Support Vector Machines

• Training vectors : $x_i, i = 1, \ldots, l$

Consider a simple case with two classes:

Define a vector y

$$y_i = \begin{cases} 1 & \text{if } x_i \text{ in class 1} \\ -1 & \text{if } x_i \text{ in class 2}, \end{cases}$$

A hyperplane which separates all data

• A separating hyperplane: $w^T x + b = 0$

$$(w^T x_i) + b > 0$$
 if $y_i = 1$
 $(w^T x_i) + b < 0$ if $y_i = -1$

Decision function $f(x) = sign(w^T x + b)$, x: test data Variables: w and b: Need to know coefficients of a plane Many possible choices of w and b

• Select w, b with the maximal margin.

Maximal distance between $w^T x + b = \pm 1$

Vapnik's statistical learning theory. (will be discussed later)

$$(w^T x_i) + b \ge 1$$
 if $y_i = 1$
 $(w^T x_i) + b \le -1$ if $y_i = -1$

(1)

• Distance between $w^T x + b = 1$ and -1:

$$2/||w|| = 2/\sqrt{w^T w}.$$

• $\max 2/||w|| \equiv \min w^T w/2$

$$\min_{\boldsymbol{w},\boldsymbol{b}} \quad \frac{1}{2} w^T w
y_i((w^T x_i) + b) \ge 1, \quad \text{from (1)}
i = 1, ..., l.$$

January, 2001

Higher Dimensional Feature Spaces

- Earlier we tried to find a linear separating hyperplane Data may not be linear separable
- Non-separable case: allow training errors

$$\min_{\substack{w,b,\xi}} \frac{1}{2} w^T w + C(\sum_{i=1}^{l} \xi_i)
y_i((w^T x_i) + b) \ge 1 - \xi_i,
\xi_i \ge 0, \ i = 1, \dots, l$$

- $\xi_i > 1$, x_i not on the correct side of the separating plane
- C: large penalty parameter, most ξ_i are zero

Nonlinear case: linear separable in other spaces?

Higher dimensional (maybe infinite) feature space

$$\phi(x) = (\phi_1(x), \phi_2(x), \dots).$$

Example: $x \in \mathbb{R}^3, \phi(x) \in \mathbb{R}^{10}$

$$\phi(x) = (1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, x_2^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3)$$

Why higher dimensional spaces: a classic result by Cover [1965]

A standard problem [Cortes and Vapnik, 1995]:

 $\min_{w,b,\xi} \frac{1}{2} w^{T} w + C(\sum_{i=1}^{t} \xi_{i})$ $y_{i}(w^{T} \phi(x_{i}) + b) \ge 1 - \xi_{i},$ $\xi_{i} \ge 0, \ i = 1, \dots, l$

Other variants (though similar); Example:

 $\min_{w,b,\xi} \frac{1}{2} w^{T} w + C(\sum_{i=1}^{2} \xi_{i}^{2})$ $y_{i}(w^{T} \phi(x_{i}) + b) \ge 1 - \xi_{i},$ $\xi_{i} \ge 0, \ i = 1, \dots, l$

Neural Netrowks and Support Vector Machines

- Neural Networks:
- Starts from linear separating hyperplane as well

Perceprton: a linear hyperplane separating all data

Single-layer perceptron

Decision function

 $\operatorname{sgn}(w^T x + b)$

Data not linearly separable: multi-layer structure Multi-layer perceptron

• XOR problem

Not linearly separable

More weights

Two exclusive OR

Optimization problem

Minimize training error

Subject to connections between levels i and i-1

- Using more complicated structures for linearly non-separable
- Starting here SVM differs from NN

Finding the Decision Function

- Finding w and b from the standard SVM form w: a vector in a high dimensional space \Rightarrow maybe infinite variables
- The dual problem

$$\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - e^T \alpha$$

$$0 \le \alpha_i \le C, i = 1, \dots, l$$

$$y^T \alpha = 0,$$

where $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$ and $e = [1, \dots, 1]^T$

$$w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i)$$

- Infinite dimensional programming. Primal and dual: optimization theory. Not trivial
- A finite problem:

#variables = #training data

 $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j)$ needs a closed form

Efficient calculation of high dimensional inner products

Example: $x_i \in R^3, \phi(x_i) \in R^{10}$

$$\phi(x_i) = (1, \sqrt{2}(x_i)_1, \sqrt{2}(x_i)_2, \sqrt{2}(x_i)_3, (x_i)_1^2, (x_i)_2^2, (x_i)_3^2, \sqrt{2}(x_i)_1(x_i)_2, \sqrt{2}(x_i)_1(x_i)_3, \sqrt{2}(x_i)_2(x_i)_3),$$

Then
$$\phi(x_i)^T \phi(x_j) = (1 + x_i^T x_j)^2$$
.

• Popular methods: $\phi(x_i)^T \phi(x_j) =$

 $e^{-\gamma \|x_i - x_j\|^2}$, (Radial Basis Function)

 $(x_i^T x_j/a + b)^d$ (Polynomial kernel)

 $\tanh(ax_i^T x_j + b)$

• Decision function:

$$w^T \phi(x) + b$$

$$= \sum_{i=1}^{n} \alpha_i y_i \phi(x_i)^T \phi(x) + b$$

No need to have w

- > 0: 1st class, < 0: 2nd class
- Only $\phi(x_i)$ of $\alpha_i > 0$ used

 $\alpha_i > 0 \Rightarrow \text{ support vectors}$

