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Abstract One crucial issue of multi-resolution surface
representations is how to effectively record and recon-
struct geometric details among surface levels. Standard
multi-resolution techniques encode details directly as lo-
cal displacements in the vertices, and may produce un-
plausible results when the base level endures large defor-
mations. In this paper we propose an alternative detail
representation and reconstruction scheme, based on lo-
cal transformations on a per-triangle basis. While more
storages are required, recording details as local transfor-
mations favors global coupling of geometric details and
allows for large-scale surface manipulations. By model-
ing the scale components of the surface modifications
as a set of deforming factors, detail-preserving recon-
struction results are achieved naturally under very large
deformations. We show that our techniques facilitate di-
verse surface editing tasks, including level-based filtering,
multi-level surface manipulation and detail re-targeting.
Comprehensive experimental results verify the efficiency
and robustness of our approach.

Keywords Multi-level Editing · Detail Representation ·
Surface Reconstruction · Large Deformation · Local
Transformations

1 Introduction

Surface representation is a central issue in freeform shape
design. With the rapid development of 3D scanning tech-
niques, processing massive and complex geometry mod-
els has become an increasing interest in computer graph-
ics community. Dealing with the combination of sim-
ple objects instead of one single complex object, will

Dong Xu · Wei Chen · Hongxin Zhang · Hujun Bao
State Key Lab of CAD&CG, Zhejiang University, 310027,
Hangzhou, China
Tel.: +86-571-88206680
Fax: +86-571-88206680
E-mail: {xudong,chenwei,zhx,bao}@cad.zju.edu.cn

undoubtedly facilitate such modeling tasks. The well-
established multi-resolution representations [45,22,28] with
the functionality to transform a given surface into a hi-
erarchical representation, favors efficient processing of
highly complex models. By decomposing a surface into a
sequence of levels with different details, users can choose
appropriate accuracy according to their intentions and
focus on relatively coarse levels without affecting other
geometric details. The new surface can then be recon-
structed by composing all detail levels with the base
level sequentially. In the context of surface editing, multi-
resolution surface representations offer an efficient detail-
preserving convenience with few user interactions.

In this paper, we propose a multi-level surface repre-
sentation scheme (Fig. 1). It allows different levels be de-
fined and manipulated independently and can be viewed
as an extension of traditional multi-resolution presenta-
tion. In terms of surface editing, our scheme imitates the
multi-layer image editing fashion, widely used in com-
mercial image processing software Adobe PhotoshopTM[1].
Like this multi-layer image representation, our repre-
sentation naturally provides an intuitive user interface
with simplified system architecture. Each level in our
representation is indeed a collection of transformations
over the base surface on a per-triangle basis. In this
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Fig. 1 A multi-level surface editing example.
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Fig. 2 A two-level deformation is composed of a modifica-
tion of the base surface (red) and the reconstruction of the
corresponding detailed surface (blue) (a). Since displacement
vectors are handled individually, the resulting detailed sur-
face shows an unnatural change (b). As a natural coupling
of the displacements, encoding the details with local trans-
formations leads to a more pleasing behavior of the detailed
surface, similar to [4] (c).

sense, each level can be regarded as the resultant sur-
face after applying some modification to the base sur-
face. Therefore, our representation can be seamlessly in-
tegrated with the existing modeling operations of stan-
dard geometric modeling and animation environment,
e.g. 3DS Max and Maya.

Similar to the recent work on multi-resolution repre-
sentation [5], the focus of this paper is the encoding of
the shape detail (Fig. 2). Traditionally, the detail sur-
face is represented as a displacement of the base surface.
Lots of work based on this observation have been en-
gaged in the detail-preserving surface representation and
editing. However, there still remain several difficulties
concerning the detail encoding. First, encoding local dis-
placements for each vertex individually lacks the neigh-
borhood coupling during surface reconstruction, as ad-
dressed by Botsch and Kobbelt [4]. Second, displacement
vectors are typically sensitive to the alteration of sur-
face orientation induced by editing operations. With lo-
cal frame displacement representation, sharp features are
likely suppressed after surface reconstruction. Besides,
this change will potentially cause instability of surface
reconstruction under large-scale deformations. Hence the
local frame displacements can not be too long and addi-
tional intermediate levels have to be inserted in regions
with complicated geometric details [16,23].

Recently, differential surface representations receive
many attentions and have been extensively used in mesh
editing and shape interpolation applications [2,30,44,37,
36]. Different from multi-resolution techniques that are
derived from the viewpoint of signal processing, these
differential-driven approaches basically utilize single sur-
face resolution and exploit the beautiful relationship be-

tween local differential properties and global shape. In-
spired by these innovative works, we propose to use an
affine transformation matrix to encode the details be-
tween the local frames of each triangle pair in the con-
secutive levels that share the same connectivity. Thanks
to current progress on solving large sparse linear system,
we can reconstruct the geometric details efficiently in a
global variational framework.

Overall our techniques improve traditional methods
upon three aspects. First of all, the problems arising from
independent encoding schemes are effectively avoided and
our global coupling scheme tends to produce more pleas-
ing results. Second, the new detail representation allows
each level contain details from all frequency bands. Thus
fewer levels are required for representing regions with
large scale geometric details. Third, our surface recon-
struction takes effect under large-scale modifications by
incorporating properly-defined deforming factors. Tra-
ditional multi-resolution techniques and differential do-
main approaches are rather missing the considerations
on surface scale during the surface reconstruction proce-
dure (cf. Section 3).

We present our work in the context of a triangular
mesh as it is recognized as the generic data structure in
most computer graphics applications. It is worth men-
tioning that implicit surfaces are alternative represen-
tations for geometric modeling. Interested readers are
referred to [7] and its references for details.

After reviewing the related work in the next section,
we describe the new representation elaborately in Section
3. Next, we explain how to apply it to diverse surface
modeling tasks. Experimental results are reported and
discussed in Section 5. Finally, we draw conclusions and
highlight future work.

2 Related Work

In this section we briefly review previous work on multi-
resolution surface representations and differential surface
representations. We then put more attentions on the re-
lated work of surface detail encoding and detail decom-
position.

Multi-resolution representations are widely ap-
plied in mesh editing [45], mesh morphing [26], mesh
compression [17,20] and detail transfer [?]etc. The origi-
nal emergence of multi-resolution surface representation
owes to the ideas of generalizing wavelet transforms to
representing meshes at multiple levels of detail [32,34].
In general, multi-resolution techniques can be roughly
classified into three categories concerning the regularity
of the surface connectivity, say semi-regular [9,28], ir-
regular [16,22] and regular meshes [14,33]. We refer the
reader to some representative papers [22,16] for further
details. Note that our focus is the irregular triangle mesh
throughout the paper.
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Differential surface representations, developed
recently, have become a blooming topic in surface mod-
eling [36]. Lipman et al. [30] and Sorkine et al. [37] pro-
pose to record details as Laplacian coordinates in ver-
tices. Yu and Xu et al. [44,43] employ discrete gradient
operator to reflect the local geometric variations. Both
schemes make elegant use of differential properties to
represent and manipulate surfaces in a globally varia-
tional framework. They also offer a reasonable detail-
preserving editing mechanism in terms of the reconstruc-
tion after surface modification. Additionally, these repre-
sentations enable the neighborhood coupling because the
detail encoding are induced by discrete Laplacian oper-
ators. Visually plausible results are achieved by solving
global Partial Differential Equations (PDEs). The least-
squares minimization reconstruction scheme distributes
detail (visual) distortions across the whole domain.

One challenge of surface modeling is to find local
shape descriptions which are invariant under rigid trans-
formations. Sheffer et al. [35] introduce the pyramid co-
ordinate based on a set of angles and lengths relating a
vertex to its immediate neighbors. In a similar spirit, Lip-
man et al. [31] makes full use of the first and second fun-
damental forms of surface, which are rotation-invariant,
to encode the details. The common motivation behind
all these representations [30,44,35,31] is to capture the
local shape information around each vertex and maintain
shape features under various editing operations.

Surface detail encoding. Multi-resolution repre-
sentations are designed to analyze and understand a com-
plicated surface by decomposing it into multiple levels
with different details. Because the detail information re-
flects the local intrinsic geometric properties, the geo-
metric details are commonly stored in local frames, con-
sisting of the surface normal and two tangent vectors [13,
12]. The local frame displacements can be assigned in a
per-vertex or per-triangle basis [22].

As stated in [23], displacement vectors having tangen-
tial components may lead to unfavorable results. There-
fore, [16] and [27] employ the normal-displacements by
suppressing the tangential components. The displace-
ments vectors are computed by shooting rays from the
base surface along its normal direction to the detailed
surfaces. Another different way [22,23] attempts to find
a base point on the base surface corresponding to each
vertex of the detailed surfaces. This scheme profits pre-
serving sharp features and avoiding resampling.

To prevent local self-intersections, [4] makes use of
the volume prisms spanned by triangles on the detailed
surface over the corresponding base points on the base
surface. Keeping the displacement volumes (scalar val-
ues) locally constant during a deformation leads to a
natural behavior of the detail features. This algorithm
utilizes a hierarchical iterative relaxation scheme to ful-
fill globally optimized surface reconstruction. Since its
volume-preserving constraint induces a non-linear recon-
struction operator, it may cause long computation time

for highly complex models. In this paper, we explore an
alternative way to achieve plausible volume-preserving
detail encoding.

Rather than encoding surface details as displacements
between the base and final surfaces, our approach uses
the local affine transformation between the local frames
of each triangle pair. The similar technique has been
successfully employed by Sumner and his colleagues for
deformation transfer [38] and mesh deformation by ex-
amples [39]. Its advantage lies in the fact that an affine
transformation is determined with respect to the local
frame on the per face basis. Therefore, it is invariant
to the modification of the base surface. In addition, the
ability to split a transformation into a rotation part and
a scaling part, supplies a more canonical way to manip-
ulate geometric details, especially for details inherently
implying certain rotation. Note that, the difference of our
method from their work is that we fulfill surface recon-
struction in a Poisson based global optimization mecha-
nism [44].

Combining a multi-resolution framework with a dif-
ferential surface representation is not new. In [44], multi-
resolution techniques have been employed to accelerate
computations. Botsch and Kobbelt [5,6] separate surface
details from a desired region of interest by traditional
detail encoding technique, and focus on using different
orders of the Laplacian operator to edit the base surface
to achieve different orders of smoothness. In our work, we
emphasize that the details can also be represented and
reconstructed using the same differential surface process-
ing framework [36] as for the base surface.

It is worth mentioning that the Laplacian coordinate
can also be used to record surface details. Sorkine and her
colleagues [37] show how to apply it for surfaces detail
transfer and combination. The potential difficulty is that
the Laplacian coordinate itself is not invariant to the
rotation of the base surface. Hence additional efforts have
to be engaged to avoid this problem.

Surface detail decomposition. In a multi-resolution
framework, the detail information between consecutive
levels has to be extracted in advance and reconstructed
after modifications of the base level. It can be accom-
plished by either semi-regular mesh generation [17,27],
irregular mesh simplification [18,22], or surface smooth-
ing techniques [23].

In our multi-level surface representation, we also re-
quire well-designed smoothing operators to decompose
surface levels. Following the pioneer work of Taubin[40],
mainstream smoothing algorithm adopts weighted neigh-
borhood averaging. The motivation of this kind of ap-
proaches is to minimizing a sort of surface energy, e.g.,
the membrane energy or the thin-plate energy [42,21].
These surface energies typically lead to a PDE based
formulation, and have strong relationships to the differ-
ential surface representation. Desbrun et al. [8] perform
integration on the diffusion equation implicitly to achieve
a larger time step than explicit integration [40] and gain
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unconditional stability. Recently, bilateral filtering has
been successfully adapted to geometry denoising for bet-
ter feature-preservation [10,19]. Built upon aforemen-
tioned concerning, a variant of two-step smoothing me-
thod [44] is included in our approach. Again, the extrac-
tion of details falls into the differential representation
framework.

3 Multi-level differential surface representation

Similar to [45,22,16], our multi-level surface framework
consists of four ingredients, i.e., surface decomposition,
detail representation, surface modification (editing) and
surface reconstruction. The conceptual overview of our
approaches are depicted in Figure 3. To simplify the il-
lustration, only two levels are shown.

   Detail Representation and Reconstruction With Local Transformations

The Base Level

The Deformed Base Level

Deformation

Decomposition

Reconstruction

The Initial Surface

The Modified Surface The Deformed Detail Level

The ith Detail Level

Deformation

Fig. 3 The conceptual overview of our approaches.

3.1 Preliminaries

We denote an arbitrary non-degenerate 2-manifold tri-
angular mesh by S = (K, V ), where V is the set of
three-dimensional vertex coordinates, and K describes
its vertex connectivity. A potential field f on S can be
defined as a piecewise linear function f(v) =

∑
i fiφi(v),

where fi is a scalar, φi(·) is a piecewise linear basis func-
tion with value 1 at vertex vi and 0 at all other vertices.
By setting fi for three vertex coordinates vj

i (j = x, y, z)
separately, S can be viewed as a triple of discrete scalar
fields (Sx, Sy, Sz) defined on an abstract mesh, the do-
main mesh of S, which shares the same vertex connec-
tivity with S. Two meshes are regarded as compatible if
they have the same domain mesh.

We define the discrete gradient operator of an arbi-
trary scalar field f on S as:

∇f(v) :=
∑

i

fi∇φi(v) (1)

The resultant discrete vector field has a constant vec-
tor in each triangle. The constant vector is coplanar with

the triangle. Therefore, the discrete divergence of ∇f(v)
at vertex vi can be conducted as:

div(∇f)(vi) :=
∑

T∈NT (vi)

(∇f(T ) · ∇φi |T )AT (2)

where NT (vi) denotes the set of 1-ring neighboring
triangles of vi and AT is the area of triangle T . This
yields a discrete Laplacian operator on each vertex vi:

∆f(vi) :=
∑

vj∈Nv(vi)

1

2Aj

(cotBj + cotCj)(fi − fj) (3)

Here, Nv(vi) denotes the set of 1-ring neighboring ver-
tices of vi, Aj is the area of the jth triangle, and Bj and
Cj are two angles opposite to the edge (vi, vj).

If we apply the discrete gradient operator to the three
aforementioned scalar fields Sj(j = x, y, z) separately,
we get three gradient vector fields:

∇Sj(v) =
∑

i

vj
i∇φi(v)(j = x, y, z) (4)

Note that each ∇Sj is a piecewise constant vector field,
and thus can be regarded as the guidance vector field w

involved in solving the discrete Poisson equation:

∆f = div(w), f |∂Ω = f∗|∂Ω (5)

where f is the scalar field to be computed, f∗ provides
the desired value on the boundary ∂Ω. The discrete Pois-
son equation can be formulated as a sparse linear system.
For simplicity, we denote the operation of solving the
discrete Poisson equation with a guidance vector field
and specified boundary conditions as Poisson operator

P . Manipulating the guidance vector field w will result
in varied reconstructed surfaces, which is the kernel of
the Poisson-based gradient field manipulation approach
[44].

Assume that we specify one or several vertices in S to
construct ∂Ω and f∗|∂Ω, and let w be ∇Sj(j = x, y, z)
respectively, we have f = P∇Sj. On one hand, Sj sat-
isfies the discrete Poisson equation (Eq.5), and hence is
one of its solutions. On the other hand, Poisson opera-
tor P on S has a unique solution because S is a non-
degenerate and 2-manifold surface [11]. Thus, solving
three Poisson equations ∆f = div(∇Sj)(j = x, y, z) re-
sults in the original scalar fields Sj(j = x, y, z), or say,
P∇Sj = Sj(j = x, y, z).

3.2 Detail Representation

In our multi-level framework, all levels share the same
vertex connectivity and the local affine frames are de-
fined on a per-triangle basis. Each local frame is com-
posed of an origin located at one vertex plus the tri-
angle normal and two edges sharing that vertex. Given
two local affine frames F0 and F1 defined in two trian-
gles respectively, a unique 3 × 3 transformation matrix
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H describing the non-translational portion of the inbe-
tween affine transformation can be determined so that
F1 = H(F0). H can be decomposed as H = RS, where
R is a rigid rotation transformation and S corresponds
to a pure stretch of H [15].

For two compatible surfaces S0 and S1, we regard the
local transform H as the details between each pair of tri-
angles. Intuitively, local transformations represented by
3×3 transformation matrices should have more freedom
and flexibility than the local displacements (3×1 vector)
or local prism volume (1 scalar). To validate its feasi-
bility on representing details, let us simply think about
a triangle in the base surface. If we transform its local
frame with one local transformation, we get another lo-
cal frame. By fixing the position of one vertex, the new
modified triangle can be uniquely determined. With tra-
ditional multi-resolution methods, the altered triangle is
computed by moving the triangle vertices with the local
displacements directly. One can immediately find that
our new representation with local transformations will
greatly facilitate the construction of multi-level surfaces
with large detail differences. For the extreme case de-
picted in Figure 11, multiple intermediate levels have
to be inserted with local displacements, while the local
transformations do not necessarily need. The reason be-
hind is that local displacements are coupled individually
although they are also recorded in local coordinate sys-
tems. Local transformations build a natural connection
between two local frames and favor arbitrary rotation
and shifting in a plausible way.

For all triangle pairs between S0 and S1, we can calcu-
late a set of affine transformation matrices. We abstract
the set of transformations as an affine transformation
operator H = {Hk, k = 0, 1, 2, ..., NT}, where NT is the
number of triangles. Two affine transformation operators
Hj and Hk can be combined into a single transformation
operator HjHk by composing the matrices pairwise. For
the sake of explanation, we represent and simplify the
concatenation of a sequence of affine transformation op-
eratorsHiHi−1...Hj+1Hj as Hj,i. We adopt this notation
in the rest of this paper.

Let us build the new multi-level surface representa-
tion with local transformations step by step. If we apply
H0 to ∇Sj

0(j = x, y, z), three new discrete vector fields
are obtained. These new discrete vector fields can be
used as the guidance vector fields for reconstructing a
new surface S1 = PH0∇S0. If we apply another affine
transformation operator H1 to ∇S1 followed by the Pois-
son operator P , a new surface S2 = PH1∇(PH0∇S0) =
PH1H0∇S0 can be computed. Repeating the same pro-
cedure n times, a set of surfaces Si(i = 0, 1, 2, ..., n) is
constructed, where

Si = PHi−1Hi−2...H1H0∇S0 = PH0,i−1∇S0 (6)

In each step, the affine transformation operator Hi de-
termines the difference between two adjacent surfaces Si

and Si+1 implicitly. Here, Poisson operator P and dis-

crete gradient operator ∇ provide fixed operations and
Hi(i = 0...n − 1) are controllable operators.

We define the list of Sn = (S0,P ,Hi(i = 0, 1, ..., n− 1))
as the multi-level representation in the context of local
transformations. In this way, Sn is viewed as the com-
bination of P , S0 and the concatenation of a sequence
of affine transformation operators, rather than a single
surface. We call S0 the base level since it accounts for the
basic shape and vertex connectivity of the level represen-
tation. Meanwhile, each Hi is regarded as the ith detail

level. All levels share the same vertex connectivity and
are composed sequentially with respect to specified rules
of surface composition. Figure 4 illustrates one multi-
level surface representation consisting of one base level
and four detail levels.

(a) (b)

(c) (d) (e)

Fig. 4 Illustrations of the multi-level representation. (a) One
base level (at the top-left) and four detail levels; (b) Compo-
sition of all levels; (c)The logical orders take effect; (d) The
influence weight of the wheel-like detail level is changed; (e)
The mask attribute of the taper-shape detail level is set as
invalid.

3.3 Surface Decomposition

To build a sequence of multi-resolution surfaces begin-
ning from an initial surface, traditional approaches resort
to coarse-to-fine subdivision or fine-to-coarse decimation
schemes. Given one certain subdivision rule or decima-
tion algorithm, the set of multi-resolution surfaces is ap-
proximately determined. While this seems to ease the
constructions of multi-resolution surfaces, it neglects the
truth that there are varied descriptions and decompo-
sitions to one surface. From the definition of our new
multi-level surface representation, it is easy to see that
each level can contain details from all frequency bands,
or say, high frequency bands do not necessary correspond
to the detail levels and vice versa. This is quite different
from standard multi-resolution surface representations.
While this characteristic makes the surface decomposi-
tion nontrivial, it certainly implies that we are offered
more freedom on the choices of detail levels.
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However, at the time of paper writing, there is not
appropriate algorithms to extract desirable levels intelli-
gently and automatically. We will not address this prob-
lem here and leave it as future work. We have studied
three techniques to peel each level semi-manually, whose
kernel is a constrained smoothing algorithm.

The first one iteratively performs multi-pass mesh
smoothing on the input surface. In each pass, the resul-
tant surface can be viewed as an intermediate base mesh
while the residual part is extracted through mesh fil-
tering techniques. The difference between successive sur-
faces are converted into a set of affine transformation ma-
trices, yielding corresponding detail levels. We call this
approach unsupervised global decomposition. Its effect
is dominated by the chosen mesh processing algorithms.
For example, Figure 11 (b) shows the base level after
decomposing the Bunny model (Figure 11 (a)) into two
levels by means of the smoothing operation.

The second one is called supervised local decompo-
sition, which allows users to specify parts of interest. It
is similar to the cut-and-paste mesh editing techniques.
Again, surface details contained in the selected parts are
peeled from the surface through mesh smoothing. Each
detail part can be extended to a new detail level by as-
signing an appropriate influence weight to each triangle.
Figure 5(a-f) demonstrate the decomposition procedure
for the Dragon model. The final multi-level representa-
tion is composed of the base level (Figure 5(f)) and six
detail levels generated in each step. We adopt Poisson-
based smoothing method [44] to decompose the Dragon
model. Important smoothing parameters are listed in Ta-
ble 1. Please see our video submission for the decompo-
sition process of the Dragon model.

Step Type σf/‖e‖ Bdy Smooth
Step 1 (Fig. 5 (b)) Smooth 1.0 false
Step 2 (Fig. 5 (c)) Membrane true
Step 3 (Fig. 5 (d)) Smooth 3.0 false
Step 4 (Fig. 5 (e)) Membrane true
Step 5 (Not shown) Smooth 6.0 true
Step 6 (Fig. 5 (f)) Smooth 6.0 true

Table 1 Smoothing parameters for the decomposition of
the Dragon model. ”Smooth” means decomposition by mesh
smoothing while ”Membrane” means decomposition by com-
puting the membrane surface. σf is the spacial radius for
smoothing [44] and expressed as ratios of the mean edges
length ‖e‖. ”Bdy Smooth” refers to whether performing
boundary smoothing.

Instead of focusing on the details, the third one fulfills
surface decomposition by first determining the base level.
The base level can be either copied from some target sur-
face or generated by users with existing surface editing
tools such as the FFD (free-form deformation) tool. The
transformations between the local affine frames of the
source surface and the desired surface can be used to
reconstruct a detail level with respect to the desired sur-

face, yielding a customized surface decomposition with
one base level and one detail level. Repeating the same
operations several times, a surface decomposition with
multiple detail levels can be obtained. Note that, all lay-
ers in Figure 4 are generated manually.

In practice, the choice of appropriate surface decom-
position method depends on the tasks at hand.

3.4 Detail Reconstruction

Basically, multi-level surface reconstruction can be viewed
as composing a base level with multiple detail levels. If
we seek to construct one surface containing j detail lev-
els, we first select S0 as the base surface and obtain a new
guidance vector field w = H0∇S0. We then reconstruct
the final surface

Sj = Pw = PH0,j∇S0 (7)

In principle, each detail level determines the rota-
tion and stretch to the local affine frame in each trian-
gle and implies a position offset on each vertex. Thus,
the absolute geometry Di of the ith detail level can be
reconstructed by applying P to Hi∇S0 directly, while
Si denotes the absolute geometry of the ith accumu-
lated surface PH0,i∇S0. The transformation from S0 to

Di is invertible, i.e., H−1
i can be used to reconstruct

S0 from Di by solving the discrete Poisson equation
∆f = div(H−1

i ∇Di) with specified boundary conditions.
Specifically, if Di is changed to D∗

i using any surface
editing tool, without altering the vertex connectivity, we
define the non-translational transformation matrices be-
tween Di and D∗

i as the deformation operator F .
Here, special care must be taken when a large defor-

mation F0 changes the size of the base level drastically.
For any point x in the source base level, its neighbor-
hood N(x) is scaled by the ratio of the area of F0(N(x))
to that of N(x), denoted by r. If we regard the jth de-
tail level as a height field defined on the base level, the
uniformly scaled jth level PH0,j∇(F0S0) yields a height
field defined on the transformed base level. Hence, the ra-
tio between the corresponding detail heights in the jth

source and transformed levels is ( lim
N(x)→x

r)
1

2 . According

to the definition of the levels, the height in each triangle
is a constant value, yielding:

scale =
h(∆d)

h(∆s)
=

(
Area(∆d)

Area(∆s)

) 1

2

(8)

where h(△d) and h(△s) are the heights of the source
and deformed triangles, and Area(△d) and Area(△s)
are their areas respectively. The factor scale is used to
compensate the scaling along the normal axis of the local
affine frame during the reconstruction procedure. We call
it the deforming factor, which allows for robust recon-
struction when a large deformation is imposed to change
the area of the base surface dramatically. The proposed

Xu Dong
We adopt Poisson-

Xu Dong
based smoothing method [44] to decompose the Dragon

Xu Dong
model. Important smoothing parameters are listed in Ta

Xu Dong
ble 1.

Xu Dong
Table 1
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(g) (h)(e) (f)

(a) (c) (d)(b)

Fig. 5 Surface decomposition of the Dragon model. (a) is the original surface; (b)-(f) illustrate the decomposed surface after
1,2,3,4 and 6 steps; (g)-(h) show another version of surface decomposition.

scheme ensures that the reconstructed surface is similar
to the original surface. Our experiments indicate that
it produces appealing results for nonuniform scaling as
well.

4 Applications

The new representation inherits the advantage of stan-
dard multi-resolution representations. Each level can be
freely stored, loaded, modified and copied. With local
transformations, the manipulation and modification of
surface components (levels) are reasonably intuitive and
flexible. If multiple relevant levels are preserved and placed
within the user interface simultaneously during the edit-
ing procedure, the most user-freedom is provided. For
instance, users can easily recover a previous result after
several editing operations by applying inverse operations
to each relevant level individually.

4.1 Level-based Filtering

More flexibility of local transformations comes with a set
of well-defined level attributes in each detail level. Ba-
sically they are fulfilled through the interpolation and
scaling of the affine transformation H. Mesh filtering
operations such as transform-based suppression, detail
enhancement, inverted interpolation and band-pass fil-
tering are amenable by exploiting the power of detail
attributes. In this section we introduce three attributes.
Other attributes can be exploited depending on the tasks
at hand.

The first attribute is the logical order of each tri-
angle in each detail level, which determines the compo-
sition order of the corresponding affine transformation
matrix. Suppose that there are (n − 1) levels, we de-
note Lk as the index map of the kth triangle from the
ordered index set {1, 2, 3, ..., n − 1} to an unordered in-
dex set {Lk(1),Lk(2),Lk(3), ...,Lk(n − 1)}. Note that
Lk(i) might be an invalid value, indicating that the cor-
responding affine transformation matrix will be omitted
during surface reconstruction. For example, if only one
detail level is allowed everywhere, a new surface can be
generated as shown in Figure 4(c).

Inspired by the concept of transparency in image
processing, we use an influence weight to indicate the in-
fluence of transformation operator on each triangle. For
a given affine transformation matrix H = RS and a in-
fluence weight a, the modified transformation matrix is:

Ha = Ra((1 − a)I + aS) (9)

where I is the identity matrix, and Ra is the rotation ma-
trix computed by linearly interpolating the rotation an-
gles of R in the form of quaternions. If influence weights
of one detail level are larger than 1, the resultant effect
is equivalent to performing local detail enhancement as
surface details are commonly dominated by the rotation
and stretch parts of local affine frames. In contrast, detail
suppression is feasible by letting the influence weights fall
into the range [0, 1]. When we alter R to R−1 and keep
S unchanged, a concave effect (Figure 4(d)) is induced.
Furthermore, if we identify a subregion of the detail level,
we can construct a new detail level by assigning a full in-
fluence weight to each triangle of the subregion and an
empty influence weight to each triangle of the residual
part. In this way, arbitrary sized surface details can be
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extracted under the framework of the level representa-
tion.

In addition, we define a mask attribute δ for each
detail level to control its visibility. If it is set to be 0, the
corresponding affine transformation operator is regarded
as the identity operator in the concatenation procedure.
In Figure 4(e), the taper-shape detail level is hidden by
simply invaliding its visibility.

If we integrate the aforementioned three basic at-
tributes into the affine transformation operators and omit
the subscription of Sn, the extended multi-level represen-

tation can be rewritten as S = (S0,P , Ĥ0,n−1), where:

Ĥi = {(δ ·Ha
k + (1 − δ) · I)|k = L−1

k (i)} (10)

Accordingly, the composition rule can be determined
by arbitrarily assembling and changing the logical order,
visibility and influence weight associated with each detail
level.

4.2 Multi-level Surface Editing

Representing and editing a surface with levels requires
several basic operations, such as initialization, insertion,
removal, and collapse.

Initialization An arbitrary 2-manifold triangular mesh
can be initialized as the base level. A detail level asso-
ciated with the base level can be initialized by setting
the identity matrix in each triangle.

Extraction Cut-and-paste is a useful operation. The
first step involved is to extract the desired details
corresponding to a part of one detail level or a com-
plete detail level. For the former, the selected part
can be extended to a new detail level by adjusting
influence weights as described in Section 3.3.

Insertion The user can select an existing detail level
and insert it into the surface. If the inserted level is
Ĥk and is to be placed between the jth and j + 1th
detail levels, the resultant surface is:

S = PĤj,n−1ĤkĤ0,j−1∇S0 (11)

Collapse Multiple adjacent detail levels can be packed
into a single level by concatenating affine transfor-
mation operators together with the level attributes.
Time and memory consumption during composition
and editing are greatly reduced. It also allows users to
customize a meaningful surface component consisting
of multiple levels.

Removal A detail level can be either deleted or disabled
by assigning its visibility attribute to 0. In the lat-
ter manner, the detail level is kept in the user inter-
face and users can reload it at any time by setting a
valid visibility attribute. This scheme facilitates use-
ful editing operations such as Redo and Undo.

For multi-level cases, two detail editing modes are
exploited, namely direct and indirect editing operations.

Both are equivalent to performing a sequence of defor-
mation operators Fj to each level. The former aims to
directly edit the absolute geometry of the base level or
the recovered surface from detail levels using traditional
surface editing techniques. The indirect one alters the
affine transformation operator associated with each de-
tail level, affecting the underlying surface indirectly. For
example, users can choose to manipulate the correspond-
ing transformation operator, e.g., changing the rotation
angle or the coefficients of the stretch part. Figure 6 de-
picts an multi-level example after making a deformation
to the base surface.

(b)(a) (c)

Fig. 6 Multi-level editing of the Dragon model. (a) The base
surface is deformed; (b) The resultant surface with the sec-
ond, third and fourth detail levels; (c) The reconstructed sur-
face with all detail levels.

Users can also choose to edit details locally, i.e., ma-
nipulate some subregions of one detail level, such as rota-
tion, translation, scaling, local detail enhancement, sup-
pression and cut-and-paste. Figure 7 demonstrates the
results after applying level-based filtering to the Dragon
model by means of inversion, enhancement and removal
operations. For more results, please view our video sub-
mission.

(d)

(b)(a)

(c)

Fig. 7 Level-based filtering for the Dragon model. (a) The
first detail level is enhanced; (b) The second and third detail
levels are inverted; (c) The sixth detail level is removed; (d)
Combined results of (a),(b) and (c).
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4.3 Detail Re-Targeting

To fulfill detail transfer between two arbitrary surfaces,
three steps are required. Suppose that we would like to

transfer the jth level Ĥj from the source surface to the
target surface whose base levels are Ssrc and Sdst. The

first step is to extract Ĥj and construct a new surface

level PĤj∇Ssrc. If two surfaces are not compatible, the
second step is to build an explicit inter-surface mapping
between them. For two disc-like surfaces, we can accom-
plish it through planar parameterization. If semantic fea-
tures need to be aligned, advanced mesh parameteriza-
tion techniques such as [25] can be adopted. For surfaces
that are not disc-like, other domains such as the spherical
domain can be employed to establish inter-surface cor-
respondence. After the inter-surface mapping is built,
we apply the remeshing operation to Sdst, so that its
vertex sampling density is no less than that of Ssrc. We
then re-sample Ssrc using the vertex connectivity of Sdst.
For each triangle of the resultant base level, we identify
its counterpart in Sdst. The transformation matrices be-
tween the local affine frames of the source and trans-
formed surfaces, which make two surfaces compatible,
are denoted as Msrc→dst. It yields:

Sdst = PMsrc→dstĤj∇Sdst (12)

Figure 8 illustrates an example of detail transfer from
the Igea model to the Mannequin model.

Fig. 8 Detail transfer from the Igea model to the Mannequin
model.

To blend details from two surfaces, an inter-level blend-
ing operation is performed. The interpolated result with

a weight a is Sa
dst = PĤa∇Sdst, where Ĥa is the interpo-

lated transformation operator between Msrc→dstĤj and

some detail level of the target surface Ĥ∗

k. In Figure 9,
four selected subregions of the Skull model are extracted.
They are formulated as four detail levels and transferred
to the Mannequin model. Specifically, the part composed
of text is transferred without any change. The details ly-
ing on the forehead are inverted. Meanwhile, two noses
are partly enhanced and suppressed.

5 Implementations and Results

We implemented the algorithm on a PC with an Intel
P4 2.6G HZ CPU and 512MB memory. As we under-

+

Fig. 9 Detail blending between the Skull model and the
Mannequin model.

stand, the computational complexity of surface decom-
position is usually higher than that of the surface re-
construction. This is an important feature since for in-
teractive modeling the reconstruction has to be done in
real-time while the requirements for the decomposition
are not as demanding. Therefore, we list the average time
of reconstructing one surface in Table 2. We adopt a di-
rect sparse solver [41] to solve the discrete Poisson equa-
tions. The items Factor and Solve denote the timings
for Cholesky factorization and back substitution respec-
tively. Since our detail representation records 9 floating
point numbers for each triangle, the memory consump-
tion is approximately 6 times larger than those of lo-
cal displacements. In practice, we adopt a sparse data
structure that only records non-identity matrices. This
scheme significantly reduces the memory costs, especially
for levels only containing a small region of interests.

Models #V #F Factor Solve
Fandisk 6475 12946 0.123 0.029
Skull 13635 26949 0.225 0.060
Bunny 25120 50236 0.594 0.081
Igea 33993 67982 0.828 0.094
Plane 66049 131072 1.610 0.231
Dragon 109541 219082 3.078 0.368

Table 2 Timing statistics (in seconds) in our experiments.

As discussed in Section 4.3, inter-level mapping is re-
quired to make two surfaces compatible. For the exam-
ple shown in Figure 9, we adopt the LSCM method [29]
to parameterize both levels into the planar domain and
align selected feature vertices by means of a 2D FFD
tool. Then, constrained relaxation is performed to re-
duce parameterization distortion, which is similar to [25].
To accomplish detail transfer illustrated in Figure 8, we
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(a) (b) (c) (d) (e)

Fig. 10 Applying a deformation to the Fandisk model. (a) The original model; (b) The base level; (c) Deformed base level;
(d) Reconstructed model with local frame displacements; (e) Reconstructed model with our approach.

manually select 20 feature vertices and adopt the scheme
proposed in [24] to produce the cross-parameterization.

The sampling density of the target level may not be
sufficient to accommodate the fine details of the source
level. In this case, we need to remesh the target level.
We first compute the sampling density for each vertex of
both levels as:

D(v) = (1 + valence(v))/
∑

Tj∈N(v)

Area(Tj) (13)

where valence(v) is the number of neighboring ver-
tices of v. We then interpolate the sampling density across
triangles by barycentric coordinates. Thereafter, we iter-
atively split the edges of the target level whose sampling
density at the middle point is less than that of the source
level, till no such edge exists. We find this simple scheme
works quite well in all our examples. More complicated
and flexible resampling methods, such as [3] can be ap-
plied if sharp features need to be transferred.

Figure 10 demonstrates the capability of our approach
to preserve sharp features. We apply smoothing opera-
tions to decompose the Fandisk model (Figure 10 (a)).
The resultant base level (Figure 10 (b)) is deformed to
Figure 10 (c). The reconstructed surface with local frame
displacements is illustrated in Figure 10 (d). Apparently,
the result with our approach (Figure 10 (e)) better re-
flects the imposed deformation.

In Figure 11, one detail level with a large amount of
details is first decomposed from the Bunny model (Fig-
ure 11 (a)) by means of the approach described in Sec-
tion 3.3, yielding Figure 11 (b). After applying defor-
mation to the base surface, we obtain Figure 11 (c).
By composing the extracted detail level with the al-
tered base level, a modified surface is generated as shown
in Figure 11 (d). This example demonstrates that our
detail representation is capable of encoding very large
amount of geometric details (including the two ears) into
one single detail level. Because these details are repre-
sented by very long displacement vectors, existing detail-
reconstruction methods are hard to deal with this two-
level case.

Finally, we demonstrate the effect of the deforming
factors in Figure 12. In the first experiment, we keep the

Dragon tail part of the base level fixed, and shrink the
head part significantly. Figure 12 (a) and (b) show the
reconstructed results with and without the deforming
factors. Note that self-intersections appear in Figure 12
(b). In another example, we keep the Dragon head part
of the base level unchanged and enlarge the tail part
dramatically. Figure 12 (c) and (d) compare the results
with and without the deforming factors. Note that geo-
metric details are suppressed in Figure 12 (d). Because
the deforming factors properly resize the component of
geometric details along the normal direction, the corre-
sponding results are more visually pleasing. Fore more
results, please view our video submission.

6 Conclusions and Future Work

This paper makes three technical contributions. We first
propose a new affine matrix based detail representation.
This new detail representation scheme offers great free-
dom on the control over surface shape and details. Since
geometric details are encoded in a global variational frame-
work, problems arising from independent encoding schemes
adopted in traditional multi-resolution techniques are ef-
fectively avoided. We then introduce a novel multi-level
surface representation that is compatible with most ex-
isting surface editing operations. The corresponding sur-
face reconstruction technique is fully adapted to the sur-
face scaling imposed on the base level. We demonstrate
the efficiency of our new approaches with comprehensive
experiments, including level-based filtering, multi-level
surface editing and detail re-targeting. We believe that
the proposed detail representation opens up the oppor-
tunities to offer convenient user interface involved in sur-
face modeling. An interesting topic arising from it is the
intelligent understanding and editing of surfaces.

One potential limitation of the new representation
is the requirement that two levels have the same ver-
tex connectivity, which demands parameterization and
remeshing operations in the reconstruction procedure.
Although not exposed in this paper, we have worked on
this issue in recent research and found that adopting dy-
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(a) (b) (c) (d)

Fig. 11 Two-level editing of the Bunny model. (a) The original model; (b) The base level; (c) The deformed base level;
(d) Reconstructed model with our approach. Note that a large amount of details are contained only in a single detail level.
Existing detail-reconstruction methods are hard to deal with this two-level case.

namic topological hierarchies is probably a promising so-
lution. The preliminary results are quite inspiring. In ad-
dition, investigating a better similar-transform-invariant
detail representation is in our near future schedule. We
also plan to find an optimal way to perform out-of-core
mesh editing for very complicated surfaces. Reducing the
memory cost by incorporating matrix compression tech-
niques is also a valuable topic.
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