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Abstract. A finite element simulation framework for cutting and fracturing model
without remeshing is presented. The main idea of proposed method is adding a
discontinuous function for the standard approximation to account for the crack.
A feasible technique is adopted for dealing with multiple cracks and intersecting
cracks. Several involved problems including extended freedoms of finite element
nodes as well as mass matrix calculation are discussed. The presented approach
is easy to simulate object deformation while changing topology. Moreover, previ-
ous methods developed in standard finite element framework, such as the stiffness
warping method, can be extended and utilized.

Keywords: Physically based animation, finite element method, fracturing model,
without remeshing.

1 Introduction

In industry design and digital entertainment, the simulation for cutting, fracturing mod-
els and their deformation has been widely applied. Hence relevant research has been an
import area in computer graphics, virtual reality and computer aided design.

One of the key issue on this topic is how to deal with the changing of shape topology
during simulating cutting and fracturing in which crack initialization and crack growth
are included. Various methods based on dynamics and statics were proposed in recent
research. There are mainly three kinds of simulation techniques on space discreting,
which are mass-spring system, finite element method (FEM) and meshless method.
Meanwhile, the research and applications of FEM and meshless methods are received
increasing concern because of their high controllability and stability.

The standard FEM simulates fracturing and cutting problems by remeshing models
around a growing crack. However, remeshing is computationally expensive and lots of
physical parameters for new element nodes have to be calculated. On the other hand, it
is increasingly difficult to guarantee the simulation stability. In this paper, we leverage
an extended finite element method that adjusts the element approximation function to
account for element discontinuous based on standard FEM framework. In our proposed
approach, the remeshing procedure is not a necessary step. Moreover, many previ-
ous computation techniques, such as techniques of accessory calculation, can be easily
utilized.

Our work has three main contributions:

– We propose an approach of attaching additional degree of freedoms (DOFs) on
element nodes and make it pretty easily to be implemented.
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– We improve the approach for tackling multiple cracks and intersecting cracks to
meet the demand in computer graphics and virtual reality.

– We adopt the stiffness warping technique to enhance our simulation framework for
compensating the nonlinear factors of deformation.

Moreover, in order to optimize the calculation and stability, several relevant imple-
mentation issues, such as reasonable choices of the mass matrix, are discussed in this
paper.

2 Related Work

In the literature of computer animation, Terzopoulos and Fleischer [1,2] used a dis-
tance threshold between two nodes to judge fracture during simulating viscoelastic and
plastic deformation. They demonstrated this technique with sheets paper and cloth that
could be torn apart. Later, the mass-spring system was applied to simulate the fracturing
models, including work of Norton et al. [3], simulating the mud crack pattern by Hirota
et al. [4]. The most important virtue of the mass-spring system in fracture simulation is
relied on the simple data structure which leads to simple implementations. But two of
its disadvantages are calculation instability and limited reality of resultant animations.

In 1999, O’Brien et al. did excellent work in simulating fracture models using stan-
dard FEM framework. They adopted separation tensor and remeshing finite element
mesh of model to successfully simulate brittle fracture [5], ductile fracture [6] and sur-
face cracks pattern [7]. Müller [8] did similar work to implement real-time simulation
of brittle fracture.

Molino and Bao as well as their colleagues [9,10] originally presented a virtual node
algorithm to deal with the troubles of remeshing in standard FEM. The algorithm dupli-
cates cutting elements that meet specific conditions and the remeshing procedure is not
necessary. The virtual node algorithm developed the simulation for topology changed
by FEM. The drawback of the algorithm is in the complexity of geometry data struc-
ture and the strictly limitation in that the smallest possible unit would be individual
nodes. Wicke et al. [11] presented a finite element on convex polyhedra to simulating
cutting models. Their method also does not need additional remeshing, but expensive
calculations are required.

Pauly et al. [12] applied the meshless method to fracture simulation in computer
graphics. Although it has high cost in calculating approximation functions, meshless
method has great advantages in dealing with point sample models and large strain de-
formation.

Fracture and cutting have been studied extensively in the mechanics literature. There
are a lot of related work on the extended finite element method which has an initial
form for small strain and statics application [13,14]. The method has been developing
in mechanics and even the virtual node algorithm can also be included. In this paper,
we adopt the foundational theory and develop it for application of movie industry and
virtual reality.

The paper is organized as follows. Our method is mainly presented in Section 3.
Section 4 discusses the solutions of multiple cracks and intersection cracks. In Section 5,
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a brief consideration on simulation control is given. Section 6 describes our implemen-
tation and several examples are provided. Paper summary and conclusions are presented
in the last section.

3 Method Description

In general, a model in our computation framework is represented as a domain � � R3.
For each point p � �, the movement is represented

p : � � R � R3 : (X� 0) �� x(X� t)�

where X(p) is the material coordinates, x(X� t)(p) is the location coordinates of point p
at time t. Let u(p) � x(p)�X(p) be the displacement. If there are n cracks in the model,
we represent them as �ci� i � [1� n] . The simulation goal is getting all points coordinates
after the model movement or deformation. In addition, as for cutting simulation, the
cutting face can be taken as a crack. It will not be distinguished in this paper.

In our simulation, a model is discreted into tetrahedron finite elements without re-
garding of the cracks. But our method can be utilized in other types of elements without
any difficulty. The dynamics equation of simulation is a PDE based on time

Mẍ � Cẋ �K(x � X) � fext� (1)

where M, C, K and fext are mass matrix, damp matrix, stiffness matrix and extern force
vector of nodes, respectively. In the above equation, symbol x and X are the column
vectors which are composed by space coordinates and material coordinates of all nodes,
respectively. All these coefficients are calculated as in standard FEM, that is, M ��

me, C �

�
ce, K �

�
ke and fext �

�
fe
ext. The matrices with superscript e stand for

the element distribution matrices.

3.1 Adding Extended Freedoms

In order to make the description clearer, we call the element with a crack as crack
element ( e.g., the element 1 to 6 in Figure 1). In this section, we will explain our
simulation method by limiting one crack in one crack element without loss of generality.
We will discuss more on the solutions for multiple cracks in one crack element in the
next section.

Our crack propagation is per-element based one, i.e., a crack advances on a complete
element within a time-step. Similar to add virtual nodes in the virtual node algorithm,
we simply add extended freedoms for related nodes in our method instead. To achieve
this goal, let KnT denote the node set related to the crack n. Regarding for the crack n,
we attach additional freedoms ai � �aix� aiy� aiz�

T on node i � KnT (Figure 1). The key
problem is how to construct KnT corresponding to crack n. Hence a two-step procedure
is adopted in our framework:

(1) After mapping the crack to the initial configuration of a model, for each edge of the
model, determine whether there exists intersection point between it and crack n. If
it is true, add the intersection point into S n. And then
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Fig. 1. Add extended freedoms for nodes. The red curve represents a crack. Nodes represented by
red rectangle need to add extended freedoms. Nodes represented by circle without filling are not
necessary to add extended freedoms.

(a) if the intersection point is a vertex, add the vertex into KnT ,
(b) if the intersection is not a vertex, add two vertices of the edge into KnT ;

(2) Find the crack fringe curve Ln f . For each point q � S n, if q � Ln f and meet two
conditions: q is not in the model surface and is not in the other crack surface. Then,
(a) if q is a vertex (element node), remove the vertex from KnT ;
(b) if q is not a vertex, remove two vertices of the edge including q from KnT .

Compared with previous methods of adding extended finite element in mechanics
literature, our above method is simpler in three dimension simulations.

3.2 Crack Element Approximation

After adding extended degree of freedoms, a crack element has at least one node with
extended freedom. In our method, we assume that the displacement field can be decom-
posed into a continuous part and a discontinuous part, i.e., u � ucont

� udisc in the crack
element. Hence an approximating function of displacement field presented by [15] can
be adopted:

u(X) �
4�

I�1

NI (X)uI �

�
I�KT

NI(X)
�
H( f (X)) � H( f (XI))

�
aI � (2)

where f (X) � 0 is an implicit surface representation of the crack, NI(x) is tetrahe-
dron shape function. In Equation 2, the first term ucont

�

�4
I�1 NI(X)uI is a continuous

part and has the same shape as standard FEM approximation. And the second term
udisc

�

�
I�KT

NI (X)
�
H( f (X)) � H( f (XI))

�
aI is a discontinuous part that indicates the

difference between the two sides of crack due to the Heaviside function

H(x) �

�
1� x 	 0�
0� x � 0�

(3)

As for a normal element, the standard FEM approximation is performed actually. In
fact, udisc is a zero vector when the Heaviside function is constant in the whole element.
It is worth noting that there always exists movement independence between the two
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(a) (b) (c)

Fig. 2. Movement independence. (a) initial cutting model. (b) and (c) removing one part from the
model.

sides of a crack. This is critical and is a primary criterion for judging the feasibility
of a simulation method of cutting and fracturing. An example in Figure 2 shows the
movement independence of our simulation.

3.3 Crack Element Calculating

In a crack element, the initial coordinates, initial velocity and initial accelerate of ex-
tended freedom is (0� 0� 0). The calculation of the corresponding mass of extended free-
dom and the element mass matrix is vital and can affect the movement independence.

In standard FEM, there are mainly two choices for setting mass matrix. One is the
average mass matrix which is setting matrix as a diagonal matrix, whose nonzero value
is the model mass divided by the total number of the nodes. The other one is the com-
patibility mass matrix which is calculated by element approximation and density. It is
straightforward to extend the average mass matrix by setting the mass value of cor-
responding the all extended freedoms be zero. Unfortunately, our experiences show it
may make the coefficient matrix of solve system be singular when multiple cracks are
occurred in a model and there are more than one crack in the same element.

We also tried to make the corresponding mass of extended freedom the same value
as the mass of corresponding node as [10]. But it is evident to increase total mass of the
model and simulation error. More seriously, the movement independence is failure in
our simulation framework.

To sum up the above arguments, compatibility mass matrix have to be adopted. As
for a crack element, the element mass matrix should be calculated as follows

����������	
muu

i j �


�e NiN jd�e

mua
i j �



�e NiN j(X)

�
H( f (X)) � H( f (X j))

�
d�e

mau
i j �



�e Ni(X)

�
H( f (X)) � H( f (Xi))

�
Njd�e

(4)

where m��

i j (�� � � u� a) denotes the corresponding mass between the �-th freedom of
node i and the �-th freedom of node j, and �e is the space domain of the element.

Strictly following Equation (4) can guarantee the movement independence. But it
makes difficulty on applying Equation (4) in interactive application. That is, we do
not know a model will fracture or be cut during deformation and choose average mass
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Fig. 3. Multiple cracks in a model. Red curves indicate cracks.

matrix at beginning of simulation. In order to avoid this problem, we calculate the mass
matrix as follows. At beginning of simulation, we adopt the average mass matrix if
there is no crack in the model. When the model has cracks, evaluate the mass matrix by
calculating mua

i j and mau
i j only if i � j, and keep the others m��

i j (�� � � u� a) be zero. Our
experience shows that our approach is feasible and decreases the cost of calculation.

Beside the evaluation of mass matrices, the calculation on crack elements is almost
the same as in standard finite element method by applying the approximation function in
Equation (2). The above treatment will be only invoked if the element includes cracks.
Thus a small amount of additional calculation are required.

4 Multiple Cracks and Intersecting Cracks

Commonly there are multiple cracks and intersecting cracks in a model. We therefore
improve the methods presented by mechanics literature to meet the demand of computer
graphics applications.

4.1 Independent Cracks

In section 3, we have already known that an element is not affected by a crack if Hevi-
side function is constant in it. So if there are multiple cracks in a model and any two
cracks of them is far, not in the same element and not intersecting. We call these cracks
be independent (independent cracks, as if III and IV in Figure 3). We can deal with
these cracks separately. Certainly, corresponding crack elements crack set is different
for every crack. The tackling can be expressed as

u(X) �
4�

I�1

NI(X)uI �

nc�
n�1

�
I�KnT

NI(X)
�
H( fn(X)) � H( fn(XI))

�
an

I (5)

where n is the crack flag in the element, implicit function fn(X) � 0 represents the
surface of crack n, an

I is the corresponding extended freedom of crack n at node I.
And term KnT is the node set in which every node need to add extended freedom of
corresponding crack n.
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4.2 Multiple Cracks and Intersecting Cracks

Independent cracks can grow to intersect in the same element during the simulation.
Regarding for this problem, Equation (5) may be failed. Budyn et al. [16] proposed
a method of intersecting cracks for engineering application. Our experiments proved
applying their method for computer graphics application will be not able to guarantee
the movement independence. Hence we have to extend and improve their methods.

For the reason of clarity but without loss of generality, we only explain the occur-
rence when there are two cracks in one element. Obviously, the two cracks can be
intersecting or not. But we treat both cases unitedly.

In our simulation, it is necessary to assume that the two cracks cut the element of
in order. As for intersecting crack, the later crack face c is stopped by the former crack
face C (see Figure 4). But when adding corresponding extended freedom, the later crack
should be assumed to whole cutting the element. Firstly, we must judge the two crack
mutual location according to their implicitly representing. And then we apply the fol-
lowing equation [16]:

u(X) �
4�

I�1
NI(X)uI �

�
I�KcT

NI	cI(X)ac
I��

I�KCT

NI(X)
�
H( fC(X)) � H( fC(XI))

�
aC

I �
(6)

where

	cI(X) �

�
H( fC(X)) � H( fC(XI))� X � A1�
H( fc(X)) � H( fc(XI))� X � A2�

Here the extended freedoms ac
I , aC

I are matching crack c and C.
It is worth noting that we apply Equation (6) for the elements not only including

intersecting cracks as in literature [16]. In order to simulation for computer graphics
and virtual reality, we improve the approach as following.

As for the case that two cracks are not intersecting in one element, Equation (6) is
used directly. When two cracks intersect and coincide, they will fusion to one crack and
stop growth. The element in which the fusion points of the two cracks may be tackled
by taking it into intersecting crack element.

In addition, if other elements adjacent with the multiple cracks element meet: (i) be
cut by crack C and (ii) have no less than one node with extended freedoms correspond-
ing crack c. It also must be tackled with Equation (6) even though it is not cut by more

Fig. 4. Two cracks in one model. The filled region is A1, and the remaining part is A2.
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(a) (b) (c) (d)

Fig. 5. The movement of intersecting cracking. (a) initial cutting model. (b) moving the right
upper part. (c) moving the right lower part. (d) the finally movement.

than one crack. Element 1, 5 and 6 in Figure 3 must be tackled with equation (6) and the
above method. Figure 6 shows the movement independent in a model with intersecting
and cutting crack.

As for more than two cracks in an element, we deal with them according to Equation
(6) similar with two cracks. In fact, the method is not increasing calculation other than
judge and save the mutual location and easy to be implemented. Moreover, the restric-
tion is not the same strictly as virtual nodes algorithm in that every fracture part must
include no less than one node. In our simulation experiments, there is no trouble caused
by the problem.

5 Simulation Control

In general, most of the previous research in mechanics is as for engineering application
dealing with small deformation. We therefore want to enhance our simulation method
for large deformation. In the method described in section 3, Cauchy strain is adopted to
obtain stiffness matrix. The linear calculation will lead to non-realistic results. There-
fore the stiffness warping technique for compensating the nonrealistic are applied in
our simulation framework. As for fracture control, we mainly use the results from the
previous research.

5.1 Stiffness Warping in Crack Element

By applying the stiffness warping technique proposed in [17] to our simulation frame-
work, Equation (2) is rewritten as

Mẍ � Cẋ �
�

i

�
j

Re
i jk

e
i j(R

e�1
i j x j � X j) � fext� (7)

where j is node index, i is index of the element which includes node j, Re
i j is a corre-

sponding sub-matrix of the rotation of element I matching node j, ke
i j is a corresponding

sub-matrix of stiffness matrix of element i. Please note that the rotation matrix is be-
tween current location and initial location.

As for a crack element, it is necessary to calculate rotation of every part taken into
by cracks separately. This can be obtained by performing polar decomposition for the
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Fig. 6. Movement sequence of Bunny with cutting crack

conversion matrix of location. Obviously, in the crack element, the coefficient of matrix
calculation in Equation (7) should be performed according to every part because of their
rotation may be different. In the example showed in Figure 6, the bunny with a cutting
crack moves under gravity while the two ears of the model are constrained. Our algo-
rithm generally provides visual-pleasant during the simulation of model deformation.

5.2 Fracture Control

As for the model being cut, initial cracks are provided by users while the simulation
procedure is performed automatically. When simulating fracturing model, the Rankine
condition of maximal principal stress is used to control element fracture as [8,9]. The
stress of an element is smoothed by volume weighted averaging with adjacent elements
before the principal stress is obtained by doing eigenvalue decomposition to stress ma-
trix. If the maximal principle stress is greater than a tensile threshold (positive), or the
minimal principle stress is less than a compressive threshold (negative), the element is
cut by a crack controlled along the principle direction.

When the distance between one crack fringe and the other crack face is less than
a threshold, the former directly propagates to intersect the latter. In addition, if the
distance and the orientation angle between two crack fringes are less than threshold
values, the two cracks fusion into one crack. After that, the tackle method is performed
that has been discussed in Section 3 and 4.

6 Implementation and Examples

According to the description above, we implemented a prototype of model simulation
in a compatible PC with Intel CPU. Similar to [18], we leverage a variant of implicit
integration method for dynamics simulation in this paper. The main steps are:

1. Update velocities of all nodes according to vi�1
� vi

� 
vi.
2. Update displacements of all nodes according to xi�1

� xi
� vi 
 
t.

3. Processing collision and determining the boundary condition.
4. Solve difference of velocities 
vi�1 by

(M � 
tC � 
t2K)
vi�1
� 
t(fext � Cvi �

�
i

�
j

Re
i jk

e
i j(R

e�1
i j x j � X j) � 
tvi)�
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In our simulation framework, the total number of elements is invariant while the
number of freedoms of a model may be altered. Real displacement of every node are
the displacement of initial freedoms according to Equation (2). The displacement of
extended freedoms can be used for calculating point positions in cracks. It is worth
mentioning that the dimension of the final linear system will rise up when the number
of crack elements is rising. However, the only amended the approximation function of
crack element, common element calculation is according with standard FEM. It follows
that the calculating cost will not increase a lot. As our simulation framework can be tai-
lored to emulate the virtual node algorithm (VNA), there is no significant advantage in
computation performance compared with VNA. But regarding for the implementation
of data structure and geometry processing operators, our method is simpler and easier
to integrate with existing techniques of standard FEM.

In this paper, adjusting the approximation of crack element is based on the theory of
partition of unity whose feasibility has been thoroughly discussed in [19,20]. In ad-
dition, we utilize a linear FEM framework with stiffness warping to simulate large
deformations for the applications of computer graphics. These treatments ensure the
stability of our simulation method. Compared with standard FEM, our method do not
need any remeshing. Therefore the instability factor due to the occurrence of long and
thin tetrahedra while cutting and fracturing models in standard FEM can be avoided.

Several computation examples (e.g., Figure 2, 5, 6, 8 and 9) are provided in this paper
to demonstrate the performance of our proposed method. Figure 7 is a plane constrained
on the left side while pulling on the right side. As expected, when the pulling force
surpass a pre-set threshold, the plane is slit open into to two parts.

Figure 8 is an example of cutting model. We cut a plane into several pieces firstly,
and then drop it on top of a sphere. During the period of falling and colliding with other
objects, the movement of all of the parts is independent. In this example, the initial
DOFs is 4671 and the DOFs is 7026 after cutting. The simulation refresh rate in this
example can reach interactive speed, and it takes less than 1 second for every frame in
average.

An example of a flyman model objecting to bump on the face is showed in Figure 9.
The initial flyman, which is a complete model without any cracks, breaks into several
pieces during the movement. The initial model has 450 nodes and 1320 elements. At
the end of simulation, the model has total 2139 DOFs and every frame costs 700ms in
average.

Fig. 7. The fracturing plane subject to tension. Red arrows represent the direction of pulling force.
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Fig. 8. A plane being cut into several parts and falling down

Fig. 9. A flyman subjecting to bump on face

7 Conclusion and Future Work

In this paper, a simulation framework for cutting and fracturing is proposed. A novel
approximation function for crack element is employed on the basis of standard FEM.
Several key problems, such as tackling for the mass matrix, multiple cracks and inter-
secting cracks and compensating deformation, are dissolved. Compared with standard
FEM, our proposed method does not need any remeshing, and can decrease computa-
tion cost as well as increase simulation stability.

However, there are still several limitations in our simulating. The first is that cutting
or fracturing models in our method is element-based. When crack only cut an element
half, our method in this paper cannot deal with it currently. The others, such as control
fracture more efficiently and collision between difference fracturing parts, should be
accomplished. We will explore more on those topics in near future.
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