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ABSTRACT 
 
In this paper, we present an importance-driven texture encoding 
algorithm based on samples. Our algorithm determines a set of 
samples from source texture based on combined criteria which 
include compression ratio, visual attention and parameterization 
distortion. The sample set is used to encode the majority parts of 
the texture. The remaining regions are then encoded by traditional 
compression algorithm such as vector quantization.  Our method 
can preserve details of important areas and be extended to 
dynamic textures. The decoding procedure is performed entirely 
in programmable graphics hardware, yielding real-time frame 
rates. Experimental results demonstrate the efficiency and 
performance of our algorithm. 
 
CR Categories and Subject Descriptors: I.3.7 [Computer 
Graphics]: Three-Dimensional Graphics and Realism – Texture; 
I.4.2 [Image Processing and Computer Vision]: Compression 
(Coding) 
 
Keywords: texture mapping, texture encoding, visual attention, 
parameterization 
 

1 INTRODUCTION 
 
Textures and texture mapping play significant roles in computer 
graphics to add visual richness without increasing scene geometric 
complexity. Most graphics hardware provides dedicated memory 
cache to store textures for real-time texturing. However, the cache 
is limited in size and easily filled by high-resolution or large-sized 
texture images, necessitating the highly efficient compression and 
on-the-fly decompression of textures.  

One pioneer work by Beers et al. [1] proposes to compress 
texture images using Vector Quantization (VQ) algorithm, and 
accomplishes rendering directly from compressed texture. This 
approach achieves high compression rate with acceptable visual 
quality loss by adopting a software implementation of decoding 
process. Another remarkable compression strategy S3TC (or 
DXTC in Microsoft’s DirectX 3D) [2] widely used in graphics 
hardware community compresses each 4×4 texel block of one 
texture independently by encoding each pixel with two-bits index 
to four representative colors. This technique provides 6 times 
compression ratio and has been integrated into standard graphics 
API OpenGL. Pereberin [3] introduces a hierarchical 

representation and block-wise scheme to support mip-mapping in 
texture compression. The approach presented in [4] partitions 
pixels within one block and creates sub-palettes for each partition 
to choose representative colors per block from an RGB 
tetrahedron. Ivanov [5] improves S3TC technique to allow sharing 
colors among multiple blocks, enriching the color choices in each 
block. Fenney [6] proposes an efficient representation to avoid 
block artifacts by blending multiple low frequency signals with a 
low-precision and high-frequency modulation signal.  

Aforementioned approaches support appropriate compress 
ratios and reasonable decompress speed. However, they seldom 
take account of image contents and dispose each texture part 
equally. As a result, decompression errors are not distributed 
according to the content of the handled texture, neglecting the 
observation that important image region should have less error 
and vice versa.  

Recently, Hertzmann et al. [7] present image analogies based 
on the texture synthesis techniques [8] [9]. It synthesizes a new 
filtered target image B* from a pair of source images A, A* and a 
target image B, which is relates to B in the same mode as A* 

relates to A. By choosing the training pairs automatically, it 
suggests an interesting extension to image compression. 
Meanwhile, fractal image compression technique [10] utilizes the 
self-similarity implied in images to build a set of contractive maps 
for image compression. However, it needs to explicitly store a 
sequence of affine transformations and its iterative decompression 
scheme makes it difficult for time-critical applications. 

As mentioned in [1], two major concerns are involved in 
texture compression, i.e., decoding speed and random access. 
Standard image compressing techniques such as JPEG are hardly 
applicable due to their expensive decompression computation cost 
and the variable rate code against random texel access. A deep 
view of the texture compression for real-time rendering gives us 
the following insights for the aspects to be considered compared 
with that of general image compression. First of all, 
decompression performance is very crucial, especially for 
interactive or time-critical applications. Second, texture mapping 
unavoidably introduces image distortions which are expected to 
be alleviated. Third, textures usually imply the visual perception 
of human beings to the appearances of mapped objects, and hence 
visual attentions have to be taken into account.   

These tasks can be resolved by importance-driven texture 
encoding based on samples. In our algorithm, the handled texture 
is separated into two parts, one of which is encoded by these 
samples and the other one is dealt with traditional encoding 
algorithm. The samples are determined by visually emphasized 
importance. The contents of samples not only provide information 
to encode texture image, but also preserve important or interesting 
regions of the texture that are expected to be kept intact. In 
addition, compression errors can be adaptively distributed by 
carefully choosing samples. The compressed data structure 
produced by our algorithm facilitates real-time decompression in 
graphics hardware.  

The rest of this paper is organized as follows. Section 2 
describes the key idea and algorithm pipeline. Importance-driven 
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computation of samples is elaborated in section 3. Next, we 
present two encoding and decoding approaches for single image 
and image sequence respectively. Experimental results and 
discussions are given in section 5. Finally, we present conclusions 
and  future work in section 6. 

 

2 ALGORITHM OUTLINE 
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Figure 1: (a) Source texture. The red rectangle indicates the 
selected sample. (b) The enlarged view of the cyan rectangle in 
(a). The uniform grid covering the region is illustrated, with each 
cell being an image block. (c) The selected sample in (a). The 
cyan block in the sample shows the sample block matching one 
of the blocks in (b). (d) The enlarged view of the sample block 
represented by cyan block in the sample, with the magenta 
arrow indicating the block pair. 

  
To make our explanation clear, we first introduce several basic 
concepts. For a given source texture, it can be divided into a 
uniform grid of square blocks, each of which is called an image 
block. The image blocks are non-overlapping. The sample is a 
rectangular region of the texture, in which all overlapping blocks 
of the same size with image blocks are called sample blocks. A 
series of samples with different sizes constructs a sample set. In 
the context of texture encoding, all sample blocks in a sample set 
provide the codebook to encode the handled texture. If an image 
block matches a sample block under some similarity metric, we 
encode this image block by mapping it to the sample block. We 
call them a block pair. Fig. 1 illustrates the basic idea. In the 
following, if we just use blocks, we mean both image and sample 
blocks. 

Obviously, the more image blocks that can be encoded by one 
sample set, the better the sample set is. For a given texture and its 
block subdivision, there exists numerous possible sample sets. 
The determination of the best sample set can be regarded as a 
multi-target optimization procedure. On one hand, to encode more 
image blocks, more samples are required. On the other hand, the 
size of the sample set should be kept as small as possible to 
reduce redundancy and achieve higher compression ratio. Further, 
in order to visually emphasize important features of textures when 
they are used to paint 3D surfaces, several importance criteria are 
defined for the samples, yielding an importance-driven texture 
encoding scheme. 

There are two level data representations in our algorithm. The 
first level, called index map, is defined on a uniform grid covering 
the texture and provides references to the texture data which are 
stored in the second level. The second level contains all actual 
texture data and is called codebook. The index map together with 

the codebook is stored as small-sized textures and can be used to 
recover the original texture on-the-fly during texture mapping. 
The power and flexibility of programmable graphics hardware 
make the whole decoding procedure real-time, even for a 
sequence composed of more than one images. Obviously, the size 
of the index map is determined by the block size. In our 
experiments, the size of the block is set to be 4×4. This uniform 
block size is in favor of random access during decoding process. 
Smaller block size would make the index data bulge, which 
lowers the compression ratio. Larger block size would make it 
difficult to find block pairs, which affects the sample’s encoding 
performance. 
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Figure 2: Illustration of importance-driven texure encoding based 
on samples. (a) Source texture. (b) The sample set consists of 
two samples. (c) Nearly 78 percent of original image blocks are 
encoded by the sample set. (d) The regions that can not be 
encoded by the sample set. (e) The codebook for the image 
blocks in (d). (f) The reformulated codebook of (b) and (e). 

 
The whole algorithm pipeline is delineated in Fig. 2. Given a 

texture shown in Figure 2(a), a sample set is automatically 
extracted as initial codebook by determined criteria described later. 
In this example, two samples are chosen. The blocks that can be 
encoded by the sample set are illustrated in Figure 2(c). The 
blocks that can not be encoded are shown in Figure 2(d). We 
choose to encode them by the codebook (Figure 2(e)) created by 
traditional compressing technique. Finally, this codebook and the 
sample set are combined to reformulate the finial codebook 
(Figure 2(f)).  

 

3 IMPORTANCE-DRIVEN SAMPLE DETERMINATION  
 
Importance as a rendering parameter has been widely applied in 
graphics fields. As texture encoding is concerned, we assign each 
sample an importance. The importance not only implies the 
performance of the sample set, but also contains important or 
interesting regions involved in textures. Therefore, any 
importance criterion can be introduced and the combination of all 
importance criterions is used to guide the determination of the 
sample set.  

In this section, we introduce our importance criteria to 
determine the sample set from the source images. 

 

+ 



3.1     Sample Reusability 
 
The reusability of a sample describes how many image blocks it 
can encode compared with the size of the sample. For the given 
sample size, the sample representing most image blocks within the 
error tolerance is expected.  

The samples are chosen directly from textures. Suppose the 
resolution of the texture image is NtNs ×  and the sample size 
is StSs × , there are totally )()( StNtSsNs −×−  sample 
candidates. Note that, all overlapping blocks in one sample 
construct a searching space for the block pairs. The computation 
of the number of image blocks each possible sample can encode is 
described as follows: 

（1）Loop the whole image blocks in row-first scanline 
order； 
（2）For current image block, search the source image for a 

set of blocks which are within the error tolerance compared with 
it and indicate them as potential sample blocks； 
（3）For each potential sample block, find the samples that 

contain this block and update the number of image blocks that 
these samples can encode. Repeat. 
After all image blocks have been processed, we obtain the 

number of image blocks each possible sample can encode.  
The above three stages imply an algorithm complexity )( 2anO , 

where n is the number of all overlapping blocks in the source 
image and a is inverse proportional to the block size. In the case 
of 4×4 block size, a is approximately 1/16. In the second step, 
we refine and optimize some calculations to further reduce a. 
Enumerating all-overlapping block in the search space is 
unnecessary due to the high correlation between two adjacent 
blocks. Instead, we search blocks which are two pixels apart to 
reduce computation cost. Since the distance between two blocks is 
a metric in high-dimensional space that costs much computation 
time, we pre-compute the average color for each block and 
compare the average colors before computing the distance 
between two blocks, eliminating many unqualified blocks. 
However, the computation time grows very fast with the increase 
of image resolutions. Under such circumstances, we use the multi-
resolution representation of the texture and compute the 
corresponding results in low-resolution texture. The reusability 
information of samples obtained in this way is reasonably 
appropriate to be used to guide sample determination for original 
high-resolution image. The time consumption for computing the 
reusability information of a 64×64 sample in a 512×512 texture 
image is about 180 seconds. By using the searching approaches 
introduced in [11] [12], further acceleration can be achieved.  

The size of samples is specified by the users. The users 
determine the sample size according to expected compression 
ratio which is closed related to the size of final codebook. For 
example, if the size of the codebook is 128×128, usually the 
resolution of the largest sample is 64×64. The sum of samples 
should not exceed 75 percent of the codebook. If multiple samples 
are to be obtained, we choose the one with the largest number of 
blocks covered by it. For the left blocks, we compute the second 
sample in the same mode. The determination procedure is 
continued till the sample number achieves some threshold. The 
error tolerance is set to be within 0.1 times the expected RMS 
error. The default expected RMS error is set to be 10.0 in our 
experiments. The user can adjust this value interactively. 

Fig. 2 demonstrates two samples and corresponding encoded 
result by two samples which covers a majority part of original 

image. The sample set includes many texture features such as eyes, 
skin and hair.                                                                                                             
 
3.2     Saliency-based Visual Attention 
 
Human eyes always pay more attention to the parts of the image 
that are interesting and noticeable. It is reasonable that the 
important regions are compressed with low errors while the errors 
for the unimportant regions can be relatively high by adaptively 
compressing different parts in the image. Thus, the determined 
samples should extract the important information and keep them 
intact during encoding. 

Saliency-based visual attention is a psychophysical concept and 
is significantly influenced by two general processes, namely, 
bottom-up (scene-dependent) and top-down (task-driven) controls. 
The bottom-up process is purely stimulus driven while the top-
down process is volition-controlled and task-driven. For more 
general and automatic computation of visually important area, we 
adopt the bottom-up model proposed in [13]. This model is built 
on a biologically plausible architecture proposed in [14] and [15]. 
In this model, the input image is decomposed into feature maps 
for visually important channels such as intensity, color and 
orientation. Each feature map is computed by a set of linear 
center-surround operations akin to visual receptive fields which 
triggers response to changes between the center of the field and its 
surroundings. The center-surround effect makes the visual system 
particularly well-suited to detecting features which stands out 
from their surround. The feature maps are computed at multiple 
spatial scales and combined into a single topographical saliency 
map that quantifies visual attention.  

 

 
Figure 3: An input image and its saliency map. The bright area 
corresponds to important area in visual attention. 

  
Fig. 3 shows an image and its saliency map. The bright regions 

in the saliency map imply more visually important areas. In our 
experiments, it works fairly well for real world scenes, such as 
landscape and buildings. However, for the images incurring strong 
subject feelings and understanding, like portraits, the important 
regions computed by this model are not matched very well with 
our observations. This is because the model adopted here is 
completely bottom-up without considering any subjective 
guidance. In these situations, we propose to interactively paint the 
important region with brighter pixel intensities.  

 
3.3     Distortion of Texture Mapping 
 
Texture mapping normally introduces distortions with non-
uniform sampling of texture images arising from object 
parameterization. Therefore, we introduce the mapping distortion 
as another visual importance for the sample determination.  

The parameterization S of the surface maps a set of points in 2R  
to a set of points in 3R , which is expressed 
as )),(),,(),,((),( vuzvuyvuxvuS = , where ),( vu are points of 

2R and ),,( zyx are points in 3R . The mapping distortion is 



measured using the 3×2 Jacobian Matrix ]/,/[ vSuS ∂∂∂∂  [16]. 
The largest and smallest singular values of the Jocabian represent 
the maximal and minimal parameterization distortions 
respectively. The surface defined by the polygonal mesh is 
piecewise linear. Hence, the parameterization of such surface is 
also piecewise linear in the texture domain. For each polygon in 
texture domain, we compute one set of singular values and obtain 
the singular values for each vertex by averaging values of incident 
faces. The piecewise continuous field in the texture domain is 
calculated by bilinear interpolating  vertex values and is output as 
a 2D gray image where the pixel intensities corresponds to 
singular values. We call it the distortion map. 

Maximum singular value of the Jocabian is adopted here 
because it reflects the largest stretch when mapping unit-length 
vectors from the texture domain to the surface. Larger value 
means the texture image is more stretched during parameterization. 
Such regions are expected to be enlarged when mapped to 3D 
surfaces and the compression errors within them are to be 
magnified. As a result, the texture parts with high stretch values in 
the distortion map should have low decompression errors. 

 
3.4     Synthesis of Importance Maps 
 
All consideration aforementioned can be represented by 2D maps. 
For visual attention and parameterization distortion, their 
importance information is output as saliency map and distortion 
maps respectively. The reusability information of sample can also 
be formulated by a 2D usability map by making the pixel intensity 
proportional to the image block number encoded by the sample. 
Finally, we get the guidance map by combining these maps with 
normalized weights. We tune the coefficients to balance the 
influences of these maps or to emphasize a specific map. The final 
map is used to guide the sample determination. Given the sample 
size, we choose the sample that has the greatest intensity sum.  
 

4 ENCODING AND DECODING FOR TEXTURES 
 
In this section, we show how to encode textures with samples and 
decompress the encoded texture in programmable graphics 
hardware.  

With the sample set, we can encode the source texture with the 
method described in section 2. Note that, not all image blocks can 
be encoded by the samples determined by the guidance map. For 
example, the lip and hat decorations in Fig. 3 can not be encoded 
by the sample set. To encode these regions, we propose two 
different approaches for single image and image sequence 
separately.  

 
4.1    Vector Quantization Algorithm for Single Image 

 
In order to optimally compress the left blocks and make full 
exploit of graphics hardware, we choose vector quantization (VQ) 
algorithm [17] to compress them for single image. VQ algorithm 
is an iterative clustering algorithm and yields a locally optimal 
codebook for a given set of blocks. The determined sample set 
and VQ codewords are stored together as the final codebook. Its 
size can be specified by the user in advance. The length of the VQ 
codewords is given by subtracting the samples from the codebook.  

 
 
 
 

4.2    Incremental Encoding for Image Sequence 
  

We further apply our compression method to image sequences 
composed of similar images. Image sequences are useful in sprite 
animation or stitching different textures onto a 3D model. It is not 
desirable to specify the size of the codebook in advance for image 
sequences. We prefer to update the codebook dynamically and 
incrementally for each new added image. When processing 
images in the sequences, this method incrementally expands the 
codebook for left blocks that can not be encoded by samples.  

The method is quite simple. We first create a new empty 
codebook for the image blocks that can not been encoded by the 
sample set. The first unhandled block is directly added to the 
codebook. We then compare each of the unhandled blocks with 
the codewords in the codebook. For the block whose distance to 
some codeword is within the error tolerance, this codeword is 
used to represent it. Otherwise, this block is added to the 
codebook as a new codeword. The codebook computed in this 
way is combined with the sample set to form the final codebook, 
i.e., a small sized texture. 

The incremental encoding approach is especially suitable for 
dynamically updated image sequence. When a new similar image 
is added, the algorithm adds only the information that can not be 
represented by existent codebook. Since the images in the 
sequence are similar, they can reuse the codebook with high 
probability and the add-in contents are controllable. On the other 
side, VQ algorithm is quite fixed since it pre-specifies the 
codebook size and has to perform iterative computation to re-
converge to the codebook when new image is added. Compared 
with it, our incremental method is simple, efficient and flexible 
for dynamic image sequence.  

 
4.3    Rendering from Compressed Textures 

 
The compressed data including index map and codebook are 
stored in the texture memory. We implement the decoder in 
programmable graphics hardware. The decoder makes use of 
dependent texture lookup, through which the texture coordinates 
of the second texture access is derived from the first texture 
lookup. In our decoder, the data fetched from the index map 
provides the position where the texture data is to be fetched from 
codebook. Subsequently, the actual texture data are read from 
codebook and are used to render the corresponding parts. The 
whole simple decoding process achieves real–time frame rates, 
which has an advantage over slow iterative decompression 
scheme involved in fractal image compression that makes it 
difficult to be applied to time-critical applications. 
 

5 EXPERIMENTAL RESULTS AND DISCUSSIONS 
 
In this section, we present the experimental results produced by 
proposed texture encoding algorithm for single images and image 
sequences. The decoder is implemented in Nvidia GeForce FX 
5600 and is written in CG for openGL API and written in PS 
shder 2.0 for D3D API. 

 
5.1 Texture Encoding for Single Images 

 
For still images, the size of the codebook needs to be specified in 
advance. We assign different images with different codebook 
sizes and different codebook sizes lead to different compression 
ratios. For the examples in Fig. 4, Fig. 5 and Fig. 6, the size of the 
codebook is set to be one sixteenth of that of input image. The 



size of the codebook is further reduced to be one sixty-forth of 
that of input image in Fig. 7. As for the size of index map, 
remember that the input image is divided into uniform grid with 
each cell being 4×4 pixels, so index map has one sixteenth of 
pixels in the input image. We limit the length of each pixel in 
index map to two bytes with each byte recording 
horizontal/vertical position of corresponding representing block in 
the codebook. Thus the largest size of the codebook is limited to 
be 88 22 ×  and we find this is enough in our applications. The 
images to be compressed are RGB images with each pixel being 
three bytes long. So the overall compression ratio of input RGB 
image to the sum of codebook and index map 
is ))3/2()16/1(/(1 ×+n , where n is the size of the codebook. 
When n is 1/16 in Fig. 4, Fig. 5 and Fig. 6, the compression ration 
is 9.6. The ratio is enhanced to 17.1 when n is 1/64 in Fig. 7. 

In Fig. 4 we present the process of selecting one sample from 
the tower image of resolution 512×512. The codebook and the 
decompression result are also shown in this figure. The sample is 
set to be 64×64 pixels and is selected with the assistance of 
usability map which visualizes reusability information and the 
importance map which indicates the visual attention information. 
The RMS error between the decompressed and uncompressed 
images is 6.7. Without selecting samples, the result generated by 
pure VQ with the same codebook size has the RMS error of 6.5. 
Although our RMS error is a little higher than VQ’s, we keep the 
top of tower which is the visual attention in the image losslessly 
encoded. So our result is more satisfying when taking visual 
importance into consideration. 

For the girl face image of resolution 512×512 in Fig. 5, we 
present and compare the compression results of our method and 
VQ. In order to be fair, both codebook sizes are set to be the same 
(Fig. 5(d)). In VQ all blocks of original image are processed 
equally, so we observe some undesired compression artifacts in 
some important regions, such as the lip and eyes (Fig. 5(f)). Using 
our method, samples in such important regions are selected and 
packed in the codebook (Fig. 5(d)). So such regions are visual-
pleasingly preserved and the errors are distributed to other 
unimportant regions, like the hair part (Fig. 5(e)). Although the 
overall RMS error of our result is a little higher compared with 
VQ’s, the decompression result produced with our method looks 
better than VQ’s for human visual effect. 

In Fig. 6 we present 3D rendering results on the model of a cow 
head from the compressed data generated by our method and VQ 
separately. The texture image is of resolution 512 × 512. 
According to the parameterization distortion, the nose part of the 
tiger image is stretched highly and so needs to be preserved well. 
However, without such consideration, the blockwise artifacts are 
evident in the nose part when mapping the data produced by VQ 
(Fig. 6(d)) to the model. With our method the nose part is cut as a 
sample, so it is preserved well and the rendering result is more 
satisfying (Fig. 6(f)). The average RMS error across 60 frames 
animation between our result and uncompressed texture is 6.5 and 
such average RMS error between VQ and uncompressed texture is 
6.4. The FPS (frame per second) of rendering speed is 40.0 when 
rendering from compressed data with our decoder. 

In Fig. 7 we present another 3D result of mapping a large 
mountain image of resolution 2048×2048 on a terrain model. The 
visual quality of the rendering result from the encoded data is still 
satisfying with the reduced codebook size ratio. The average RMS 
error between our result and original rendering result from 
uncompressed texture is 11.0. The decoding is still real time with 
FPS being 38.0. 

 

5.2 Encoding for Dynamic Textures 
 

We implement a novel incremental encoding algorithm for 
animated image sequences. This method differs from VQ 
algorithm by dynamically updating its codebook with new input 
images from the sequence. This method does not produce separate 
codebook for each image. All images share the same codebook 
with their index maps.  

We apply this method to the DolphinVS sample released by 
Microsoft DirectX 9.0 SDK. This sample shows an underwater 
scene with caustic effects on the dolphin and sea floor which is 
produced by an animated set of 32 textures whose resolutions are 
all 64×64. These 32 textures are compressed with sample-based 
incremental encoding method. In order to render from the 
compressed data, we modify the original texture sampling 
function by a pixel shader which decodes the texel value with 
dependent texture lookup.   

The first texture is chosen as the sample and for the image 
blocks within the set of textures that can not be represented by this 
sample, they are added into the codebook. The sample and add-in 
blocks finally form the codebook whose resolution is 64×96 
pixels. The rendering results of one frame are listed in Fig. 8. The 
compression rate is 11.3 and the average RMS error across 50 
frames animation is 6.0. The FPS is 80 when rendering from the 
compressed data.  
 

6 CONCLUSION AND FUTURE WORK 
 
In this paper we present a new algorithm for encoding textures 
with selected samples. It incorporates different ideas including 
texture synthesis, texture compression, visual attention and 
parameterizaion. Experimental results show that our approach can 
efficiently compress textures and render them from compressed 
data with high quality using programmable graphics hardware.  

The proposed algorithm is flexible and scalable. More 
considerations can be incorporated to make more appropriate 
sample determination. We have performed some experiments on 
some aspects in visual attention and parameterization. In the 
future, we want to explore more sophisticated importance and 
utilize them to guide the compression process. One possible way 
is that the perceptual characteristics of human eyes can be taken 
into account. In addition, with graphics hardware that can support 
dependent texture lookup more than two levels, we can take 
multilevel compression into account to further compress the 
relatively unimportant regions in the sample set.  
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 Figure 4: Sample determination for a castle image. 

 
 
 



(a) (b) (c)

 (d) 

(e) (f)
Figure 5: Comparison of the VQ algorithm and our method. (a) Source image. (b) Decompressed result by our method. The RMS error 
between this image and source image is 9.8. (c) Decompressed result by VQ algorithm. The RMS error between this image and source 
image is 9.2. (d) The codebook used in our method (the left one) and the codebook of VQ (the right one). (e) The difference map between 
our result and source image. (f) The difference map between the result of VQ algorithm and source image. 

 
 
 

(a) (c) (e)

(b) 

(d) (f) 

Figure 6: Texture mapping to a cow-head model. (a) Texture mapping of the source texture of (b). (b) Texture image. (c) Texture 
mapping of compressed data produced by VQ algorithm. (c) The enlarged part of the red region in (c). (e) Texture mapping of 
compressed data produced by our method. (f) The enlarged part the red region in (e).  
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(d) 

Figure 7: Texture mapping of a mountain image on a 3D terrain model. (a) The mountain image. (b) The 3D terrain model. (c) The rendering 
result from the compressed data. (d) The corresponding codebook used in our method. 
 
 

(a) (b)
Figure 8: One frame chosen from the animation clip. (a) Result without compression. (b) Result with our 
algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


