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Abstract

We present an interactive mesh cutting method in this
paper, which is based on a formulation of semi-supervised
learning. Users first assign foreground and background seed
faces on a given triangular mesh by sketch lines. Then the
system computes a scalar field across the mesh. After that
a coarse segmentation boundary is computed out respect to
a specific iso-value, which leads to a refined boundary by
tracing the isoline in the scalar field. Our proposed methods
are easy for implementing. The presented computing frame-
work can not only do segmentation for single static mesh
models using shape information, but also do segmentation
for dynamic mesh models based on deformation information.
By integrating the proposed mesh cutout tool, we also
demonstrate a simple sketch-based mesh editing system. In
our system the cutting results can be further deformed,
morphed, or cut-and-pasted.

1. Introduction

It is traditionally a difficult and often expensive process
to create digital geometric models in the applications of
graphics, engineering, and digital games. Till now, a large
amount of geometric processing is still done manually to
manipulating vertices and faces directly.

Recently, example based modeling techniques [1] become
the new trend in geometric modeling. As an ideal user
interface, non-professional users can easily generate vivid
geometric models by simply cutting meaningful components
from known ones and merging them together. This process,
in some sense, is called as the cut-and-paste operation, which
is borrowed from the original word process applications.

In this paper we focus on developing a simple mesh cut-
and-paste operation based on sketching user interface. Our
major motivation is that pen-based user interfaces are very
intuitive for design activities and become popular especially
for many portable devices. As a lot of approaches [2], [3],
[4] can efficiently paste different mesh parts together, in this
paper we mainly present a generic framework for cutting
meaningful mesh components from a single mesh or a mesh
sequence maintaining different poses.

(a) (b) (c)

Figure 1. Cut out Bunny’s head. (a) Users draw two
sketch curves on the mesh to mark the foreground (in
red) and the background part (in green). Then a scalar
field across the mesh is calculated, shaded from red to
green. (b) According to k-means cluster algorithm, an
initial boundary is obtained and painted in black. The
cyan boundary is the result of boundary refinement.
(c) The two segmented parts are obtained by tracing
isoline.

Human perception is complicated and is easy to be
confused. Although it is quite easy for a model designer to
figure out the boundary between the hand and the arm part
in a character mesh model within sufficient time, it is still
very difficult and is almost impossible for a digital computer
to accomplish such cognition mission. However, researchers
still believe that there exist several machine learning mech-
anisms that can partly solve these sole missions assisting
by human. As we will discuss later in this paper that mesh
cutting can be viewed as a semi-supervised learning task.

Many applicable mesh segmenting [5] or cutting meth-
ods [3] are based on a graph-cut procedure, for graph-cut
can optimize segmenting boundary globally. However, one
disadvantage of global graph-cut is that geodesic distance
computing is required as pre-processing step, which is
inefficient when handling meshes maintaining relative large
amount of vertices.

In this paper we propose the prop-cut approach, which
is a global cutting method avoiding to compute pair-wise
geodesic distance. We calculate weights between every two
adjacent faces. And then a belief value for each faces is
learned after users draw several free hand curves repre-
senting background and foreground parts. These weights
measure dihedral angle between adjacent faces or the de-
formation information obtained from a sequence of models
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as well. And according to these geometry-aware weights,
label values can be well propagated by merely performing
the Tikhonov regularization.

The main contributions of this paper are as follows:
• We formulate mesh cutting out operation as a semi-

supervised learning task.
• We propose an interactive mesh cutting method based

properties propagation.
• We extend our prop-cut method to mesh sequences

maintaining different poses, and explore the approach
to merge deformable mesh components together.

1.1. Related work

There is a great deal of work on mesh editing and
its application in the literature. Here we only review the
most relevant work, including mesh segmentation, semi-
supervised learning and sketch-based user interface.

Mesh segmentation approaches can be roughly classified
into two categories, i.e., patch-type and part-type. Patch-
type segmentation is often applied for texture mapping,
building charts and remeshing [6]. While part-type seg-
mentation divides a mesh into meaningful parts without
restricting the part topology. Several approaches have been
proposed by different authors to automatically segment
mesh into meaningful components, e.g., the minima rule [5]
and watershed-based scheme [7]. It is easy to see strong
relations among many part-type segmentation approaches,
image segmentations and point-sets clustering in machine
learning. For instance, Yamauchiy et al. [8] proposed to use
mean shift for mesh segmentation. And later this method is
extended for deforming mesh models [9], [10].

Mesh cutting methods, e.g. the intelligent scissoring
tool [11] or easy mesh cutting [12], is quite different from
automatic segmentations. User interactions are involved in
these applications to reduce the computing cost for caring
confusions and ambiguities.

Semi-supervised learning (SSL) is a branch of machine
learning [13]. More precisely mesh cutting task is a semi-
supervised binary classification but clustering is an unsu-
pervised learning task. Standard classifier training utilizes
only labeled data (feature/label pairs). However labeled data
is often hard to be acquired because they need experienced
human annotators, while unlabeled data may be relatively
easy to collect. The goal of semi-supervised learning is
to train better classifiers from both labeled and unlabeled
data. Graph-cut is one of the graph-based SSL methods, and
which is successfully applied in image/video cutout [14] and
mesh cutting applications.

In recent years, sketching interfaces become wildly ac-
cepted for various design activities ranging from image
matting to architecture modeling. They tend to provide users
an environment simulating paper-ink interface that does not
hinder creative thinking. Sketch-based interaction has been

successfully used in graph cut image segmentation [14]. And
now sketching interfaces are widely accepted to generat-
ing [15] and/or deforming 3D meshes [16], [17] by sketching
curves.

2. Prop-Cut

In this section we will describe the main mathematical
formulation of our approach.

2.1. Preliminaries

Let M be a 2-manifold surface embedded in IR3, and
K;X) be a triangular mesh representing the discrete ge-

ometry of M, where K = {V , E ,F} encodes the con-
nectivity of the simplicial complex containing the vertices
V = {i|1 ≤ i ≤ m}, edges E = { i, j)|i, j ∈ V} and
triangles F = { i, j, k)| i, j), j, k), k, i) ∈ E} of the mesh,
and X represents the positions of the mesh vertices. The
same symbol M will also refer to the triangulated mesh
surface. A segmentation of meshM is the set of sub-meshes
induced by a partition of K into k disjoint subsets. In mesh
cutting context, k is simply equal to 2.

As we will consider geometric models that have differ-
ent poses, the term multi-mesh is used to represent mesh
sequence data. In this paper, a multi-mesh refers to a
mesh sequence consists of several meshes that share a
single tropologic connectivity. Mathematically, let M =
K;X0,X1, . . . ,XN ) be a multi-mesh, where K has the

same meaning for a single static mesh. The symbol X
0

represents the positions of the mesh vertices in rest pose,
and X

i stands for deformed poses.

2.2. Prop-cut for a single mesh

Given a single static mesh M with n triangle faces, users
need to assign the foreground and background triangles first.
Then these faces on M are labeled as

bi =
{

1, foreground,
−1, background. (1)

Without loosing generality, we assume that the first k faces
are labeled. And we need to precondition the data by mean
subtracting first. That is we take

b = b1 − b̄, b2 − b̄, . . . , bk − b̄, 0, . . . , 0), (2)

where b̄ =
∑

i bi. To learn the value that how much
a triangle face should be background or foreground, we
leverage following propagation procedure to produce a scalar
field over mesh M.



2.2.1. Propagation. The propagation objective is actually
running a regression procedure on a dual graph G of M
that is constructed by regarding each triangle as graph node
and connect edges if two triangles share on edge. Our goal
is to obtain a value field with smooth transition according to
the given face values. Therefore, a least squares optimization
is performed on M to find f̄ such that:

min
f=(f1,...,fn),

∑
i
fi=0

1
k

∑
i

fi − bi)2 + γfSf
� (3)

where fi means the value of face i and γ ≥ 0 is an
optimization parameter. It is worth noting that the first part
of Equation (3) is employed as soft constraints, and the
second part is acted as a smoothness term. As our learning
processing is performed on a graph, a good choice of the
smoothness matrix S is:

S = Lp, p ∈ IN (4)

where L is a Laplacian matrix over G. More precisely,
given a similarity matrix W = wij) of G, the Lapla-
cian matrix L = D − W can be calculated with D =
diag

∑
j w1j ,

∑
j w2j , . . . ,

∑
j wnj). For a single static

mesh M, the similarity weight between face i and j can
be defined as

wij = exp ρ|Ni ·Nj |) (5)

with Ni and Nj denoting the unit normal vector of face
i and j, respectively. Parameter ρ (usually =5) controls the
influence of the dihedral angle between adjacent faces for
the cutting results. Larger ρ will lead to more detail sensitive
results.

We apply Tikhonov regularization to solve above opti-
mization problem [18]. If we denote by 1 = 1, 1, . . . , 1)
the vector of all ones, the solution can be given in the form

f̄ = kγS + Ik)−1
b + μ1) (6)

Matrix Ik is a diagonal matrix of multiplicities

Ik = diag n1, n2, . . . , nk, 0, . . . , 0), (7)

where ni is the number of occurrences of face i among the
labeled face. In Equation (6), coefficient μ is chosen such
that the resulting vector f̄ is orthogonal to 1. It follows that

μ = −σ A−1
b)/σ A−1

1) (8)

where σ f) is defined as σ : f →
∑

i fi, and A = kγS +Ik.
Finally, we have propagated label f̄ for each triangle on the
surface.

To obtain a piecewise linear scalar field over mesh M, a
propagation value is assigned on each vertex by averaging
the label of its adjacent triangles. In Figure 1(b) we use
gradually changed color to illustrate the diffused value of
each face.

2.2.2. Initial cutting boundary. Once we have all propa-
gated face values, we apply one dimensional k-means clus-
tering (with two centers) for all triangles using propagation
values to determine a cutting threshold. Therefore a rough
segmentation boundary is generated along those mesh edges.
This cutting boundary gives us a hint where a good boundary
should be, although it is jaggy in usual.

2.2.3. Boundary refinement by isoline tracing. In order
to make a fair mesh cutting, we need to find an optimized
cutting boundary across mesh M. Since we already have
propagated values v = v1, v2, . . . , vn) on all its vertices, a
refined boundary can be obtained by tracing a specified iso-
line of the piecewise linear scalar field. We adopt following
method to find such isoline. The algorithm starts from an
arbitrary seed vertex. There are two special cases in tracing
the isoline.

First, the end point q of the isoline may coincide with a
vertex of the input mesh. In this case, we must first examine
the 1-ring neighbor vertices of this vertex, if any neighbor
vertex also has the same scalar value, we simply prolong
the isoline to this vertex (from −→pq to −→qr , as illustrated in
Figure 2(a)). If we cannot find a suitable adjacent vertex,
then we examine each of the triangles incident on this vertex.
Within each triangle, we can thus compute exactly where the
isoline should cross a particular edge. If there are more than
one triangle available, we advance the isoline through the
triangle in which we can move the furthest on mesh (from
−→pq to −→qr, as shown in Figure 2(b)).

Second, the end point q of the flow line may lie along
an edge of the mesh. The isoline will have already crossed
one of the triangles incident on this edge, and we wish to
extend it across the other incident triangle. We first check
the vertices of this neighboring triangle, if any vertex of this
triangle has the same scalar value, we simply extend the flow
line to this vertex (from −→pq to −→qr, as shown in Figure 2(c)).
If all vertices are invalid, we thus compute exactly where the
flow lines should cross a particular edge of the neighboring
triangle (from −→pq to −→qr, as shown in Figure 2(d)).

2.2.4. Boundary refinement by localized graph-cut.
When handling a model with a small number of faces, the
traced isoline gives us a satisfying boundary. However, when
we segment a complex model with many geometry details,
mere isoline will not reflect the geometry information. A
localized graph-cut is performed to remedy this problem.
First the 1-ring neighborhood around faces of the isoline is
selected. Then a dual graph for all selected faces is built
by using faces as graph nodes and connecting adjacent face
nodes. Since only a small number of triangles are involved,
the graph cut step consumes to get the segmentation bound-
ary.



(a) (b) (c) (d)

Figure 2. Image (a) and (b) demonstrate tracing isoline intersects a vertex on the mesh. Image (c) and (d)
demonstrate tracing isoline intersects an edge on the mesh.

(a) (b)

Figure 3. Illustrating of the boundary ambiguity prob-
lem. This problem can be simply avoided by drawing
additional sketch curves.

2.2.5. User customized boundary. Although above two re-
finement strategies ensures to generate the cutting boundary
as precisely as possible, there still exist undesired cases,
especially some ambiguity boundaries. In our system, we
provide two ways for user to modify the cutting boundary.
Users are allowed to define specific isoline by simply tuning
the threshold. This function can help user to shrink or
enlarge a region of interesting. Second, user can draw
additional strokes to update the cutting result. Therefore the
ambiguity problem of segmentation can be avoided as shown
in Figure 3.

2.3. Prop-cut for multi-mesh

A sequence of models can always give us more infor-
mation for separating models into several meaningful parts.
The models in a sequence can form a deformation space.
Segmenting the static model can be extended to segmenta-
tion of the sequence models. The steps for sequence model
segmentation are as follows:

1) Load the deforming model sequence, and compute the
deform distance between every two adjacent faces.

2) Users sketch the foreground and background seed
faces.

3) Our system begins to compute values for each face

by solving the optimization problem similar to Equa-
tion (6).

4) Find the initial cutting boundary by k-means cluster-
ing.

5) Refine the boundary if necessary.
It is easy to see that, comparing with the from single static

mesh cases, the only difference of our cutting out method
for multi-mesh is in Step 1. For the sake of measuring
the face similarity over a multi-mesh, there are two aspects
which have to be taken into account, i.e., intrinsic geometric
information as well deformation information. We hence
introduce following several notions. First, we define function
Len Ti, Tj) as a distance based measurement of two faces
Ti and Trj . Len Ti, Tj) is actually approximated by the
distance between the center point of two adjacent faces, or
a relatively huge number M otherwise. Second, we measure
the deformation distance between Ti and Tj , denote as
Deform Ti, Tj). We employ the method in [10] to compute
deformation distances. Finally, the similarity weight between
two adjacent faces Ti and Tj in a multi-mesh M is defined
as

wij = 1 − α)
Len Ti, Tj)
avg Len)

+ α
Deform Ti, Tj)
avg Deform)

(9)

where we normally set α = 0.9, and avg Len) as well
as avg Deform) denote to compute the average value of
Len Ti, Tj) and Deform Ti, Tj) for all adjacent triangle
pairs, respectively.

As we need to compute the transformation matrix between
the rest pose and each deformed pose for every face on mesh
M, it may consume a lot of computing power. To accelerate
the processing speed, we compute the transformation matri-
ces as pre-processing step and store the results first. When
we load the sequence models, we then only need to access
the results directly.

3. Sketch based mesh editing system

In this section, we describe our novel framework of mesh
(and/or multi-mesh) cutting-and-pasting. First we present the
sketch-based user interface and mesh editing operators. And



later we demonstrate the results obtained by our prototype
system and several discusses are provided.

3.1. User interface

Our prototype modeling system mainly consists of mesh
cutting, deformation, morphing and pasting functions. Users
can accomplish almost all operations by drawing strokes or
points.

Users first load mesh models (or multi-mesh models), and
can navigate freely to choose appropriate view positions and
angles (and also poses for multi-mesh models). Then users
can mark several green and red strokes by mouse or digital
pen to indicate foreground and background respectively. This
marking user interface is similar to [12], [14]. Since our
system can generate cutting boundaries in interactive speed,
users can see the cutting result on screen and decides if
additional strokes need to be marked or erase some failure
strokes.

Once appropriate mesh components are selected by users,
they are merged together by pointing two corresponding
points for each of those cutting boundaries. We implemented
a variant of [4] for the pasting function. Please refer to our
supplemented video demo.

In some cases, it may produce visual unpleasant results
when merely assemble a new object by mesh components
from very different sources. So deforming pasted part can
be applied to remedy this problem. For single static mesh
sources, we adopt a sketch based deformation approach
similar to [16]. Geometry details are fairly preserved by such
deformation techniques.

3.2. Results

We show several examples demonstrating the usefulness
and flexibility of our approach in this section. All the
examples presented in this paper were made on a 2.4GHz
Pentium IV computer with 1GB memory.

Table 1 lists the running time of performing three types
of mesh cutting algorithms on several static mesh examples.
Note that we also implemented a hierarchical graph-cut (HG-
Cut) which first perform graph-cut on the simplified model
and then perform localized graph-cut again to refine the
cutting boundary on the original mesh. As we can see, HG-
Cut is about five times faster than the original graph-cut.
Our method is even faster than the HG-Cut, although our
prop-cut merely works on the original resolution. The major
reason is that our method can avoid computing geodesic
distance globally, while it is an essential step in graph-cut
algorithms.

Figures 1 and 4 are three examples demonstrating static
mesh model cutting. It is worth noting that it is difficult
to cut out the subparts using previous intelligent scissors
[10] as discussed in [7]. As a global optimization approach,

Model #verts #faces Prop-Cut Graph-Cut HG-Cut
Bunny 10k 20k 1.19 19.2 3.49
Venus 10k 20k 1.14 35.3 4.25
Gargoyle 36k 73k 4.65 369 9.22

Table 1. Time comparison between our prop-cut,
graph-cut and hierarchical graph-cut (HG-Cut)

our prop-cut approach can achieve similar cutting quality
to graph-cut approaches and is applicable for the cases that
may be failed by using region growing methods, e.g. [7].

Figures 5, 6 and 8 demonstrate multi-mesh cutting-and-
pasting. Since we use different weighting schemes, the
propagation manner of multi-mesh cutting is quite different
from the static cutting algorithm. It can be clearly observed
in Figure 6 that the static cutting is sensitive to geometry
features while the multi-mesh cutting is mainly caring of
dynamic differences.

4. Conclusions and future work

We present a novel method for cutting out meaningful
components from a single mesh or a mesh model with
different poses using simple sketching interface. The free-
hand strokes roughly mark out parts of interest and the
background, as we formulate the mesh cutting problem as a
semi-supervised learning task. Our system can segment the
regions of interest interactively. The cutting boundary then
can be optimized automatically. The system also provides
flexible tools for users to edit the boundary. Our prop-cut
approach is beneficial for interactive graphics applications.

Our presented approach still has much room for en-
hancements or extensions. First it will be helpful to design
hierarchical version of prop-cut to accelerate the system
response speed. And it is worthwhile to further investigate
how to cut-and-paste dynamic mesh models for specific
graphics applications. It would be also interesting to explore
sketch-based mesh cutting methods which can incrementally
adding sketch lines to refine the cutting results for very large
meshes.
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