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Abstract

In this paper, we propose a novel shape interpolation approach
based on Poisson equation. We formulate the trajectory problem
of shape interpolation as solving Poisson equations defined on a
domain mesh. A non-linear gradient field interpolation method is
proposed to take both vertex coordinates and surface orientation
into account. With proper boundary conditions, the in-between
shapes are reconstructed implicitly from the interpolated gradient
fields, while traditional methods usually manipulate vertex coordi-
nates directly. Besides of global shape interpolation, our method is
also applicable to local shape interpolation, and can be further en-
hanced by incorporating with deformation. Our approach can gen-
erate visual pleasing and physical plausible morphing sequences
with stable area and volume changes. Experimental results demon-
strate that our technique can avoid the shrinkage problem appeared
in linear shape interpolation.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modelling—object representations

Keywords: Shape Interpolation, Trajectory Problem, Domain
Mesh, Poisson Equation, Gradient Field Manipulation

1 Introduction

Shape interpolation, also known as shape blending or morphing,
has been widely applied to various aspects of computer graphics
industry. Given two input models, shape interpolation can generate
a sequence of intermediate shapes which gradually change from the
source shape to the target one. It is one of the basic tools to enhance
visual effects in computer animation. Shape interpolation can also
be applied in industrial design to forecast new product shapes from
knowns [Chen and Parent 1989].

It is well-understood that there are two major issues in B-rep
(boundary representation) based shape interpolation [Alexa 2002;
Lazarus and Verroust 1998]. The first is how to find a feature pre-
serving correspondence map between the given models, known as
the correspondence problem. The second is how to interpolate the
positions for each pair of corresponding vertices along predeter-
mined paths, known as the trajectory problem. Most of previous
B-rep based algorithms (e.g. [Kanai et al. 2000; Kraevoy and Shef-
fer 2004; Praun et al. 2001]) are mainly concerned with the first
issue while simply adopting linear interpolation to generate vertex
trajectories. However, as illustrated in Figure 1, the linear shape
interpolation may suffer the shrinkage problem even though the
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correspondence map has been correctly established. The reason
is that the large scale rotations, as non-linear factors, can not be
correctly expressed by linear interpolation. Furthermore, undesired
local wrinkles may appear due to the inconsistent displacement of
neighboring vertices.

In this paper, we focus on the trajectory problem of 3D mesh mor-
phing. We assume the correspondence map has been established
using existing methods [Kraevoy and Sheffer 2004; Praun et al.
2001; Schreiner et al. 2004]. Our key observation is that the uni-
form change of surface orientation plays an important role in the
quality control of morphing process. Therefore, local orientation
should be explicitly considered when shape interpolation methods
are designed. Although surface normal is a local differential prop-
erty, which can be easily determined, it is nontrivial to generate
optimal global shapes with surface normal constraints.

The Poisson equation possesses an elegant characteristic to bridge
among local differential properties and global effects. Recently,
it has been successfully applied in computer graphics applica-
tions [Peréz et al. 2003; Stam 1999]. Yu et al. [2004] propose a
mesh editing technique with Poisson-based gradient field manip-
ulation. Inspired by their work, input models in our shape inter-
polation approach are treated as different scalar fields defined on
a common domain mesh. The gradient field manipulation is then
applied to control desired vertex positions and surface orientations
implicitly in the morphing process.

This paper makes two major contributions. First, we formulate the
trajectory problem as gradient field interpolation, and propose a
novel shape interpolation approach based on the Poisson equation.
The in-between shapes are reconstructed from the interpolated gra-
dient fields. As a global optimizer, the Poisson equation can effec-
tively attenuate the gradient field inconsistency introduced by local
interpolation, which avoids the appearance of local wrinkles. Sec-
ond, we propose a non-linear gradient field interpolation algorithm
based on polar decomposition, which explicitly considers local sur-
face orientations and stretch.

We show the effectiveness of our method by several aesthetic and
physical plausible morphing sequences, which outperform the re-
sults generated by linear shape interpolation. Moreover, we demon-
strate the application of our method to local control of shape mor-
phing. Incorporating with deformation, our shape interpolation
method provides additional user controls, yielding versatile visual
effects.

1.1 Related work

The consideration of trajectory problem can date back to the work
of Sederberg and Greenwood [1992], which provides a physical
based approach of polyline morphing. In that work, the deformation
of in-between shapes are decomposed into stretch and bend. Based
on this observation, their method interpolates edge length and an-
gles between adjacent edges rather than vertex location. Later,
Sederberg et al. [1993] propose a geometric algorithm with global
optimization to ensure these blended polylines are close without lo-
cal self-intersection. A generalization for 3D meshes is given by
[Liu and Wang 1999]. However, the final morphing results are



Figure 1: Shape interpolation comparisons. The left most column
shows the two input models. The top row lists the resultant images
of linear interpolation, and the bottom row shows our results.

dependent of the computation order of dihedral angels and edge
length.

As a well-known fact, it is uneasy to handle large scale rotations in
B-rep based morphing. Many practical tools usually require heavy
user interactions to achieve this goal. In literature, Lee et al. [1999]
provide a multi-resolution based framework that decomposes the
shape information into different level of details for interpolation.
However, it needs additional cost to build hierarchical structures
and complex correspondence maps. Alternatively, Hu et al. [2004]
propose an automatic approach to compute the vertex pathes by
minimizing the strain energy with a complex non-linear optimiza-
tion process.

To address this problem, several researchers consider the interior
information of given shapes and propose methods to control lo-
cal volumes distortions. Shapira and Rappoport [1995] propose
a 2D morphing method based on star-skeleton representation. By
using the polar decomposition [Shoemake and Duff 1992], Alexa
et al. [2000] introduce a generic shape interpolation approach be-
tween two compatible 2D triangulations or 3D tetrahedralizations.
It requires additional computing cost for interior constraints and
it is nontrivial to obtain satisfied compatible tetrahedralizations of
given meshes. Recent work of Surazhsky and Gotsman [2003] in-
terpolates the mean value barycentric coordinates for 2D morphing.

Alternatively, local shape representation is a good choice to control
local orientation and stretch for shape interpolation. Sheffer and
Kraevoy [2004] propose a local representation, called pyramid co-
ordinates, which is invariant under rigid transformation. Based on
it, they present a morphing method by linear interpolating the com-
ponents of pyramid coordinates and achieve comparable results to
ours. However, the reconstruction process from pyramid coordi-
nates to vertex coordinates is time-consuming, since this method
requies to solve a non-linear system iteratively.

Recently, differential mesh representations , such as Laplacian co-
ordinates [Lipman et al. 2004; Sorkine et al. 2004] and the Poisson
equation based method [Yu et al. 2004], are successfully applied
to mesh editing. These PDE based methods share the common as-
pect that target edited models are reconstructed from least-squares
minimization of modified differential properties. Since differential
properties are sensitive to non-translational transformation, [Lip-
man et al. 2004; Sorkine et al. 2004; Yu et al. 2004] propose dif-
ferent approaches to translate user interaction into local transforms
to obtain desired differential properties. In [Yu et al. 2004], local
transforms is specified by user to control uniform scale and rota-
tion. [Lipman et al. 2004] estimates rotations of the local frames
from the underlying smooth surface, but does not consider scale.

[Sorkine et al. 2004] implicitly fits an optimal local transform for
each vertex from the local coordinates of control points. Based on
properly-defined local frame, we uniquely determine a local trans-
form for each triangle pair, including rotation and anisotropic scale.
In [Alexa 2003], Laplacian coordinates are applied to local mesh
morphing which indicates the possibility to use differential mesh
representations to solve the trajectory problem. However, [Alexa
2003] proposes to interpolate Laplacian coordinates linearly while
we interpolate gradient fields via non-linear interpolation algorithm
(See section 4.2 for detailed comparison).

To deal with models of different topological structure, volume-
based approaches are proposed by several authors. Typical work
include distance field-based morphing [Cohen-Or et al. 1998], di-
mension lifting [Turk and O’Brien 1999] and the level-set based ap-
proach [Breen and Whitaker 2001]. These methods are stable and
have strong theoretical background from image processing. The
volume-based approaches work well for (nearly) closed shapes, and
do not need to explicitly construct topological compatible struc-
tures. However, sharp features are not easily retained due to the
sampling or quantization issues.

2 Framework of Poisson Shape Interpola-

tion

Our proposed Poisson shape interpolation approach is a B-rep based
one. It is outlined as follows:

1. Compute correspondence map and generate compatible
meshes from two input 3D meshes.

2. For each corresponding triangle pair of compatible meshes,
determine the local transform from source triangle to target
one; and decompose the transform into rigid rotation and
stretch part.

3. Given time t, compute interpolated gradient fields by lo-
cal transforms interpolation; and reconstruct the intermediate
shape by Poisson equation solver.

In the rest of this section, we present the framework in details.

2.1 Preliminaries

The Poisson equation is a second-order partial differential equation.
Recall that ∇ = ( ∂

∂x ,

∂
∂y ,

∂
∂ z )

> is the gradient operator in R
3. Then

we denote ∆ = ∇2 = ∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂ z2 as the Laplacian operator, and

∇ ·w = ∂wx
∂x +

∂wy
∂y + ∂wz

∂ z is the divergence over a vector field w =

(wx,wy,wz) ∈ R
3. The Poisson equation with Direchlet boundary

conditions is formulated as

∆ f = ∇ ·w, f |∂Ω = f ∗ |∂Ω , (1)

where f is an unknown scalar function, f ∗ provides the desirable
value on the boundary ∂Ω. From the viewpoint of variational
method, the Poisson equation is equivalent to the following least-
squares minimization:

argmin
f

∫

Ω
(∇ f −w)2dΩ. (2)

It is not straightforward for theoretical analysis and practical com-
puting to discretize Poisson equation defined on an irregular do-
main, such as on a 3D triangular mesh. Polthier and Preuss [2002],



and Tong et al. [2003] proposed well-defined discrete differential
operators of scalar and vector fields on irregular domains. Based on
their results, the discrete Poisson equation on triangular meshes is
formulated as follows.

Domain mesh. The input of our algorithm are two or more triangu-
lar mesh models sharing the same vertex connectivity. Each model
can be interpreted as three scalar fields (vertex positions) defined on
a common domain that is actually an abstract mesh structure. We
call this structure domain mesh. A domain mesh maintains its own
vertex positions to provide metric information for discrete differen-
tial operators in our method. Without loss of generality, we assume
the input models and domain meshes are all single-connected and
2-manifold triangular meshes throughout this paper.

Mesh scalar (or vector) field. Let fi be the scalar (or vector) value
attached to vertex vi of domain mesh M . A mesh scalar(or vector)
field f on M is defined to be a piecewise linear combination f (v) =
∑i fiφi(v) (v is a point on M ), where φi(·) is piecewise linear basis
function defined on domain mesh valued 1 at vertex vi and 0 at all
other vertices. It is obvious that M itself is a special mesh vector
field of M .

Discrete differential operators. The discrete gradient of mesh
scalar function f on the domain mesh M is expressed as

∇ f (v) = ∑
i

fi∇φi(v). (3)

Given a piecewise constant vector field w, which has constant value
in each triangle of M , the discrete divergence of w at vertex vi is
defined as

(divw)(vi) := ∑
T∈NT (vi)

w(T ) ·∇φi |T AT . (4)

where AT denotes the area of triangle T . Therefore, the discrete
Laplacian operator on domain mesh M is

∆ f (vi) = ∑
v j∈Nv(vi)

1
2
(cotα j + cotβ j)( fi − f j), (5)

where α j and β j are the two angles opposite to the edge (vi,v j)
(Figure 2).

Finally, the discrete Poisson equation is expressed as

∆ f ≡ div(∇ f ) = divw. (6)

With specified boundary conditions, the above equation can be re-
formulated as a sparse linear system

A x = b. (7)

where the unknown vector x represents coordinates to be recon-
structed. The coefficient matrix A is determined by Eq. (5) and
depends on M . The vector b corresponds to known vector field as
well as the boundary conditions.

2.2 Poisson Shape Interpolator

The fundamental of our algorithm is a Poisson shape interpolator.
Two models M0 and M1, given as input of our algorithm, are re-
ferred as the source and the target, respectively. Note that this is not
a restriction since our method is also applicable to multiple input
models. In the pre-processing step, the one-to-one correspondence
map is established. After that, the domain mesh M is determined.
The re-sampled versions of M0 and M1, treated as mesh scalar fields
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Figure 2: The 1-ring neighborhood setup.

defined on M , are denoted as Si
0 and Si

1(i = x,y,z), respectively. We
denote the corresponding gradient fields as Gi

j = ∇Si
j(i = x,y,z; j =

0,1).

Most of previous vertex interpolation methods are position-based.
They interpolate vertex coordinates directly, i.e.,

Si
t = Interpolate(Si

0,S
i
1,h(v, t)). (8)

On the contrary, our method is gradient field-based interpolation. It
is formulated as

{

Gi
t = Interpolate(Gi

0,G
i
1,h(v, t);M );

Si
t = Poisson(Gi

t).
(9)

where v denotes a point on the domain mesh M ; t represents time
whose value lies in [0,1], Interpolate(·) is the interpolation opera-
tor, and Poisson(·) indicates the Poisson equation solver for recon-
structing in-between shapes. The function h(v, t) is the so-called
transition state function whose value also lies in [0,1], and satisfies
h(·,0) = 0 and h(·,1) = 1. The simplest transition state function is
h(v, t) = t. The transition state function is used to provide flexible
non-uniform controls, which will be discussed in Section 4.3.

There are two motivations of applying gradient-based method,
which are also emphasized in [Yu et al. 2004]. First, as a differen-
tial property, the gradient can be modified locally, which allows the
local analysis and interpolation to be carried out in a more canoni-
cal way (Section 2.3). Second, the process of reconstructing shapes
from the interpolated gradient fields Gi

t can be regarded as perform-
ing Helmholtz-Hodge decomposition [Tong et al. 2003] on Gi

t . The
gradient of Si

t is curl-free part of Gi
t . Note that the discrete form of

Poisson equation is equivalent to the following least-squares mini-
mization

min
Si

f
∑

T∈M

∥

∥

∥
∇Si

f −Gi
f

∥

∥

∥

2
AT (10)

Since the least-squares minimization tends to distribute errors uni-
formly across the function, the reconstruction process can effec-
tively attenuate the inconsistency evoked by local gradient interpo-
lation. Therefore, the local winkles are smoothed.

One question aroused immediately is whether our Poisson inter-
polator can produce smooth-changing results along time t, since a
nonlinear reconstruction is involved in our algorithm. According to
Eq. (7), the vertex coordinates x(t) are obtained by A−1b(t). It is
clear that the matrix A is constant because the domain mesh is fixed
during morphing, and b(t) comes from the smoothly changing gra-
dients and boundary conditions. It follows that x(t) is smoothly
changed.

A well-defined shape interpolation method must hold the following
two properties. One is uniqueness property, i.e., the reconstructed
mesh model should be unique. Another is end-point interpolation
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Figure 3: The matrix polar decomposition.

property, i.e., the reconstructed mesh model should be equivalent to
the input models when transition state function h = 0,1. Provided
the domain mesh M is a non-degenerated, single-connected, 2-
manifold one and at least one vertex coordinates are fixed as Dirich-
let boundary condition, we can prove a sufficient condition for the
uniqueness property with similar deductions to [Floater 1997]. This
sufficient condition is, for every edge (vi,v j) in M, the sum of two
opposite angles αi and βi is less than π (see also Figure 2). Under
this condition, it is easy to show that the end-interpolation property
also holds.

2.3 Nonlinear Gradient Field Interpolation

In general, any gradient field interpolator satisfying end-point con-
ditions Gi

0 and Gi
1 can be used in our framework. For example, di-

rect vertex linear interpolator is equivalent to applying (1−h)Gi
0 +

hGi
1, since both the gradient operator and the divergence operator

are linear on a given domain mesh. It works well for well-aligned
objects. However, according to the analysis above, the naive linear
interpolation may cause shape shrinkage when objects with large
orientation difference. Therefore, we design a nonlinear gradient
field interpolation method.

One possible solution is to employ additional nonlinear warping
along with linear interpolation, which is commonly used in im-
age based morphing techniques [Cohen-Or et al. 1998; Lazarus and
Verroust 1998]. In these techniques, warping is applied to globally
align objects by combining rotation, stretching and translation fac-
tors. Different from this two-step solution, we directly interpolate
these transformation factors for each triangle, and overall global ef-
fects are ensured by the Poisson solver. The detail of our solution
is described as follows.

To determine transformation, local affine frames are defined for ev-
ery triangle pair, which are served as the canonical basis for local
movement analysis. Let T0 and T1 be a pair of corresponding trian-
gles in S0 and S1, respectively. We denote vi

0 and vi
1(i = 1,2,3) as

corresponding vertices, n0 and n1 as corresponding unit face nor-
mals, as shown in Figure 3. For gradients are translation invariant,
we choose the first vertex v1

j( j = 0,1) of each triangle as the origin,
and the three axes of affine frames Fj are v2

j −v1
j , v3

j −v1
j and n j .

We can determine a unique transform matrix H such that F1 =
H(F0). The matrix H can be regarded as the deformation gradient
relating the reference configuration F0 and the present configuration
F1. Inspired by continuum mechanics [Gurtin 1981], we factorize
the deformation gradient tensor into the rigid rotation part and the

pure stretch part with the polar decomposition. That is, H = RS,
where R is the closest rotation matrix to H in Frobenius norm, S is
a symmetric, positive definite matrix.

The rotation part and the stretch part are interpolated independently.
Our experimental results indicate that this can avoid shape shrink-
age (see Figure 1 and the attached video). Since there is no prior
knowledge of movements in morphing process, it is reasonable to
assume that the rotation angle and the scaling components change
linearly. Similar to [Alexa et al. 2000; Shoemake and Duff 1992],
we define the local continuous transform function Ht for a given
transition state h(v, t) = h as

Ht = Rh((1−h)I +hS) (11)

where Rh is the rotation matrix defined by linearly interpolating the
rotation angle of R using quaternion, and I is the identity matrix.

Since the three scalar fields come from the three vertex coordinates
of mesh model, manipulating them independently may cause unde-
sired reconstruction results. Therefore, we compute the local con-
tinuous transform Ht for each triangle using the above algorithm.
We then apply Ht to three source gradient vectors simultaneously
for generating interpolated gradient vectors. That is,

Gi
t = Ht(Gi

1) (i = x,y,z). (12)

In some sense, our shape interpolation algorithm can be considered
as a mixture of [Alexa et al. 2000] and [Sumner and Popović 2004].
All three methods adopt local affine transformation matrix to de-
scribe the relationship between two compatible shapes. However,
there are several differences among them. In [Alexa et al. 2000], the
local affine transformation matrices are determined between sim-
plicial complexes. In a 3D space, a simplicial complex is a tetra-
hedral mesh, while we only deal with triangular meshes for better
computational efficiency. Same as [Sumner and Popović 2004], we
also consider the corresponding face normals when defining local
transforms between triangle pairs. But [Sumner and Popović 2004]
aims at how to transfer the transformation matrices from the source
model to the target one, instead of interpolating between them. The
other difference is the formulation of opimization problem. [Alexa
et al. 2000; Sumner and Popović 2004] reconstruct meshes by min-
imizing the differences among transformation matrices using the
Frobenius norm, while our method directly minimizes least-squares
differences between vectors using the L2 norm which is an inherent
property of Poisson equation itself.

After gradient fields interpolation, each triangle is locally trans-
formed by the transformation Ht . The triangles of source mesh
become disconnected, i.e., yielding a triangular soup. The Poisson
equation stitches together the triangles in the final step.

3 Implementation Issues

In Section 2, we present our basic framework of Poisson-based
shape interpolation. From the implementation aspect, there are sev-
eral issues that need to be elaborated. Obtaining compatible meshes
requires building correspondence map. During the interpolation
procedure, boundary conditions are specified to determine continu-
ous movements of in-between shapes. Our method is robust for the
choice of domain meshes. With better selections of domain mesh,
our method will provide more satisfied results. The details of these
issues are discussed in the following paragraphs.

Obtain compatible meshes. Our method requires that the source
model and the target one should be represented by compatible



meshes, i.e. meshes with the same connectivity. In general, the in-
put models do not satisfy this requirement. Recently, Kraevoy and
Sheffer [2004] have presented a novel feature-preserving remesh-
ing method that can generate high quality output meshes with sig-
nificantly fewer number of vertices compared to previous tech-
niques. We adopt a variant of their method to generate compatible
meshes from input models. Our method is independent of compat-
ible meshes generating methods. Other methods, such as [Praun
et al. 2001; Schreiner et al. 2004], are also suitable for our frame-
work.

In our implementation, several pairs of corresponding feature ver-
tices are manually selected. Then, base domain is constructed based
on these feature vertices. Both models are parameterized onto the
common base domain and relaxation is performed to reduce the
parametrization distortion. Finally, the target model is remeshed
using the connectivity of the source model. Iterative error-driven
vertex relaxation and edge splitting are performed until approxima-
tion error is under user-specified threshold.

Specify boundary conditions. Since the gradient fields are transla-
tion independent, Poisson equations require specifying at least one
vertex coordinates as the boundary conditions. Note that, in most
cases, input models to be interpolated have more than one corre-
sponding feature vertex pairs. We can select one of these vertex
pairs and specify their coordinates by linear interpolation as the
boundary conditions. Alternatively, we can set the coordinates of
an arbitrary vertex as boundary conditions and solve the Poisson
equation first, and then translate these intermediate models so that
their barycenters linearly interpolate the barycenters of the source
and the target models.

Determine domain mesh. In principle, any mesh sharing the same
connectivity with M can be selected as the domain mesh. Different
domain meshes generally give rise to different interpolation results,
since the domain mesh affects the coefficients of the linear system.
Due to the nature of the least-squares minimization in Eq. (10), the
interpolated gradient vectors associated with large triangles in the
domain mesh are better approximated than those associated with
small ones. The area of the triangles serves as the weight coef-
ficients. In practice, either the source model or the target model
can be selected as the domain mesh. In all our experiments, we do
not observe significant difference between two morphing sequences
generated with different choices of the domain mesh. In case that
some vertices in the domain mesh violate the sufficient condition
of the uniqueness property, local adjustment of vertex coordinates
will be performed so that this condition can be satisfied.

Figure 4: Shape interpolation between a fandisk and a cube.

Figure 5: Human pose morphing

Figure 6: Shape interpolation between a bunny and a rabbit.

4 Results and Discussions

Our framework can be applied in various scenarios, including
global shape interpolation, local control of shape interpolation and
morphing incorporating with deformation.

4.1 Global Shape Interpolation

In order to present the advantages of our method, several examples
are demonstrated in Figure 4-8 and attached video sequences. Fig-
ure 4 depicts the morphing process between a fandisk (CAD model)
and a cube. As shown in this example, the sharp features of fandisk
are preserved during the whole morphing process. The transitions
from a bunny to a rabbit are illustrated in Figure 6. Note that the
natural gluing of ears and the rotation of the head and tail. Fig-
ure 5 shows that our method can also work well on human pose
interpolation. Human pose interpolation are commonly generated
by skeleton-driven skinning in computer animation, which may re-
quire massive user interactions for tuning influence region param-
eters. In our example, no explicit bone information are specified.
However, the arms and legs are smoothly transited, respectively.
Meanwhile global rotations and local muscle deformations are all
well generated. In Figure 8, morphing among multiple models is
demonstrated. The three head models have different orientations.
Our method can automatically produce the rotation effects during
morphing.

Table 1 lists the computation time for the examples in this paper.
The data are obtained on a standard PC with an Intel PIV 2.6GHz
CPU and 512MB memory. In the third column, running time refers
to the average executive time of computing one intermediate model,
which is dominated by solving three Poisson equations for each
coordinate components to reconstruct mesh models. In our im-
plementation, we adopt conjugate gradient (CG) method to solve
sparse linear systems derived from Poisson equations. In the fourth
column of Table 1, the precision is refers to the convergence toler-
ance of our CG method, which is relative to the diagonal length of
the model’s bounding box. Our morphing technique can generate
in-between models in interactive speed for moderate data sets us-
ing our non-optimized C/C++ code. As shown in [Yu et al. 2004],
pre-computing can be applied to the Poisson matrix to accelerate
generating speed when massive in-between models are required.

4.2 Local Shape Interpolation

Local shape interpolation, also known as spatially non-uniform
shape morphing, is usually carried out by specifying region-
dependent transition states. This topic is also studied by
Alexa [2003]. Unlike global morphing, linear interpolation of ab-
solute coordinates will cause significant artifacts. To address this
problem, Alexa proposes blending of two shapes by linearly inter-
polating the Laplacian coordinates instead. Laplacian coordinate
is defined by the difference between given vertex position and the



Morphing models #Unknowns Per-frame Running Precision
Time (sec)

Fandisk vs. Cube 6583 1.633 1.0e-6
Bunny vs. Rabbit 7862 3.626 1.0e-6
Igea, Man and Planck 10139 5.252 1.0e-6
Horse vs. Dinosaur 10993 7.440 1.0e-6
Woman vs. Man 25172 22.912 1.0e-5
Woman vs. Man (local) 2900 1.039 1.0e-6

Table 1: Computation time for the examples used in this paper.

average position of its 1-ring neighbors. Although Laplacian co-
ordinate is translation invariant, it is sensitive to rotation and non-
uniform scaling. As pointed out by Alexa, the result is equivalent to
those of linear interpolation of absolute vertex coordinates, if global
morphing using linear interpolation of Laplacian coordinates is per-
formed.

Therefore, when local morphing is performed between two parts
which are not well aligned, the method of Alexa [2003] has simi-
lar drawback as linearly interpolating absolute vertex coordinates,
such as shape shrinkage. Figure 7 gives the comparison between
the method proposed in [Alexa 2003] (in the bottom row) and ours
(in the top row). We set region of interest (ROI) to be the left arm
of the human model, then change the transition state of vertices in
ROI gradually from 0 to 1, and keep the rest unchanged. Our results
are visually pleasing and do not suffer shape shrinkage, which is
supported by the volume-changing curve plot in the bottom of Fig-
ure 7. Our local interpolation algorithm achieves nearly constant
volume changing rate. For similar articulated objects with different
poses, our gradient field interpolator can preserve the shape locally
in the means of least area distortion. Note that the Poisson solver
is a global vector field optimizer to keep local geometric proper-
ties. Therefore, with additional surface orientation constraints, the
superfluous volume variations can be attenuated.

4.3 Incorporating Deformation into Shape Interpo-

lation

The basic shape interpolation process focuses on how to change
the shape gradually from a source model to a target one. Common
approaches to enrich morphing effects are defining different ver-
tex paths, or region-sensitive transition states. Intuitive ways are
desired to provide user additional freedom on generating creative
morphing sequences. In our point of view, deformation results can
be cast as self-morphing sequences if the editing process does not
change the original vertex connectivity. Based on this idea, our
framework incorporates user-defined deformation into the morph-
ing sequence. Hence, interesting visual effects can be obtained.

The users specify desired deformation by manually editing the
source model with mesh editing tools. The deformation is encoded
locally into one transformation matrix for each triangle pair, which
is called deformation matrix. Similar to Section 2.3, we apply polar
decomposition to this deformation matrix. Users specify how much
deformation will be blended by setting one weight ranged in [0,1].
Deformation matrix and morphing matrix are composed together to
compute the intermediate gradient field. Finally, the intermediate
meshes are reconstructed by the Poisson solver.

Figure 9 demonstrates an example of combining morphing with
deformation. The top row shows the original morphing sequence
from a horse to a dinosaur. We interactively edit the horse and
gradually propagate such deformation into the whole morphing se-
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Figure 7: Local shape interpolation. In this example, users expect
to gradually deform the arm part of the woman model to the corre-
sponding part of the man model. The upper row is generated by our
algorithm, while the lower row is generated by Alexa’s algorithm.
The comparison of corresponding volume changes is illustrated in
the bottom plot.

quence. The middle and the bottom rows are results with 50% and
100% deformation incorporated, respectively.

5 Conclusions and Future Work

In this paper, we have proposed a novel shape interpolation ap-
proach, which is based on the discrete Poisson equation on trian-
gular meshes. The main idea is to interpolate vector fields in gra-
dient domain and to reconstruct in-between shapes from the inter-
polated gradient fields. Based on the polar decomposition of local
transformations, a non-linear gradient field interpolation method is
designed to gradually change both vertex coordinates and face nor-
mals. We demonstrate the superiority of our approach by versa-
tile results, ranging from global morphing, local morphing to those
combining with deformation.

The morphing results depend on the quality of compatible meshes
in our current implementation. The computing speed is affected



Figure 9: An example of incorporating deformation into morphing. The first row is original morphing sequence. The second and third row
are results with 50% and 100% deformation incorporated, respectively.

Figure 8: Shape interpolation among three head models.

by the condition number of Poisson matrix, which is related to the
quality of the domain mesh. To improve the performance of our al-
gorithms, multi-resolution techniques may be employed. Changing
object topology during shape interpolation is a challenging prob-
lem. We will investigate it in the future. Three dimensional mesh
morphing without self-intersection is a valuable research topic.
Since our method provides a general framework to deal with shape
interpolation, a similar 2D contour morphing can be derived by for-
mulating discrete Poisson equation on a 2D simple polygon.
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