
Importance-Driven Texture Encoding Based on Samples

Ying Tang1 Hongxin Zhang2 Qing Wang3 Hujun Bao4∗

State Key Laboratory of CAD&CG Zhejiang University, Hangzhou, P. R. China, 310027

ABSTRACT

In this paper, we present an importance-driven texture encoding
algorithm based on samples. Our algorithm determines a set of
samples from source texture based on combined criteria which
include compression ratio, visual attention and parameterization
distortion. The sample set is used to encode the majority parts of
the texture. The remaining regions are then encoded by traditional
compression algorithm such as vector quantization. Our method
can preserve details of important areas and be extended to
dynamic textures. The decoding procedure is performed entirely
in programmable graphics hardware, yielding real-time frame
rates. Experimental results demonstrate the efficiency and
performance of our algorithm.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – Texture;
I.4.2 [Image Processing and Computer Vision]: Compression
(Coding)

Keywords: texture mapping, texture encoding, visual attention,
parameterization

1 INTRODUCTION

Textures and texture mapping play significant roles in computer
graphics to add visual richness without increasing scene geometric
complexity. Most graphics hardware provides dedicated memory
cache to store textures for real-time texturing. However, the cache
is limited in size and easily filled by high-resolution or large-sized
texture images, necessitating the highly efficient compression and
on-the-fly decompression of textures.

One pioneer work by Beers et al. [1] proposes to compress
texture images using Vector Quantization (VQ) algorithm, and
accomplishes rendering directly from compressed texture. This
approach achieves high compression rate with acceptable visual
quality loss by adopting a software implementation of decoding
process. Another remarkable compression strategy S3TC (or
DXTC in Microsoft’s DirectX 3D) [2] widely used in graphics
hardware community compresses each 4×4 texel block of one
texture independently by encoding each pixel with two-bits index
to four representative colors. This technique provides 6 times
compression ratio and has been integrated into standard graphics
API OpenGL. Pereberin [3] introduces a hierarchical

representation and block-wise scheme to support mip-mapping in
texture compression. The approach presented in [4] partitions
pixels within one block and creates sub-palettes for each partition
to choose representative colors per block from an RGB
tetrahedron. Ivanov [5] improves S3TC technique to allow sharing
colors among multiple blocks, enriching the color choices in each
block. Fenney [6] proposes an efficient representation to avoid
block artifacts by blending multiple low frequency signals with a
low-precision and high-frequency modulation signal.

Aforementioned approaches support appropriate compress
ratios and reasonable decompress speed. However, they seldom
take account of image contents and dispose each texture part
equally. As a result, decompression errors are not distributed
according to the content of the handled texture, neglecting the
observation that important image region should have less error
and vice versa.

Recently, Hertzmann et al. [7] present image analogies based
on the texture synthesis techniques [8] [9]. It synthesizes a new
filtered target image B* from a pair of source images A, A* and a
target image B, which is relates to B in the same mode as A*

relates to A. By choosing the training pairs automatically, it
suggests an interesting extension to image compression.
Meanwhile, fractal image compression technique [10] utilizes the
self-similarity implied in images to build a set of contractive maps
for image compression. However, it needs to explicitly store a
sequence of affine transformations and its iterative decompression
scheme makes it difficult for time-critical applications.

As mentioned in [1], two major concerns are involved in
texture compression, i.e., decoding speed and random access.
Standard image compressing techniques such as JPEG are hardly
applicable due to their expensive decompression computation cost
and the variable rate code against random texel access. A deep
view of the texture compression for real-time rendering gives us
the following insights for the aspects to be considered compared
with that of general image compression. First of all,
decompression performance is very crucial, especially for
interactive or time-critical applications. Second, texture mapping
unavoidably introduces image distortions which are expected to
be alleviated. Third, textures usually imply the visual perception
of human beings to the appearances of mapped objects, and hence
visual attentions have to be taken into account.

These tasks can be resolved by importance-driven texture
encoding based on samples. In our algorithm, the handled texture
is separated into two parts, one of which is encoded by these
samples and the other one is dealt with traditional encoding
algorithm. The samples are determined by visually emphasized
importance. The contents of samples not only provide information
to encode texture image, but also preserve important or interesting
regions of the texture that are expected to be kept intact. In
addition, compression errors can be adaptively distributed by
carefully choosing samples. The compressed data structure
produced by our algorithm facilitates real-time decompression in
graphics hardware.

The rest of this paper is organized as follows. Section 2
describes the key idea and algorithm pipeline. Importance-driven

1 ytang@cad.zju.edu.cn
2 zhx@cad.zju.edu.cn
3 qwang@cad.zju.edu.cn
4 bao@cad.zju.edu.cn
∗ Corresponding Author

computation of samples is elaborated in section 3. Next, we
present two encoding and decoding approaches for single image
and image sequence respectively. Experimental results and
discussions are given in section 5. Finally, we present conclusions
and future work in section 6.

2 ALGORITHM OUTLINE

(a)

(b)

(c)

(d)

Figure 1: (a) Source texture. The red rectangle indicates the
selected sample. (b) The enlarged view of the cyan rectangle in
(a). The uniform grid covering the region is illustrated, with each
cell being an image block. (c) The selected sample in (a). The
cyan block in the sample shows the sample block matching one
of the blocks in (b). (d) The enlarged view of the sample block
represented by cyan block in the sample, with the magenta
arrow indicating the block pair.

To make our explanation clear, we first introduce several basic
concepts. For a given source texture, it can be divided into a
uniform grid of square blocks, each of which is called an image
block. The image blocks are non-overlapping. The sample is a
rectangular region of the texture, in which all overlapping blocks
of the same size with image blocks are called sample blocks. A
series of samples with different sizes constructs a sample set. In
the context of texture encoding, all sample blocks in a sample set
provide the codebook to encode the handled texture. If an image
block matches a sample block under some similarity metric, we
encode this image block by mapping it to the sample block. We
call them a block pair. Fig. 1 illustrates the basic idea. In the
following, if we just use blocks, we mean both image and sample
blocks.

Obviously, the more image blocks that can be encoded by one
sample set, the better the sample set is. For a given texture and its
block subdivision, there exists numerous possible sample sets.
The determination of the best sample set can be regarded as a
multi-target optimization procedure. On one hand, to encode more
image blocks, more samples are required. On the other hand, the
size of the sample set should be kept as small as possible to
reduce redundancy and achieve higher compression ratio. Further,
in order to visually emphasize important features of textures when
they are used to paint 3D surfaces, several importance criteria are
defined for the samples, yielding an importance-driven texture
encoding scheme.

There are two level data representations in our algorithm. The
first level, called index map, is defined on a uniform grid covering
the texture and provides references to the texture data which are
stored in the second level. The second level contains all actual
texture data and is called codebook. The index map together with

the codebook is stored as small-sized textures and can be used to
recover the original texture on-the-fly during texture mapping.
The power and flexibility of programmable graphics hardware
make the whole decoding procedure real-time, even for a
sequence composed of more than one images. Obviously, the size
of the index map is determined by the block size. In our
experiments, the size of the block is set to be 4×4. This uniform
block size is in favor of random access during decoding process.
Smaller block size would make the index data bulge, which
lowers the compression ratio. Larger block size would make it
difficult to find block pairs, which affects the sample’s encoding
performance.

(c)

(a)

(b)

 (d) (e)

(f)

Figure 2: Illustration of importance-driven texure encoding based
on samples. (a) Source texture. (b) The sample set consists of
two samples. (c) Nearly 78 percent of original image blocks are
encoded by the sample set. (d) The regions that can not be
encoded by the sample set. (e) The codebook for the image
blocks in (d). (f) The reformulated codebook of (b) and (e).

The whole algorithm pipeline is delineated in Fig. 2. Given a

texture shown in Figure 2(a), a sample set is automatically
extracted as initial codebook by determined criteria described later.
In this example, two samples are chosen. The blocks that can be
encoded by the sample set are illustrated in Figure 2(c). The
blocks that can not be encoded are shown in Figure 2(d). We
choose to encode them by the codebook (Figure 2(e)) created by
traditional compressing technique. Finally, this codebook and the
sample set are combined to reformulate the finial codebook
(Figure 2(f)).

3 IMPORTANCE-DRIVEN SAMPLE DETERMINATION

Importance as a rendering parameter has been widely applied in
graphics fields. As texture encoding is concerned, we assign each
sample an importance. The importance not only implies the
performance of the sample set, but also contains important or
interesting regions involved in textures. Therefore, any
importance criterion can be introduced and the combination of all
importance criterions is used to guide the determination of the
sample set.

In this section, we introduce our importance criteria to
determine the sample set from the source images.

+

3.1 Sample Reusability

The reusability of a sample describes how many image blocks it
can encode compared with the size of the sample. For the given
sample size, the sample representing most image blocks within the
error tolerance is expected.

The samples are chosen directly from textures. Suppose the
resolution of the texture image is NtNs × and the sample size
is StSs × , there are totally)()(StNtSsNs −×− sample
candidates. Note that, all overlapping blocks in one sample
construct a searching space for the block pairs. The computation
of the number of image blocks each possible sample can encode is
described as follows:

（1）Loop the whole image blocks in row-first scanline
order；
（2）For current image block, search the source image for a

set of blocks which are within the error tolerance compared with
it and indicate them as potential sample blocks；
（3）For each potential sample block, find the samples that

contain this block and update the number of image blocks that
these samples can encode. Repeat.
After all image blocks have been processed, we obtain the

number of image blocks each possible sample can encode.
The above three stages imply an algorithm complexity)(2anO ,

where n is the number of all overlapping blocks in the source
image and a is inverse proportional to the block size. In the case
of 4×4 block size, a is approximately 1/16. In the second step,
we refine and optimize some calculations to further reduce a.
Enumerating all-overlapping block in the search space is
unnecessary due to the high correlation between two adjacent
blocks. Instead, we search blocks which are two pixels apart to
reduce computation cost. Since the distance between two blocks is
a metric in high-dimensional space that costs much computation
time, we pre-compute the average color for each block and
compare the average colors before computing the distance
between two blocks, eliminating many unqualified blocks.
However, the computation time grows very fast with the increase
of image resolutions. Under such circumstances, we use the multi-
resolution representation of the texture and compute the
corresponding results in low-resolution texture. The reusability
information of samples obtained in this way is reasonably
appropriate to be used to guide sample determination for original
high-resolution image. The time consumption for computing the
reusability information of a 64×64 sample in a 512×512 texture
image is about 180 seconds. By using the searching approaches
introduced in [11] [12], further acceleration can be achieved.

The size of samples is specified by the users. The users
determine the sample size according to expected compression
ratio which is closed related to the size of final codebook. For
example, if the size of the codebook is 128×128, usually the
resolution of the largest sample is 64×64. The sum of samples
should not exceed 75 percent of the codebook. If multiple samples
are to be obtained, we choose the one with the largest number of
blocks covered by it. For the left blocks, we compute the second
sample in the same mode. The determination procedure is
continued till the sample number achieves some threshold. The
error tolerance is set to be within 0.1 times the expected RMS
error. The default expected RMS error is set to be 10.0 in our
experiments. The user can adjust this value interactively.

Fig. 2 demonstrates two samples and corresponding encoded
result by two samples which covers a majority part of original

image. The sample set includes many texture features such as eyes,
skin and hair.

3.2 Saliency-based Visual Attention

Human eyes always pay more attention to the parts of the image
that are interesting and noticeable. It is reasonable that the
important regions are compressed with low errors while the errors
for the unimportant regions can be relatively high by adaptively
compressing different parts in the image. Thus, the determined
samples should extract the important information and keep them
intact during encoding.

Saliency-based visual attention is a psychophysical concept and
is significantly influenced by two general processes, namely,
bottom-up (scene-dependent) and top-down (task-driven) controls.
The bottom-up process is purely stimulus driven while the top-
down process is volition-controlled and task-driven. For more
general and automatic computation of visually important area, we
adopt the bottom-up model proposed in [13]. This model is built
on a biologically plausible architecture proposed in [14] and [15].
In this model, the input image is decomposed into feature maps
for visually important channels such as intensity, color and
orientation. Each feature map is computed by a set of linear
center-surround operations akin to visual receptive fields which
triggers response to changes between the center of the field and its
surroundings. The center-surround effect makes the visual system
particularly well-suited to detecting features which stands out
from their surround. The feature maps are computed at multiple
spatial scales and combined into a single topographical saliency
map that quantifies visual attention.

Figure 3: An input image and its saliency map. The bright area
corresponds to important area in visual attention.

Fig. 3 shows an image and its saliency map. The bright regions

in the saliency map imply more visually important areas. In our
experiments, it works fairly well for real world scenes, such as
landscape and buildings. However, for the images incurring strong
subject feelings and understanding, like portraits, the important
regions computed by this model are not matched very well with
our observations. This is because the model adopted here is
completely bottom-up without considering any subjective
guidance. In these situations, we propose to interactively paint the
important region with brighter pixel intensities.

3.3 Distortion of Texture Mapping

Texture mapping normally introduces distortions with non-
uniform sampling of texture images arising from object
parameterization. Therefore, we introduce the mapping distortion
as another visual importance for the sample determination.

The parameterization S of the surface maps a set of points in 2R
to a set of points in 3R , which is expressed
as)),(),,(),,((),(vuzvuyvuxvuS = , where),(vu are points of

2R and),,(zyx are points in 3R . The mapping distortion is

measured using the 3×2 Jacobian Matrix]/,/[vSuS ∂∂∂∂ [16].
The largest and smallest singular values of the Jocabian represent
the maximal and minimal parameterization distortions
respectively. The surface defined by the polygonal mesh is
piecewise linear. Hence, the parameterization of such surface is
also piecewise linear in the texture domain. For each polygon in
texture domain, we compute one set of singular values and obtain
the singular values for each vertex by averaging values of incident
faces. The piecewise continuous field in the texture domain is
calculated by bilinear interpolating vertex values and is output as
a 2D gray image where the pixel intensities corresponds to
singular values. We call it the distortion map.

Maximum singular value of the Jocabian is adopted here
because it reflects the largest stretch when mapping unit-length
vectors from the texture domain to the surface. Larger value
means the texture image is more stretched during parameterization.
Such regions are expected to be enlarged when mapped to 3D
surfaces and the compression errors within them are to be
magnified. As a result, the texture parts with high stretch values in
the distortion map should have low decompression errors.

3.4 Synthesis of Importance Maps

All consideration aforementioned can be represented by 2D maps.
For visual attention and parameterization distortion, their
importance information is output as saliency map and distortion
maps respectively. The reusability information of sample can also
be formulated by a 2D usability map by making the pixel intensity
proportional to the image block number encoded by the sample.
Finally, we get the guidance map by combining these maps with
normalized weights. We tune the coefficients to balance the
influences of these maps or to emphasize a specific map. The final
map is used to guide the sample determination. Given the sample
size, we choose the sample that has the greatest intensity sum.

4 ENCODING AND DECODING FOR TEXTURES

In this section, we show how to encode textures with samples and
decompress the encoded texture in programmable graphics
hardware.

With the sample set, we can encode the source texture with the
method described in section 2. Note that, not all image blocks can
be encoded by the samples determined by the guidance map. For
example, the lip and hat decorations in Fig. 3 can not be encoded
by the sample set. To encode these regions, we propose two
different approaches for single image and image sequence
separately.

4.1 Vector Quantization Algorithm for Single Image

In order to optimally compress the left blocks and make full
exploit of graphics hardware, we choose vector quantization (VQ)
algorithm [17] to compress them for single image. VQ algorithm
is an iterative clustering algorithm and yields a locally optimal
codebook for a given set of blocks. The determined sample set
and VQ codewords are stored together as the final codebook. Its
size can be specified by the user in advance. The length of the VQ
codewords is given by subtracting the samples from the codebook.

4.2 Incremental Encoding for Image Sequence

We further apply our compression method to image sequences
composed of similar images. Image sequences are useful in sprite
animation or stitching different textures onto a 3D model. It is not
desirable to specify the size of the codebook in advance for image
sequences. We prefer to update the codebook dynamically and
incrementally for each new added image. When processing
images in the sequences, this method incrementally expands the
codebook for left blocks that can not be encoded by samples.

The method is quite simple. We first create a new empty
codebook for the image blocks that can not been encoded by the
sample set. The first unhandled block is directly added to the
codebook. We then compare each of the unhandled blocks with
the codewords in the codebook. For the block whose distance to
some codeword is within the error tolerance, this codeword is
used to represent it. Otherwise, this block is added to the
codebook as a new codeword. The codebook computed in this
way is combined with the sample set to form the final codebook,
i.e., a small sized texture.

The incremental encoding approach is especially suitable for
dynamically updated image sequence. When a new similar image
is added, the algorithm adds only the information that can not be
represented by existent codebook. Since the images in the
sequence are similar, they can reuse the codebook with high
probability and the add-in contents are controllable. On the other
side, VQ algorithm is quite fixed since it pre-specifies the
codebook size and has to perform iterative computation to re-
converge to the codebook when new image is added. Compared
with it, our incremental method is simple, efficient and flexible
for dynamic image sequence.

4.3 Rendering from Compressed Textures

The compressed data including index map and codebook are
stored in the texture memory. We implement the decoder in
programmable graphics hardware. The decoder makes use of
dependent texture lookup, through which the texture coordinates
of the second texture access is derived from the first texture
lookup. In our decoder, the data fetched from the index map
provides the position where the texture data is to be fetched from
codebook. Subsequently, the actual texture data are read from
codebook and are used to render the corresponding parts. The
whole simple decoding process achieves real–time frame rates,
which has an advantage over slow iterative decompression
scheme involved in fractal image compression that makes it
difficult to be applied to time-critical applications.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the experimental results produced by
proposed texture encoding algorithm for single images and image
sequences. The decoder is implemented in Nvidia GeForce FX
5600 and is written in CG for openGL API and written in PS
shder 2.0 for D3D API.

5.1 Texture Encoding for Single Images

For still images, the size of the codebook needs to be specified in
advance. We assign different images with different codebook
sizes and different codebook sizes lead to different compression
ratios. For the examples in Fig. 4, Fig. 5 and Fig. 6, the size of the
codebook is set to be one sixteenth of that of input image. The

size of the codebook is further reduced to be one sixty-forth of
that of input image in Fig. 7. As for the size of index map,
remember that the input image is divided into uniform grid with
each cell being 4×4 pixels, so index map has one sixteenth of
pixels in the input image. We limit the length of each pixel in
index map to two bytes with each byte recording
horizontal/vertical position of corresponding representing block in
the codebook. Thus the largest size of the codebook is limited to
be 88 22 × and we find this is enough in our applications. The
images to be compressed are RGB images with each pixel being
three bytes long. So the overall compression ratio of input RGB
image to the sum of codebook and index map
is))3/2()16/1(/(1 ×+n , where n is the size of the codebook.
When n is 1/16 in Fig. 4, Fig. 5 and Fig. 6, the compression ration
is 9.6. The ratio is enhanced to 17.1 when n is 1/64 in Fig. 7.

In Fig. 4 we present the process of selecting one sample from
the tower image of resolution 512×512. The codebook and the
decompression result are also shown in this figure. The sample is
set to be 64×64 pixels and is selected with the assistance of
usability map which visualizes reusability information and the
importance map which indicates the visual attention information.
The RMS error between the decompressed and uncompressed
images is 6.7. Without selecting samples, the result generated by
pure VQ with the same codebook size has the RMS error of 6.5.
Although our RMS error is a little higher than VQ’s, we keep the
top of tower which is the visual attention in the image losslessly
encoded. So our result is more satisfying when taking visual
importance into consideration.

For the girl face image of resolution 512×512 in Fig. 5, we
present and compare the compression results of our method and
VQ. In order to be fair, both codebook sizes are set to be the same
(Fig. 5(d)). In VQ all blocks of original image are processed
equally, so we observe some undesired compression artifacts in
some important regions, such as the lip and eyes (Fig. 5(f)). Using
our method, samples in such important regions are selected and
packed in the codebook (Fig. 5(d)). So such regions are visual-
pleasingly preserved and the errors are distributed to other
unimportant regions, like the hair part (Fig. 5(e)). Although the
overall RMS error of our result is a little higher compared with
VQ’s, the decompression result produced with our method looks
better than VQ’s for human visual effect.

In Fig. 6 we present 3D rendering results on the model of a cow
head from the compressed data generated by our method and VQ
separately. The texture image is of resolution 512 × 512.
According to the parameterization distortion, the nose part of the
tiger image is stretched highly and so needs to be preserved well.
However, without such consideration, the blockwise artifacts are
evident in the nose part when mapping the data produced by VQ
(Fig. 6(d)) to the model. With our method the nose part is cut as a
sample, so it is preserved well and the rendering result is more
satisfying (Fig. 6(f)). The average RMS error across 60 frames
animation between our result and uncompressed texture is 6.5 and
such average RMS error between VQ and uncompressed texture is
6.4. The FPS (frame per second) of rendering speed is 40.0 when
rendering from compressed data with our decoder.

In Fig. 7 we present another 3D result of mapping a large
mountain image of resolution 2048×2048 on a terrain model. The
visual quality of the rendering result from the encoded data is still
satisfying with the reduced codebook size ratio. The average RMS
error between our result and original rendering result from
uncompressed texture is 11.0. The decoding is still real time with
FPS being 38.0.

5.2 Encoding for Dynamic Textures

We implement a novel incremental encoding algorithm for
animated image sequences. This method differs from VQ
algorithm by dynamically updating its codebook with new input
images from the sequence. This method does not produce separate
codebook for each image. All images share the same codebook
with their index maps.

We apply this method to the DolphinVS sample released by
Microsoft DirectX 9.0 SDK. This sample shows an underwater
scene with caustic effects on the dolphin and sea floor which is
produced by an animated set of 32 textures whose resolutions are
all 64×64. These 32 textures are compressed with sample-based
incremental encoding method. In order to render from the
compressed data, we modify the original texture sampling
function by a pixel shader which decodes the texel value with
dependent texture lookup.

The first texture is chosen as the sample and for the image
blocks within the set of textures that can not be represented by this
sample, they are added into the codebook. The sample and add-in
blocks finally form the codebook whose resolution is 64×96
pixels. The rendering results of one frame are listed in Fig. 8. The
compression rate is 11.3 and the average RMS error across 50
frames animation is 6.0. The FPS is 80 when rendering from the
compressed data.

6 CONCLUSION AND FUTURE WORK

In this paper we present a new algorithm for encoding textures
with selected samples. It incorporates different ideas including
texture synthesis, texture compression, visual attention and
parameterizaion. Experimental results show that our approach can
efficiently compress textures and render them from compressed
data with high quality using programmable graphics hardware.

The proposed algorithm is flexible and scalable. More
considerations can be incorporated to make more appropriate
sample determination. We have performed some experiments on
some aspects in visual attention and parameterization. In the
future, we want to explore more sophisticated importance and
utilize them to guide the compression process. One possible way
is that the perceptual characteristics of human eyes can be taken
into account. In addition, with graphics hardware that can support
dependent texture lookup more than two levels, we can take
multilevel compression into account to further compress the
relatively unimportant regions in the sample set.

7 ACKNOWLEDGEMENTS

The project is supported in part by the 973 program of China
(Grant No. 2002CB312102), National Natural Science Foundation
of China (Grant No. 60021201) and Research Fund for Doctoral
Program of Higher Education (Grant No.20030335083). Many
thanks to Wei Chen for helping refine the structure and expression
of this paper. We also thank the reviewers for their suggestions for
improvements to this paper.

REFERERNCES
[1] Andrew C. Beers, Maneesh Agrawala, and Navin Chadda.
Rendering From Compressed Textures. In Computer Graphics
(SIGGRAPH 1996 Conf. Proc.), Pages 373-378, 1996.
[2] Konstantine Iourcha, Krishna Nayak, and Zhou Hong. System and
Method for Fixed-Rate Block-Based Image Compression with Inferred
Pixel Values, US Patent 5,956,431.
[3] Anton V. Pereberin. Hierarchical Approach for Texture
Compression. In Proceedings of GraphiCon, pages 195-199, 1999.
[4] L. Levkovich-Maslyuk, P.G.Kalyuzhny, and A. Zhirkov. Texture
Compression with Adaptive Block Partitions. In Proceedings of the eighth
ACM international conference on Multimedia, pages 401-403, 2000.
[5] Denis Ivanov and Yevgeniy Kuzmin. Color Distribution-A New
Approach to Texture Compression. Computer Graphics Forum 19(3),
pages 283-289, 2000.
[6] Simon Fenney. Texture Compression Using low-frequency signal
modulation. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 84-91, 2003.
[7] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless,
David H. Salesin. Image Analogies. In Computer Graphics (SIGGRAPH
2001 Conf. Proc.), pages 327－340, 2001.
[8] L. Y. Wei and M. Levoy. Fast texture synthesis using tree
structured vector quantization. In Computer Graphics (SIGGRAPH 2000
Conf. Proc.) pages 479-488, 2000.
[9] Michael Ashikhmin. Synthesizing Natural Textures. 2001 ACM
Symposium on Interactive 3D Graphics, pages 217-226, 2001.

[10] Yuval Fisher. Fractal Image Compression: Theory and Application
to Digital Images. Springer Verlag, New York, 1995.
[11] B. Wohlberg and G. de Jager. A Review of the Fractal Image
Coding Literature, In IEEE Transactions on Image Processing, Volume 8,
No. 12, pages 1716-1729, 1999.
[12] Chong Sze Tong and Minghong Pi. Fast Fractal Image Encoding
Based on Adaptive Search, In IEEE Transactions on Image Processing,
Volume 10, No. 9, 2001.
[13] Laurent Itti, Christof Koch and Ernst Niebur. A Model of Saliency-
Based Visual Attention for Rapid Scene Analysis, In IEEE Transactions
on Pattern Analysis and Machine Intelligence Volume 20, Issue 11, pages
1254-1259, 1998.
[14] Christof Koch and S. Ullman. Shifts in Selective Visual Attention:
Towards the Underlying Neural Circuitry. In Human Neurobiology,
Volume 4, pages 219-227, 1985.
[15] Niebur, E. and Koch, C. Computational Architectures for Attention.
In Parasuraman, R. editor, The Attentive Brain, pages 164-186, MIT Press,
Cambridge, MA, 1998.
[16] Sander, P., Snyder, J., Gortler, S., and Hoppe, H. Texture mapping
pregressive meshes. In Computer Graphics (SIGGRAPH 2001 Conf.
Proc.), pages.409-416, 2001.
[17] A. Gersho and R. M. Gray. Vector Quantization and Signal
Compression. Kluwer Academic Publisher, 1991.

Usability Map

Castle Image

Saliency Map

Sample

Decompressed Result

Codebook

 Figure 4: Sample determination for a castle image.

(a) (b) (c)

 (d)

(e) (f)
Figure 5: Comparison of the VQ algorithm and our method. (a) Source image. (b) Decompressed result by our method. The RMS error
between this image and source image is 9.8. (c) Decompressed result by VQ algorithm. The RMS error between this image and source
image is 9.2. (d) The codebook used in our method (the left one) and the codebook of VQ (the right one). (e) The difference map between
our result and source image. (f) The difference map between the result of VQ algorithm and source image.

(a) (c) (e)

(b)

(d) (f)

Figure 6: Texture mapping to a cow-head model. (a) Texture mapping of the source texture of (b). (b) Texture image. (c) Texture
mapping of compressed data produced by VQ algorithm. (c) The enlarged part of the red region in (c). (e) Texture mapping of
compressed data produced by our method. (f) The enlarged part the red region in (e).

(a)

(b)

(c)

(d)

Figure 7: Texture mapping of a mountain image on a 3D terrain model. (a) The mountain image. (b) The 3D terrain model. (c) The rendering
result from the compressed data. (d) The corresponding codebook used in our method.

(a) (b)
Figure 8: One frame chosen from the animation clip. (a) Result without compression. (b) Result with our
algorithm.

