detailed result automat-
ically.

The rest of this paper is organized as follows. After
briefly reviewing the prior arts with a focus on multi-
resolution techniques and differential domain methods in
Sect. 2, we present the non-uniform deformation tech-
nique in Sect. 3. In Sect. 5 we elaborate how to perform
non-uniform deformations in the multi-resolution context.
We demonstrate that more realistic results can be gener-
ated with the help of material properties in Sect. 6. Finally,
we draw conclusions and point out possible future work in
Sect. 7.

2 Related work

Our approach builds on recently introduced differential
domain methods [13] that represents surface details as
differential properties. These approaches manipulate dif-
ferential properties and reconstruct vertex coordinates
via solving a sparse linear system. They have a valu-
able feature that geometric details can be well-preserved
during the editing process. Since differential properties
are translation-invariant merely, they must be properly
transformed according to user interactions. The determin-
ation of local transformations can be achieved by either
explicit interpolation [11, 15, 16] or implicit fitting [14].
Zhou et al. [17] extend the Laplacian coordinates to the
volumetric graph to address problems with large mesh de-
formations. However, all of these approaches regard the
edited mesh to be made up of a uniform material; thus,
they lack additional control of the deformation process.
Based on this observation, we extend differential domain
methods to supply position-dependent control by incorpo-
rating user-specified material properties.

In the context of boundary constraint modeling, Botsch
and Kobbelt [2] propose a freeform modeling framework
based on a family of linear differential equations. They
point out that the deformation in a certain direction can
be enhanced by explicitly shrinking the underlying par-

Fig. 1a–e. Mesh deformation with non-uniform control. a is the
original model; b is the color plot of user-specified materials, the
green region is the handle and the blue region is the constraint;
c and d are results generated with and without non-uniform con-
trol respectively; e is the result generated with the non-uniform
propagation but with the uniform reconstruction

ameter domain in the same direction, which affects the
discretization of Laplacian operator consequently. Our
method achieves more general control of the deformation
by allowing the user to specify per-face material prop-
erties, which implicitly modifying the domain mesh in
a non-linear manner. Material properties have also been
considered by Popa et al. [12] to control the propagation of
local transformations. Our method differs in the way that
we also consider material properties in the reconstruction
process (see Fig. 1).

A multi-resolution technique has been introduced into
computer graphics community for more than ten years [5].
Some approaches depend on semi-regular meshes [18],
while others work on irregular meshes directly [2, 6,
10]. Most multi-resolution editing techniques manipu-
late a static surface hierarchy, but vertex connectivity of
the base surface [3] or the hierarchy itself [9] can also
be dynamically rearranged during large deformations.
These approaches share a common aspect that geomet-
ric details between successive levels are encoded as local
frame displacements. These displacements can be scalars
along the normal directions [7] or vectors [6, 10, 18]. Since
local frame displacements are handled individually, the re-
constructed detailed surface may have unnatural volume
changes when the base surface endures large deforma-
tions. Consequently, Botsch and Kobbelt propose to use
displacement volumes [1] instead. Displacement volumes
are kept locally constant during the reconstruction pro-
cess to preserve volume and avoid local self-intersections.
However, both local frame displacements and local vol-
umes do not support material-dependent reconstructions,
making us exploring a new detail representation.

3 Mesh editing with non-uniform control

Previous differential domain methods deform surfaces in
a material-oblivious way. In this section, we present how
to enhance these techniques by incorporating user spec-
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ified non-uniform materials. With the non-uniform con-
trol mechanism, the deformation process can be tuned
in a finer granularity than previous differential domain
methods. Therefore, more realistic results can be gener-
ated easily.

3.1 Material-dependent Poisson equation

A simple form of Poisson equation has been successfully
applied to the context of mesh editing [15]. In physics
a more general form of this elliptic equation is used to de-
scribe the phenomena of steady-state heat conduction in a
3D solid medium. Commonly, the exact form in 3D Eu-
clidian space is

∆κT = ∂

∂x

(
κx

∂T

∂x

)
+ ∂

∂y

(
κy

∂T

∂y

)
+ ∂

∂z

(
κz

∂T

∂z

)

= −qv. (1)

Here T is a steady-state temperature field, qv is the source
term in the interior. And κx , κy and κz are speed func-
tions, namely thermal conductivities along three axial di-
rections. Therefore, different solid medium results in dif-
ferent steady-state temperature fields even under the same
set of boundary conditions. This basic observation moti-
vates us to use material-dependent control for differential
mesh editing.

In this paper we only consider isotropic materials, i.e,
κx = κy = κz = κ. When κ is constant, Eq. 1 describes
a uniform material case which is applied in [15]. In the
following we explore the Poisson equation defined on sur-
faces with non-uniform materials, and the thermal conduc-
tivity κ is a scalar field on manifold surface.

Since we adopt triangle meshes as the underlying
surface representation, we have to discretize material-
dependent differential operators on 2-manifold meshes.
For this purpose, we first briefly review the uniform case,
i.e., the standard differential operators used in [15]. Given
a piecewise linear scalar field f(v) = fiφi(v) defined on
a 3D mesh, the gradient operator is defined as ∇ f(v) =
fi∇φi(v), where fi is the scalar value on vertex vi , φi(v)
is the piecewise linear basis and ∇φi(v) is its gradient.
Given a piecewise constant vector field w, we define the
divergence of the vector field w as

∇ ·w(vi) =
∑

T∈NT (vi)

AT∇φT
i ·w, (2)

where NT (vi) is the adjacent triangle set of the vertex
vi and AT is the area of the triangle T . Combining the
gradient operator and the divergence operator, we get the
Laplacian operator

∆ f(vi) = 1

2

∑
j∈Nv(vi)

(cot αij + cot βij)( fi − f j), (3)

where Nv(vi) is the adjacent vertex set of the vertex vi , αij
and βij are two opposite angles of the edge (vi, vj).

Now we extend the above procedure to the material de-
pendent case. We assume that the material property κ is
a piecewise constant function i.e., κ ≡ κT in a triangle T .
Note that the thermal conductivity terms are attached after
first partial differential operator in Eq. 1. We, thus, de-
fine material-dependent gradient of basis φi(·) as κT ∇φT

i .
In other words, the gradient of the pieces linear basis is
resized according to its material property. Then we can re-
present the material-dependent divergence operator as

∇κ ·w(vi) =
∑

T∈NT (vi)

κT AT∇φT
i ·w, (4)

and the material-dependent Laplacian operator as

∆κ f(vi) = 1

2

∑
j∈Nv(vi)

(
κ2

j−1 cot αij +κ2
j cot βij

)
( fi − f j).

(5)

Given the guidance field w and boundary conditions fi =
f ∗
i , vi ∈ ∂Ω, we get the material-dependent Poisson equa-

tions:

∆κ f = ∇κ ·w. (6)

3.2 Non-uniform propagation

To ensure visually desirable deformation results, local
transformations imposed by user interactions must be
propagated (weighted with a fall-off function) into the re-
gion of interest (ROI) smoothly. Inspired by [16], we con-
sider the material-dependent propagation as an analogy of
the heat conduction in a non-uniform medium. Here, ma-
terial properties are interpreted as their thermal conductiv-
ity. The scalar field function f guided the propagation pro-
cess can be computed by the following material-dependent
Laplace equation:

∆κ f = 0, (7)

where ∆κ is material-dependent Laplacian operator (see
Eq. 5).

Actually, the propagation field f is equivalent to the
steady-state temperature field with boundary temperatures
set to be 1 on handle vertices and 0 on constrained ver-
tices. f is also the minimizer of the following energy
function:

min
f

∫
Ω

‖κ(ω)∇ f ‖2dω, (8)

where κ(ω) is the user-specified material property as ther-
mal conductivity. Intuitively, if the user wants to keep
some regions as rigid as possible, he/she can set the
material properties of these regions with a large value. On
the contrary, if the user expects certain regions to be freely
deformed, he/she can set them with a small value.
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After the propagation field f is solved, we use it as
the fall-off function to weight local transformations. For
rotation transformation, we use f to multiply the rota-
tion angle while for scaling transformation, we adopt f
to linearly interpolate between the scaling ratio r and 1
(no scale). Then we combine these local transformations
together according to the user-selected transformation
option.

3.3 Non-uniform reconstruction

The propagation process assigns a local transformation to
each triangle, and we obtain guidance vectors by apply-
ing it to original gradient vectors. Unlike [15], we consider
material properties in the reconstruction process as well.
The Poisson mesh solver used in [15] can be regarded as
a special case of our material-dependent one. Our method
is equivalent to the minimization of the following en-
ergy:

min
f

∫
Ω

κ2(ω) ‖∇ f −w‖2
dω. (9)

Note that the material-dependent Laplacian operator
(cf. Eq. 5) defined on a domain mesh M with a non-
uniform material can be regarded as a standard one
(cf. Eq. 3) defined on another domain mesh M′ with a uni-
form material. The relationship between M and M′ lies
in for each edge (vi, vj), the following equation is satis-
fied:

κ2
j−1 cot αij +κ2

j cot βij = cot α′
ij + cot β′

ij . (10)

From this aspect, we can think of that material proper-
ties act as the modifying factors of the original domain
mesh M.

4 User interface

In our newly developed modeling system, a sketching
user interface is provided for users. That is users can use
the pen tablet or tablet pc to manipulate mesh models.
To achieve this goal, we adopt the handle-based edit-
ing metaphor. During editing, the user selects the region
of interest (ROI) and deforms the mesh by manipulating
a small region inside the ROI, called handle. The user
manipulates the handle with a 9 degree-of-freedom ma-
nipulator. Besides this editing interface, in our system,
a smart pick-and-drag metaphor is that only takes the pure
translation of the handle as the input. In addition, the user
can paint different parts of ROI with different colors that
represent corresponding materials. After the user drags
the handle, our method automatically induces the neces-
sary rotation and scaling for the ROI as well as the handle
itself.

4.1 Smart pick-and-drag metaphor

The basic idea of determining the rotation and scaling
from the handle movement comes from the Hermite inter-
polation, as shown in Fig. 2. Let C denote the center of
the boundary connecting constrained vertices and free ver-
tices, H denote the center of handle vertices and H ′ denote
the new center of handle vertices after translation. Note
that the three points C, H and H ′ can uniquely determine
a plane provided they are not degenerate. The rotation axis
a can be easily determined by the cross product of two
vectors

−→
HC and

−→
H ′C . The scaling factor s is defined to

be the ratio between the length of
−→
H ′C and that of

−→
HC .

The left problem is to define the rotation angle. We con-
sider the circle passing through two points C and H ′ and
tangent to the vector

−→
HC at the point C. Then, we define

the rotation angle θ to be � (HEH ′), where the point E
is the intersection of the line

−→
HC and the perpendicular

bisector of the line
−→
H ′C . Actually, the angle θ is twice

the angle � (HCH ′). Therefore, we do not need to con-
struct the circle at all. Provided the three points C, H and
H ′ are coplanar, we simply ignore the rotation transform-
ation. We supply several options to support different com-
bination of these local transformations. These estimated
local transformations are propagated into the ROI (see
Sect. 3.2) to generate guidance fields and the deformed
surface mesh is reconstructed with Poisson equations (see
Sect. 3.3).

Fig. 2. Illustration of the determination of local transformations
from the handle movement

4.2 Smart ROI selection

As it is a little bit boring for users to figure out ROI bound-
ary precisely by surface lasso tool and vertex-by-vertex
modification, a smart selection tool of ROI is provided
alternatively in our system. Users first assign seed faces in-
side and outside of ROI on a given mesh by sketch lines.
Then the system computes a scalar field across the mesh.
After that a segmentation boundary is computed with re-
spect to a specific iso-value. Besides applying ROI in han-
dle selection, it can be also adopted to assign a region with
specified material value.

Given a triangular mesh M with n triangle faces, users
assign interior and exterior triangles. Then these faces
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on M are labeled as

bi =
{

1 foreground,
−1 background.

(11)

Without losing generality, we assume that the first k faces
are labeled. And we need to precondition the data by
mean subtracting first. That is we take b̃ = (b1 −b̄, b2 −
b̄, . . . , bk −b̄, 0, . . . , 0), where b̄ = ∑

i bi/k. To learn the
value that how much a triangle face should be background
or foreground, we leverage following the propagation pro-
cedure to produce a scalar field across mesh M.

The propagation objective is actually a regression on
a graph, in terms of a least squares optimization:

f = arg min
f=( f1,..., fn),

∑
fi=0

1

k

∑
i

( fi − b̃ i)
2 +γ f S f T, (12)

where fi means the value of face #i and γ ≥ 0 is an opti-
mization parameter. Our goal is to obtain a value field with
smooth transition between the given face values. Hence,
the first part of Eq. 12 is employed as soft constraints. And
the second part act as a smoothness term. We formulate
matrix S as

S = L p, p ∈ N, (13)

where L is the Laplacian L = D − W with

D = diag
( ∑

i
w1i, . . . ,

∑
i
wni

)
,

and wij is the similarity weight between adjacent face #i
and # j . For a triangular mesh, we employ

wij = exp(ρ|Ni · Nj |), (14)

with Ni and Nj denoting unit normal vectors of face #i
and # j , respectively. Parameter ρ (usually =5) controls
the influence of the dihedral angle between adjacent faces
for the cutting results. Larger ρ will lead to more feature
sensitive results.

The aforementioned optimization problem can be
solved as follows. Denoting the vector of all ones as
1 = (1, 1, . . . , 1), the solution of Eq. 12 can be given in the
form

f = (kγS + Ik)
−1(b̃ +µ1). (15)

Matrix Ik is a diagonal matrix of multiplicities

Ik = diag(n1, n2, . . . , nl, 0, . . . , 0), (16)

where ni is the number of occurrences of face #i among
the labeled face. Coefficient µ is chosen such that the re-
sulting vector f is orthogonal to 1. That is

µ = −σ(A−1b̃)

σ(A−11)
, (17)

where σ( f ) is defined as σ : f →∑
i fi , and A = kγS + Ik.

Finally, we have propagated label f for each triangle on
the surface. This procedure is normally called Tikhonov
regularization in the learning literature.

Once all propagated face values have been obtained,
we apply one dimensional k-means clustering (with two
centers) for all triangles using propagation values to deter-
mine a cutting threshold. Therefore a segmentation bound-
ary of ROI is generated along those mesh edges.

5 Multi-resolution non-uniform editing

The multi-resolution paradigm is an efficient way to de-
forming large meshes with complex geometric details.
Typically, a multi-resolution editing framework consists of
three major components – the decomposition component,
the reconstruction component and the deformation com-
ponent. Since the non-uniform control of mesh deforma-
tion is the focus of this paper, in this section we show how
to achieve this goal in the multi-resolution scenario. Note
that the decomposition component is independent to mate-
rial properties as a pre-processing step, while the rest two
are material-dependent.

5.1 Mesh decomposition and detail encoding

Aiming at editing large meshes, we employ the progres-
sive mesh (PM) [8] to represent the surface hierarchy.
A PM is created by recursively applying edge-collapse
operations to a detailed input mesh. In a PM represen-
tation, the edge-collapse and the vertex-split are atomic
operations for the decomposition component and the re-
construction component, respectively. Note that in both
operations, only the central one or two vertices’ coordi-
nates are modified while all the rest do not change their
position. This observation is particularly important since
it allows us to localize the detail encoding and decoding
procedures only with respect to the local stencil of a given
edge.

After the surface hierarchy is created, geometric details
between successive levels need to be encoded. Geomet-
ric details are typically defined as the difference between
the original geometry and the approximated smoothed
geometry. We consider the membrane surface as the
smoothed approximation, which can be obtained by solv-
ing a Laplace equation defined by the local stencil of the
given edge e, denoted as L(e) with Dirichlet boundary
conditions given by vertex coordinates on the bound-
ary ∂L(e). Since only two free vertices in the local stencil,
the corresponding Laplace equation is a linear system with
two equations:[

a b
b c

] [
v1
v2

]
=

[
u1
u2

]
, (18)
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Fig. 3a–c. Encoding a detail triangle T1 w.r.t. a base triangle T2

where a, b, c come from Eq. 3 and u1 and u2 are boundary
conditions.

We adopt the original geometry to define the Lapla-
cian operator so that we can smooth the geometry without
affecting the underlying parameterization [4]. The corres-
ponding weights used to define the Laplacian operator can
be stored or computed on the fly, trading off speed ver-
sus memory. After the smoothed approximation is solved,
we define the detail coefficients between a pair of trian-
gles coming from the original geometry and the smoothed
approximation respectively (see Fig. 3).

In general, locating one detail triangle T1 = (w1,
w2, w3) with respect to the corresponding base trian-
gle T2 = (v1, v2, v3) can be decomposed into two steps,
which are summarized by nine independent parameters
(x, y, z, θ1, θ2, α1, β1, α2, β2) (see Fig. 3). The first step
aligns the vertex w1 to the vertex v1 and the offset vec-
tor is (x, y, z). The second step rotates the triangle T1
along the axis dir defined by the cross product of the
normal vector n2 and n1 so that both triangles are co-
planar. The rotation angle θ1 is equivalent to the dihedral
angle between the two triangles. For the sake of the re-
construction process, we need to encode the axis dir with
respect to the base triangle as well. Since the vector dir
is co-planar with the base triangle T2, it can be located
by rotating the vector v2 − v3 around the axis n2 with
a rotation angle θ2. After the second step, we get the ro-
tated detail triangle T ′

1 = (w′
1, w′

2, w′
3) that lies in the same

plane with triangle T2. Now we can record the coordi-
nates of vertices w′

2 and w′
3 with respect to the triangle

T2 = (v1, v2, v3) and results in the rest four barycentric
coordinates (α1, β1, α2, β2).

Actually, since our reconstruction method can auto-
matically determine the position of the detailed triangle
from the base one, we do not need to record the off-
set vector (x, y, z). Therefore, our similarity-invariant
detail coefficients consist of the rest six parameters
(θ1, θ2, α1, β1, α2, β2).

5.2 Detail reconstruction

After the user performs a material-dependent deforma-
tion on a base mesh, we need to reconstruct pre-recorded
geometric details with respect to user-specified material

properties. There are two issues concerning material-
dependent detail reconstruction process. The first one is
that material properties specified on the low-resolution
mesh should be up-sampled. The second one is each
refinement step should take the (up-sampled) material
properties into account. We present our solutions in the
following paragraphs in details.

Specifically, after a vertex-split operation is performed,
we immediately up-sample the material properties. The
material property of a newly-split triangle is set to be the
weighted average of its adjacent triangles. We adopt the
invert-distance as the weighting scheme. Then, a three-
step reconstruction process is employed to reconstruct
geometric details from previously encoded detail coef-
ficients. The first step is to generate the approximated
smoothed geometry by material-dependent Laplace equa-
tion (Eq. 18) with new Dirichlet boundary conditions
given by the deformed base surface. Now we can retrieve
the detail triangles from the corresponding base triangles
one-by-one. In fact, the second step is carried out in the
reverse order of the encoding process. First, we determine
the intermediate detail triangle T ′

1 = (w′
1, w′

2, w′
3) using

the barycentric coordinates (α1, β1, α2, β2) with respect to
the base triangle T2 = (v1, v2, v3). Note that the vertex w1
is superposed on the vertex v1. Then, the axis dir is ob-
tained by rotating the vector v2 −v3 around the axis n2
with the rotation angle θ2. Finally, the intermediate detail
triangle T ′

1 is rotated around the axis dir with the rotation
angle −θ1, resulting in the detail triangle T1.

Since the detail triangles have been extracted from
the corresponding base triangles independently, the third
step is to glue them together and generate the consis-
tent vertex position for the central two vertices come
from the vertex-split operation. To serve for the pur-
pose, a local material-dependent Poisson equation is em-
ployed. We gather gradient vectors from broken detail
triangles as the guidance field, which determines the
vertex position together with the new boundary condi-
tions:[

aκ bκ

bκ cκ

] [
v1

v2

]
=

[
u′

1 +w1

u′
2 +w2

]
, (19)

where aκ , bκ and cκ come from Eq. 5, u′
1 and u′

2 are
new boundary conditions, w1 and w2 are the mate-
rial dependent divergence of vertex v1 and v2, respec-
tively.

Although multi-resolution techniques [6] have been
employed in the Poisson-based mesh solver [15] for ac-
celeration, our framework differs in the way that it can
automatically adapt geometric details to a scaled base sur-
face via incorporating similarity-invariant detail represen-
tation. Moreover, our detail reconstruction method is par-
ticularly suitable to material-dependent multi-resolution
editing while previous methods are generally difficult for
this purpose.
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6 Results and discussions

Based on techniques presented in Sects. 3 and 5, we im-
plement a multi-resolution editing tool for large scale
meshes. It can work on the single-resolution mode as well
as the multi-resolution mode. Our editing tool can run
interactively for moderate models with around 20k ver-
tices in the single-resolution mode. In the multi-resolution
mode, compared with local frame displacements, our
material-aware detail-reconstruction runs about 10–20%
slower.

When editing CAD models, material properties can
help certain feature regions to be better preserved. Fig-
ure 1c demonstrates such a task. The central feature re-
gion of the Mechpart model need to be preserved during
the resizing of the main body. We achieve this goal by
painting these feature regions with a large material valued
5 and perform non-uniform deformation with our tech-
nique.

Changing the value of material properties can lead
to different deformation effects under the same user in-
teraction. Figure 4 demonstrates several results obtained
with different material settings. The default value of
material properties is set to 1, and we have found the
range [13, 18] is enough to simulate most of real world
material-dependent deformations. We incrementally paint
material properties on the crus part and the foot part with
the value 2, and on the thigh part with the value 5. At
the same time, we get more and more realistic results as
shown in Figs. 4b–d.

Figure 5 illustrates and compares results obtained
with different detail representations. We simplify the ele-
phant model (Fig. 5a) and reconstruct geometric details
from a uniformly shrunken base mesh (Fig. 5b). This
experiment is fairly simple, but we can clearly distin-
guish the difference between the result generated with
our method (Fig. 5c) and that with local frame displace-

Fig. 4a–d. Deforming the right leg of the man model with different material settings

Fig. 5a–d. The ability of similarity-invariance is over-looked in ex-
isting detail representations

ment (Fig. 5d). Note that fine details around the ele-
phant’s ear are not well-preserved in Fig. 5d, due to
the lack of adaptation to arbitrary scaling. Figure 5c
and d are zoomed in two times for better visualiza-
tion.

Figure 6 shows the armadillo model kicking a soccer
ball, which is generated with the multi-resolution edit-
ing mode. We decimate the original model (170k ver-
tices) to a simplified version (15k vertices). We perform
three non-uniform edits on the both hands and the right
leg of the simplified model. The detailed edited ver-
sion is automatically reconstructed by our tool with the
help of similarity detail coefficients and material prop-
erties. See our video submission for the whole editing
process.
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Fig. 6a–d. After applying three non-uniform deformations, the armadillo model (a) is now ready to kick a soccer ball (b). d is the visu-
alization of material properties on the detailed mesh, which are automatically up-sampled from material properties specified by the user
on the base mesh (c)

7 Conclusions and future work
In this paper, we propose a novel technique to deform
the surface mesh non-uniformly by incorporating user-
specified material properties. This goal is achieved by
overloading previous material-independent discrete dif-
ferential operators and Poisson equations. Moreover, we
allow multi-resolution mesh editing in a material-aware
manner by incorporating a novel similarity-invariant de-
tail representation. Several real world examples demon-
strate that plausible material-dependent deformation re-
sults can be generated by our method easily. As pointed
out in Sect. 3.3, designing a tailored domain mesh for
a specific deformation task is a valuable research direc-
tion.

In Sect. 3.3, we have pointed out the relationship be-
tween material properties and the domain mesh. Exploring

how to design a tailored domain mesh for a specific de-
formation task is a valuable research direction. For mesh
editing, automatically estimating local transformations of
the handle from 2D mouse movement is an important
task for the user interface design. Although our sim-
ple pick-and-drag user interface is quite efficient for cer-
tain deformation tasks, it may be unsuitable for others.
We want to further explore in this direction. Direction-
dependent control is also an interesting topic for future
research.
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