
GPU-Friendly Shape Interpolation Based on
Trajectory Warping

Lu Chen Jin Huang Hongxin Zhang
Wei Hua∗

State Key Lab of CAD&CG, Zhejiang University

Abstract

In this paper, we propose a GPU-friendly
shape interpolation method. In contrast with
state-of-the-art interpolation algorithms, our
method computes the trajectory of each ver-
tex independently instead of solving large lin-
ear systems in every interpolation step. Given
two poses being interpolated, we find trajectory
parameters for each vertex by optimization with
the consideration of the key pose reconstruc-
tion and as-rigid-as-possible deformation in the
pre-computing stage. During run-time, the ver-
tices coordinates on the intermediate shape can
be computed in parallel according to a close
form formulation. In the results we demonstrate
that our method achieves extremely high perfor-
mance on modern GPU and can be extended eas-
ily to multi-pose interpolation.
Keywords: Shape Interpolation, Vertex Path
Problem, Trajectory Warping

1 Introduction

Shape interpolation is a widely utilized tech-
nique in computer animation, which interpolates
between given shapes to create attractive effects.
In general, shape interpolation includes two ma-
jor issues: how to build a one-to-one mapping
between key shapes [1, 2], and how to compute
trajectory between corresponding vertices dur-
ing the interpolation. In this paper, we focus on
the latter issue, i.e. the trajectory issue.

∗Corresponding author: Wei Hua

Figure 1: The pose interpolation results of ar-
madillo model using linear interpola-
tion (top) and our method (bottom) re-
spectively. The blue models in each
row are the input poses.

It is well-known that the explicit linear inter-
polation of vertex coordinates suffers shrinkage
problem, as illustrated in Figure 1. To generate
visual pleasant results, most of the state-of-the-
art methods [3, 4, 5] interpolate gradient infor-
mation or Laplacian coordinates instead of ver-
tex coordinates, and then implicitly reconstruct
vertex coordinates by optimizing least squares
errors. Due to the as-rigid-as-possible preserv-
ing nature of gradient domain methods, such ap-
proaches can produce high quality shapes. How-
ever, these methods need to solve large lin-
ear systems in each interpolation step. The
large amount memory consumption of matrices
makes them hard to interpolate large models in
realtime even with pre-computing step. More-
over they are not GPU-friendly as vertex co-
ordinates cannot be reconstructed in a parallel
way. Therefore gradient domain methods are
not suitable for performance demanding appli-
cations such as games and virtual reality.

In this paper, we propose an explicit non-
linear interpolation method which can recon-
struct the intermediate shape on GPU without
shrinkage problem. The key idea is to bring in
a close form formulation of the vertex trajec-
tory for describing the interpolation procedure
of each vertex. Inspired by the modal-warping
technique [6], we regulate the linear interpola-
tion trajectory with additional angular velocity
component for tracing the local rotations. In this
paper we call this technique trajectory warping,
which can handle shape interpolation properly
even under large deformation cases.

The major contributions of our work include:

• a new close form interpolation trajectory
which can reconstruct the intermediate
shape on GPU without solving any equa-
tions;

• an optimization method to find the parame-
ters of the vertices trajectories which can
interpolate given shapes with as-rigid-as-
possible energy constraints to avoid pro-
ducing interpolation artifacts.

2 Related Work

As [7] provided a good survey of earlier work,
we only review several recent work related to 3D
shape interpolation with feature preservation in
this section.

Shape interpolation is related to feature pre-
serving mesh deformation [8, 9, 10]. These
methods reconstruct deformed shape according
to given deformation gradient or Laplacian co-
ordinates by minimizing the changing of local
details. Most of these methods can be naturally
extended to shape interpolation [3, 5, 11] as the
rotation aspect of such local presentation can
be easily separated from the stretch and scale.
By applying proper rotation interpolation tech-
nique, intermediate shape can be reconstructed
according to interpolated deformation gradient
or Laplacian coordinates. All of these gradi-
ent domain methods produce high quality results
but with the cost of solving large linear systems.

Alternatively, literature [12] formulates the
shape interpolation problem as computing
geodesic curves in the shape space. Although
their method can provide high quality results, it

is hard to generate intermediate shapes on the fly
unless by storing all the vertex positions for the
intermediate shapes.

To reduce the computational cost of gradient
domain methods, some other approaches adopt
subspace technique. For example, [13] uses the
methods proposed in [14] to construct a gen-
eralized skeletal subspace. [15] can compute
the transformations for each bone independently
from the control points. To ensure the deforma-
tion quality, they apply a Poisson-based solver.
With the help of the skeletal subspace, the di-
mensionality of the linear system for reconstruc-
tion is greatly reduced. It is worth mentioning
that the recent work [16] also adopts general-
ized skeletal structure for improving the inter-
polation quality with significant pose variation.
However, their method still requires solving a
large linear system for shape reconstruction.

Same as gradient domain methods, our
method needs to optimize shapes with the
constraints of as-rigid-as-possible deformation.
However, this optimization is only occurred in
the pre-compute stage. During run-time, the
trajectory of each vertex is evaluated indepen-
dently on the fly according to trajectory warp-
ing. This is inspired by the modal warping tech-
nique [6], which greatly improves the traditional
modal analysis to handle large rotation. In this
paper, we extend such a trajectory representa-
tion from elastic object simulation into shape in-
terpolation.

3 Algorithm

Given two consistent triangle meshes M0 and
M1 with n vertices, the goal of shape interpola-
tion is to find a displacement trajectory function
di(t) (t ∈ [0, 1]) for each vertex xi. Let p0

i and
p1
i be positions of vertex xi on M0 and M1,

respectively. The interpolation trajectory of this
vertex can be expressed as:

pi(t) = p0
i + di(t), (1)

which satisfies position interpolation con-
straints:

di(0) = 0 and p1
i = p0

i + di(1). (2)

In the rest of section, we will present a new close
form of trajectory di(t) for handling large rota-

tion and introduce an optimization strategy for
finding the best trajectory of each vertex.

3.1 Trajectory Warping

The most efficient trajectory calculation method
is to use linear interpolation of the vertices posi-
tions:

di(t) = t(p1
i − p0

i). (3)

Unfortunately, it cannot provide satisfied results
under large rotation cases which introduce large
non-linear conditions [7]. Based on this obser-
vation, the main idea of trajectory warping is
to introduce non-linear correcting terms into the
trajectory formulation for compensating the ro-
tation of local frames.

)(tid

dsss ii)()(vR

ds

dst −
t

0

Figure 2: Local coordinate frames of rotational
deformation.

As shown in Figure 2, the rotation can be
achieved by integrating the displacement veloc-
ity v(t) under rotational local frame as infinites-
imal deformation. The displacement trajectory
of a rotational vertex can be described as below:

di(t) =

∫ t

0
Ri(s)vi(s)ds, (4)

where Ri(t) is the rotation matrix representing
the orientation of the local frame. We employ
Rodrigues formula to express the rotation matrix
in terms of the angle θi(t) and the unit axis of
rotation ri(t):

Ri(t) = I + [ri(t)]× sin (θi(t))

+ [ri(t)]
2
× (1− cos (θi(t))) ,

(5)

where [ri]× denotes the standard skew symmet-
ric matrix of unit axis vector ri.

During an interpolation procedure, steady and
smooth deformation of shapes are desired. So
it is reasonable to assume that the displacement

velocity vi(t) ≡ vi and ri(t) ≡ ri are constant,
while θi(t) = tθi. Denote wi(t) = θi(t)ri(t),
then the displacement trajectory function can be
simplified:

di(t) = tR̃(t;wi)vi, (6)

where

R̃(t;wi) = I + [ri]×
1− cos(tθi)

tθi

+ [ri]
2
×

(
1− sin(tθi)

tθi

)
.

(7)

In this simplification, wi and vi can be consid-
ered as the per-vertex angular and displacement
velocities, respectively. Compare to the linear
interpolation trajectory, wi introduces a nonlin-
ear warping which is the essential part for han-
dling large rotation.

3.2 Velocity Optimization

With trajectory warping, our interpolation prob-
lem is converted to finding out the optimal an-
gular and displacement velocities for all the ver-
tices. Let v and w be both 3n×1 vectors which
pack the vi and wi of all the vertex positions
into column vectors. In our approach, to make
the trajectory start from theM0 and end atM1

as well as keep the intermediate shapes as rigid
as possible, velocities w and v are selected by
minimizing following energy function:

E(v,w) = α2Epose + β2Erot + γ2Egrad (8)

where α,β and γ are weights. In the objective
function, Epose and Erot are key pose and rota-
tion energy terms, respectively. For further con-
trolling the shape qualities during interpolation,
we also introduce a gradient energy term Egrad.

Note that once we get the parameters of the
vertices trajectories, the intermediate shape ver-
tices positions can be calculated in parallel ac-
cording to equation (1) and (6) for any interpo-
lation parameter t.

Key pose energy As the requirement of shape
interpolation, the trajectory must pass the target
shapeM1 at time t = 1. It implies the following
pose constraint energy must be minimized

Epose = ‖R̃(w)v − (P1 −P0)‖2, (9)

where P0 and P1 are both 3n × 1
vectors which stand for the vertex co-
ordinates of the interpolation shapes,
andR̃(w) = diag(R̃(1;w1), . . . , R̃(1;wn)) is
a block-diagonal matrix.

Note that R̃(t;wi) ≡ R̃(1; twi), then we
haveR̃(tw) = diag(R̃(t;w1), . . . , R̃(t;wn)),
which will be used in the following sections.

Rotation energy In our method, angular ve-
locities w is used to represent the rotation va-
riety of the local frame. For keeping interpo-
lation results as rigid as possible, w should be
close to the rotation variety caused by the local
displacement velocity v for tracking the local
frame well. Let v̂ be per-vertex defined velocity
field by vi (i = 1, . . . , n). According to the
kinematics of infinitesimal deformation analy-
sis [6], it shows that the following least square
on each vertex xi should be minimized:

‖wi −
1

2
∇× v̂(xi)‖2 (10)

In Equation (10), symbol∇× stands for curl op-
eration. 1

2∇× v̂(xi) is viewed as the rotational
component of velocity field v̂ on vertex xi. Note
that here we assume that the curl operation is
constant during all infinitesimal steps of the de-
formation.

However, it is not trivial to calculate 1
2∇× v̂

on a triangular mesh. Inspired by [17], we adopt
following approximation method to calculate
per-vertex rotational component of the velocity
field. Let A be a triangle which undergoes a de-
formation and (p0

i ,vi) (i = 1, 2, 3) represents
its three vertex positions in static state and local
displacement velocities, respectively. Then rota-
tional variety of triangle A can be approximated
by a linear matrix production WAvA with

WA = −K−1 ([q1]× | [q2]× | [q3]×) ,

v>A =
(
v>1 |v>2 |v>3

)
,

(11)

where qi = p0
i − 1

3

∑
i p

0
i , and K =

∑3
i [qi]

2
×.

For the rotational component on a vertex, we
use the average of the rotation varieties of all the
triangles sharing the vertex. Thus, we could as-
semble the matrices WA of all the triangles to
form the global curl matrix W, which is in di-
mension 3n×3n. Finally we obtain the rotation

Figure 3: The comparison of without (top) / with
(bottom) the intermediate gradient en-
ergy control.

energy on the total mesh as following:

Erot = ‖w −Wv‖2. (12)

Intermediate gradient energy Notice that
the global curl matrix W only restricts the ro-
tation component of the deformation. In many
cases, the shape interpolation may involve a
large degree of stretching or compression. In
such cases, the rotation component is not dom-
inant. If we only consider key pose and rota-
tion energy, the resultant interpolation may give
rise to a sort of distortions. Figure (3) illustrates
one such example. Hence we need to introduce
additional terms to control scaling and shearing
during interpolation.

To overcome such problem, our solution is
partly inspired by [18] and [4]. We bring in
an as-rigid-as-possible deformation gradient to
guide the shape interpolation. Consider a trian-
gle A on shape M0 who is under deformation
and its vertex positions in time t are pti (i =
1, 2, 3). For calculating the deformation gradi-
ent of this deforming triangle, we employ the
surface-based deformation gradient proposed in
[19], which is equivalent to the ‘volumetric’ one
[3] on the tetrahedron mesh but does not involve
a fourth vertex. Let ptA = (pt1|pt2|pt3), then the
surface-based deformation gradient of this trian-
gle D̄t

A can be calculated by:

D̄t
A = ptAḠA (13)

and

ḠA =

 1 0 0
0 1 0
−1 −1 0

(p0
1 − p0

3|p0
2 − p0

3|nA
)−1

(14)

where nA is the normal vector of the triangle in
undeformed state and ḠA is the linear gradient
operator.

For the target interpolated deformation gradi-
ent, considering the triangle A referred above,
we first calculate the transformation of this trian-
gle from start to end DA (3 × 3), using method
described in [3] which involves the fourth ver-
tices. Then, according to [4], we interpolate the
rotational and scale/shear components of DA

separately:

gtA = Rt
A(tSA), (15)

where gtA is the as-rigid-as-possible interpolated
deformation gradient matrix at time t. RA and
SA are gotten by polar factorization DA =
RASA and Rt

A is the rotational interpolation of
RA with I.

Notice that the surface-based gradient D̄t
A

discards the normal component[19] and for our
intermediate gradient constraint, the target inter-
polated gradients should also remove the degree
of freedom along the normal direction:

ḡtA = gtA − gtAnAn
>
A. (16)

We use this as-rigid-as-possible deformation
gradient as a guidance constraint at the the in-
termediate frame:

Egrad
t(A) = ‖ptAḠA − ḡtA‖2F . (17)

In practice, we find that under the key pose
and rotation constraints, we can efficiently opti-
mize the interpolation by only constraining the
deformation gradient of intermediate frame t =
0.5.

Summarizing all the constraint energies on all
m triangles with repacking the gradient operator
matrices and target gradient vectors into 9m ×
3n matrix G and 9m×1 vector ḡ0.5, we can get
the global form of gradient guidance constraint
energy in terms of velocities parameters:

Egrad =
∑
A

Egrad
0.5(A)

= ‖GP0.5 − ḡ0.5‖2

= ‖1

2
GR̃

(w
2

)
v −

(
ḡ0.5 −GP0

)
‖2

, ‖1

2
GR̃

(w
2

)
v − g‖2.

(18)

4 Implementation

In this section, we presents the implementation
details on solving the optimization problem of
Equation (8) for trajectory warping.

Gauss-Newton Algorithm We adopt Gauss-
Newton method to solve this optimization prob-
lem. Note that the objective function is a sum
of squares, we can rewrite it in dot product form
of vector F, i.e., E(v,w) = F>F. Moreover
let J(v,w) be the Jacobian matrix of vector
F(v,w). Base on this configuration, the whole
optimization is performed in an iterative way:{

vk+1 = vk + δkv ,
wk+1 = wk + δkw,

(19)

where (δkv , δ
k
w) is obtained by solving following

linear least squares problem

arg min
δkv ,δ

k
w

∥∥∥∥J(vk,wk)

(
δkv
δkw

)
+ F(vk,wk)

∥∥∥∥2 .
(20)

Initial Value To obtain the initial value
(v0,w0), we first calculate the local frame va-
riety of vertex xi by averaging rotation compo-
nents of its neighboring triangles Ni:

w0
i =

1

|Ni|
∑
Aj∈Ni

log(Rj). (21)

Here Rj is the rotation component of the defor-
mation gradient Dj of triangle Aj and extracted
by polar decomposition Dj = RjSj . When the
shape deformation involves mainly the rotation
component, the integration of the rotation vec-
tor wi will be close to the variety of local frame
around this vertex. Therefore w0

i is a good esti-
mation of per-vertex angular velocity. Hence we
assemble all of them as the initial angular veloc-
ity vector w0 in our solver.

The initial value of the displacement velocity
is calculated by:

v0 =
(
R̃(w0)

)−1
(P1 −P0). (22)

We find that under most cases, the non-linear
optimizations converge within 10 iterations by
adopting these initial values.

Weighting Schema To select meaningful
weights, we first calculate a base set of weights
α0,β0 and γ0 such that Hessian matrices of en-
ergy terms Epos, Erot and Egrad have same
Frobenius norms. Then, because the pose con-
straint is expected to be a hard constraint for
our shape interpolation application, we set the
weight α = α0 as the largest weight in our
optimization. For the weights of the compati-
bility and intermediate gradient constraints, we
found that a large range of values work well and
a minimal amount of example-specific tuning is
required. In this paper, we use the setting of
β = 0.1 · β0 and γ = 0.05 · γ0 for most of
the examples.

Post-processing After solving the optimiza-
tion, we can compute the velocities (v,w) for
performing the interpolation. However in the
velocity optimization (Equation (8)), pose en-
ergyEpose acts as a soft constraint which cannot
be exactly ensure pose interpolation. Therefore
we need to adopt a simple post-processing. That
is we modify displacement velocities to directly
satisfy the pose interpolation constraint (Equa-
tion (2)):

v′ =
(
R̃(w)

)−1
(P1 −P0). (23)

After this, we can ensure that the trajectories in-
terpolate shape M1 when t = 1. Usually the
changes brought in by the post procedure can
not be noticed visually because the residuals are
very small when the optimization converges.

5 Results and discussions

Our framework can be applied to various scenar-
ios and applications. In this section we will first
show several applications of our method. Then
performance will be reported as well. Finally,
we will discuss an extension of our trajectory
warping technique for better handling an intrin-
sic complex articulated motion.

5.1 Applications

Two shapes interpolation Figure 1 shows
pose interpolation between two armadillo poses.
Our method can handle the large deformations

Figure 4: The morphing result between head
models.

of the legs. Figure 4 shows the morphing result
between two head models. The results of our
method are as good as those of Poisson Interpo-
lation [5] and the comparisons between poisson
method and ours can be found in the attached
video.

Multi-pose interpolation Given K multiple
poses Mk (k ∈ {1, . . . ,K}) and one refer-
ence poseMr, we can calculate the vector pairs
{vk,wk} for all poses. Consider the posesMk

as a pose space refer to Mr, the vector pairs
{vk,wk} could be viewed as the coordinates of
these poses in this high dimension space. The
multi-pose interpolation could be transformed
into interpolating the vector pairs. Given a set
of interpolation weights ξk (k ∈ {1, . . . ,K}),
the coordinates of the interpolated pose is:

{vinter,winter} = {
K∑
k=1

ξkv
k,

K∑
k=1

ξkw
k}.

(24)
And the new pose could be reconstructed in our
framework with Equation 6:

Pinter = P0 + R̃(winter)vinter. (25)

Figure 5 shows the multi-pose interpolation
between armadillo poses. The top three poses
are given and the first one is used as the refer-
ence pose. The triangle areas with red points
indicate the interpolation weights. The three
corners correspond to the input poses and the
weights are (1, 0, 0), (0, 1, 0), (0, 0, 1). The
red point inside the triangle area indicates the
weight as its barycentric coordinate. The bottom
four poses are interpolated using the weights
shown by the above triangle figures.

Because our reconstruction procedure is very
fast, the users can interactively change the
weights and get the interpolated shape in real-
time. The effects of this real-time multi-pose
interpolation are demonstrated in the attached

Figure 5: Multi-pose interpolation between ar-
madillo poses.

video. Users can create new animation interac-
tively by interpolating the existing poses in real-
time.

5.2 Timing and comparison

Table 1 shows the statistics of the demos in
this paper, including the complexity of the mod-
els and the performance of the algorithm. All
the timings in the table are measured on an In-
tel Pentium Dual 2.0GHz (only one core used),
3.0GB RAM machine with a NVIDIA GForce
9800GT graphics card.

The third column in the table shows one iter-
ation time of our non-linear optimization solver
and the fourth column shows the iteration times
before the solver converges. The fifth column
shows the run-time interpolation performance
on GPU. Here we implement the per-vertex in-
tegration (Equation (6)) using CUDA and bind
a VBO for rendering the deformed models. Af-
ter we upload the velocity pairs to GPU at the
beginning, only the interpolation coefficient t
need to be passed to GPU every frame, while for
multi-pose interpolation, the set of interpolation
weights ξk need to be passed.

Compared to the time cost of poisson method
(the sixth column), our method is several orders
of magnitude faster. The time cost of the poisson
method includes the cost of back-substitution
and constructing the right-hand side value of one
frame, but not includes the cost for Cholesky
factorization, which is done in pre-computation.

5.3 Multi-basis trajectory extension

Note that in the simplified trajectory function
(Equation (6)), we made strong assumption on

Model #Tri Iter Iter GPU Poisson
in Fig Num Opti(s) Num (µs) (ms)
Fig1 40k 16.2 3 34.2 189.5
Fig4 48k 19.9 6 39.6 169.5
Fig6 4k 0.6 4 16.8 11.6
Fig7 40k 17.3 9 74.5 160

Table 1: The statistics of demos in the paper.

(a) (b) (c)

(d) (e) (f)

With App Bases

Figure 6: Interpolation results of cylinder model
with intrinsic articulated structure.

steady shape deformation which fixes the angu-
lar and displacement velocities. Although it is
sufficient for many cases and ensure our meth-
ods efficiency, this assumption limits the expres-
sion ability of the trajectory for many complex
cases. Actually, we find that when the interpo-
lation motion has intrinsic complex articulated
structure, the user are very sensitive to the rigid-
ity preserving of each part and our current basic
formulation may not achieve the ‘desired’ result
(Figure 6(a)).

The motion of the end effector of a complex
articulated structure is actually composed by all
the motions of linked joints. For expressing this
composite motion, we extend the basic formula-
tion by appending additional velocity-pairs, i.e.,

di(t) = tR̃(twi)vi + t
∑
k∈Si

R̃(twapp
k)vappk ,

(26)
where wappk and vappk are velocity basis intro-
duced for expressing the motion of joint k and Si
is the indices set of the joints which contribute
to the motion of vertex i.

For a model whose interpolation motion may
involve intrinsic complex articulated structure,
we first extract its articulated segmentation and
structure (6(c)). Similar to [16], we use mean-
shift clustering algorithm for extracting the near-
rigid components, and manually handle the joint
part for completing a segmentation. Then, one

With App Bases

Figure 7: Elephant model interpolation results.

segment is chosen to be the root part and the
articulated structure can be generated based on
the connected relations. We assume the root part
to be near-static during the interpolation (other-
wise we can align the models by the root part
first), and append bases for presenting the joint
motions whose node distances to the root node
are larger than 2. As shown in Figure 6(c), we
add two new bases for solving.

We use the same optimization strategy in
Equation (8) for solving the appended velocity
bases (wapp,vapp) with the basic bases (w,v)
at one time, where wapp and vapp are the packed
vectors of all appended angular and displace-
ment velocities respectively. Based on the new
formulation in Equation (26), the derivations of
the new constraint energies of key pose and in-
termediate gradient are straightforward. For the
rotation energy term, note that the rotation com-
ponent of the local frame relates to the sum of
the displacement velocities on all basis and the
rotation vectors of the basic bases impact the
per-vertex local frames. The new rotation en-
ergy is then formulated as following:

E′rot = ‖w −Wv −Wappvapp‖2, (27)

where Wapp is a matrix which repacks the cor-
responding terms in W.

As shown in Figure 6(b), our method greatly
improves the result, while only increases a lit-
tle cost because only few more variables need
to be solved. The bottom row pictures show the
result of the displacement integration results of
different bases. (d) is the result only integrates
the basic bases, while (e) and (f) are the individ-
ual integration results of the first and the second
appended bases respectively.

Figure 7 shows the interpolation result of ele-
phant model. The leftmost picture shows the
segmentation and the articulated structure of the
model. The middle picture shows the result

only employs the basic trajectory formulation,
in which the front part of the nose has some
shrinking. The right picture is the result using
our multi-basis extension.

6 Conclusion

This paper proposed a fast shape interpolation
technique which aims at the performance de-
manding key frame animation applications such
as game and virtual reality. The basic idea is to
compute proper parameters of a close-form non-
linear vertex trajectory representation in the pre-
computing stage and interpolate the intermedi-
ate shape vertices in parallel in the run-time.
Our method demonstrates that the intermediate
shape of as-rigid-as-possible shape interpolation
can be reconstructed in GPU without solving
any equation.

As we adopt the optimization strategy to find
the best results in the parameter space of the tra-
jectory formulation, our method can not avoid
self-intersection restrictively. Our method may
not work well on the cases that the given shapes
are extremely different, such like genus-n-to-
m shape morphing [20]. Another limitation
of our work is high computational cost at the
pre-computing stage. Although it only need to
be calculated once, the bottleneck of solving
large non-linear optimization problem limits our
method from very huge models. We will investi-
gate the possibility of adopting multi-grid solver
to overcome the problem in the future.

Acknowledgements

This work is supported in part by National
Natural Science Foundation of China (No.
61070073). We also thank the anonymous re-
viewers for their helpful comments and sugges-
tions.

References

[1] Vladislav Kraevoy and Alla Sheffer.
Cross-parameterization and compatible
remeshing of 3d models. ACM Trans.
Graph., 23(3):861–869, 2004.

[2] John Schreiner, Arul Asirvatham, Emil
Praun, and Hugues Hoppe. Inter-surface
mapping. ACM Trans. Graph., 23(3):870–
877, 2004.

[3] Robert W. Sumner and Jovan Popović. De-
formation transfer for triangle meshes. In
ACM SIGGRAPH, pages 399–405, 2004.

[4] Marc Alexa, Daniel Cohen-Or, and David
Levin. As-rigid-as-possible shape interpo-
lation. In ACM Trans. Graph., pages 157–
164, 2000.

[5] Dong Xu, Hongxin Zhang, Qing Wang,
and Hujun Bao. Poisson shape interpola-
tion. In SPM ’05, pages 267–274, 2005.

[6] Min Gyu Choi and Hyeong-Seok Ko.
Modal warping: Real-time simulation of
large rotational deformation and manipu-
lation. IEEE TVCG, 11(1):91–101, 2005.

[7] Marc Alexa. Recent advances in mesh
morphing. Computer Graphics Forum,
21(2):173–196, 2002.

[8] Marc Alexa. Differential coordinates
for local mesh morphing and deforma-
tion. The Visual Computer, 19(2):105–
114, 2003.

[9] Alla Sheffer and Vladislav Kraevoy. Pyra-
mid coordinates for morphing and defor-
mation. In 3DPVT ’04, pages 68–75, 2004.

[10] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan
Shi, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Mesh editing with poisson-
based gradient field manipulation. ACM
Trans. Graph., 23(3):644–651, 2004.

[11] Yaron Lipman, Olga Sorkine, David
Levin, and Daniel Cohen-Or. Linear
rotation-invariant coordinates for meshes.
ACM Trans. Graph., 24(3):479–487, 2005.

[12] Martin Kilian, Niloy J. Mitra, and Helmut
Pottmann. Geometric modeling in shape
space. ACM Trans. Graph., 26(3), 2007.

[13] Kevin G. Der, Robert W. Sumner, and Jo-
van Popović. Inverse kinematics for re-
duced deformable models. ACM Trans.
Graph., 25(3):1174–1179, 2006.

[14] Doug L. James and Christopher D. Twigg.
Skinning mesh animations. In SIGGRAPH
’05, pages 399–407, 2005.

[15] Wei-Wen Feng, Byung-Uck Kim, and
Yizhou Yu. Real-time data driven defor-
mation using kernel canonical correlation
analysis. In SIGGRAPH ’08, pages 1–9,
2008.

[16] Hung-Kuo Chu and Tong-Yee Lee. Mul-
tiresolution mean shift clustering algo-
rithm for shape interpolation. IEEE TVCG,
15(5):853–866, 2009.

[17] Min Gyu Choi, Seung Yong Woo, and
Hyeong-Seok Ko. Real-time simulation
of thin shells. Comput. Graph. Forum,
26(3):349–354, 2007.

[18] Robert W. Sumner, Matthias Zwicker,
Craig Gotsman, and Jovan Popović. Mesh-
based inverse kinematics. ACM Trans.
Graph., 24(3):488–495, 2005.

[19] M. Botsch, R. Sumner, M. Pauly, and
M. Gross. Deformation transfer for detail-
preserving surface editing. In Vision,
Modeling & Visualization, pages 357–364,
2006.

[20] Tong-Yee Lee, Chih-Yuan Yao, Hung-
Kuo Chu, Ming-Jen Tai, and Cheng-Chieh
Chen. Generating genus-n-to-m mesh
morphing using spherical parameteriza-
tion. Comput. Animat. Virtual Worlds,
17:433–443, 2006.

