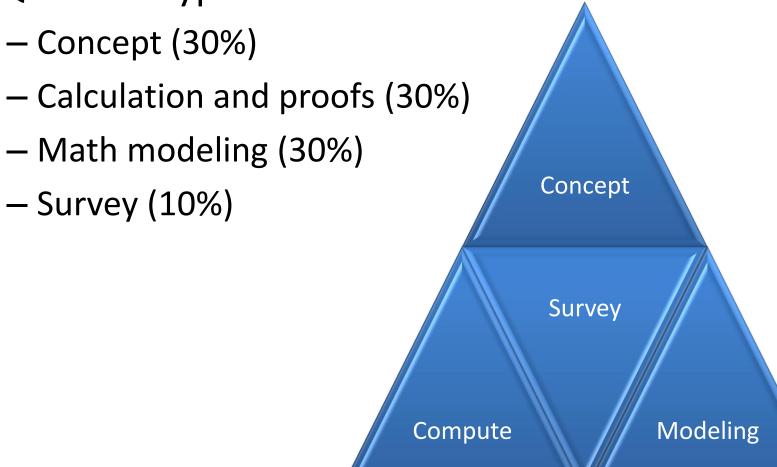
Applied mathematics in computer science and technology

Hongxin Zhang

College of Computer Science and Technology,
Zhejiang University


2010-06-17

Main purpose of the course

- To improve the mathematical theory of self-cultivation
 - Intuitively understand the mathematical thinking in the papers
- To train skilled ability to express mathematical concepts
 - How to formulate mathematical problems
 - How to abstract mathematical methods
- To cultivate outstanding ability to use mathematical models
 - The use of mathematical models to solve computer-related research issues

Lear to think in mathematical way MAIN PURPOSE OF THE COURSE

Question type

孔子曰:智者乐山,仁者乐水

Innovative Score System

Type	Questions	Required	Discount of over-answered	Budget
Concept	6	3	50%	30
Computing	6	3	50%	30
Modeling	6	3	50%	30
Survey	3	1	50%	10
Total	21	10		100

• Example of ISS: normal

Type	Answered	Required	Correct	Gain
Concept	3	3	3	30
Computing	3	3	2	20
Modeling	3	3	3	30
Survey	1	1	1	10
Total	11	10	9	90

Example of ISS: love computing

Туре	Answered	Required	Correct	Gain
Concont	2	3	2	20
Concept	Z		_	
Computing	4	3	4=3+1	35
Modeling	3	3	3	30
Survey	1	1	1	10
Total	10	10	10	95

Example of ISS: love concept

Туре	Answered	Required	Correct	Gain
	6	2	F (2.2)	40
Concept	6	3	5=(3+2)	40
Computing	1	3	1	10
Modeling	2	3	2	20
Survey	2	1	2~(2-1)	10
Total	11	10	9	80

Final Review

道可道, 非常道

名可名, 非常名

《道德经》开篇语

Similar course at top universities

• Princeton:

- Mathematical methods in Computer Science
- http://www.cs.princeton.edu/~boaz/methods2003/
- 讲授图论、拓扑初步、线性规划、矩阵论、统计初步等

Cambridge:

- Mathematical methods for Computer Science
- http://www.cl.cam.ac.uk/teaching/0809/CST/node38.html
- 讲授傅立叶方法、小波分析、不等式与极限理论、Markov链等统计理论
- 均以计算机图形学、计算机视觉、图像处理、人工智能、人机交互等计算机科学中的问题为背景进行讲解

Our course

- Fundamentals of 4 math topics:
 - Statistical learning
 - Variational methods
 - Partial differential equations
 - Optimization methods

Concepts in Statistical learning

- What is machine learning?
- The categories of learning methods
 - Supervised learning
 - Unsupervised learning

- Fundamental statistical concept
 - Prior, likelihood, Posterior
 - Markov chain

Computing methods in learning

- Point estimations
 - Bayesian formula
 - Binary distribution, Gaussian distribution
- Classification
 - Naïve Bayesian classification, decision tree
 - SVM, boosting
- Clustering
 - K-means, MOG, spectral clustering
- Time variance data
 - Hidden Markov Chain
 - Karman filter

Data modeling

- Geometric description:
 - Dimensional reduction
 - Kernel methods

- Algebra description:
 - Classification v.s. regression
 - How to overcome over-fitting?

Concepts in variational methods

- varational problems:
 - 两点间的最短连线问题
 - 最速降线(brachistochrone)问题
 - 测地线(geodesic line)问题

变分法中的符号

- 给定函数y(x)
 - 宗量: *x*
 - 函数: *y*(*x*)
 - 宗量的增量: Δx
 - 函数的增量:
 - $\Delta y = y(x + \Delta x) y(x)$
 - 当两点无限接近:
 - $\Delta x \rightarrow dx$, $\Delta y \rightarrow dy$
 - 略去高阶微量:
 - dy = y'(x)dx
 - 当在x处取得函数极值
 - dy=0

- 给定**泛函** $\Pi(y)$
 - 宗量: y
 - 泛函: *∏*(y)
 - 函数的变分: δy
 - 泛函的变分:
 - $\delta \Pi = \Pi(y + \delta y) \Pi(y)$
 - 在计算 δ *Π*时可以展开 Π ($y + \delta$ y)中的被积函数只保留线性 项
 - 当在y处取得泛函极值
 - $\delta \Pi = 0$

函数y(x)在定义域内与y(x)+ $\delta y(x)$ 处处无限接近

Partial differential equation

- Different types of PDE:
 - Can you distinguish them?
 - Laplacian equation, Poisson equation

- Basic concepts:
 - Curve/surface representation
 - Parametric or implicit definition
 - Tangent, normal, curvature
 - Gradience, Divergence

Computing in PDE

- Laplacian operator
- Discrete operators used in PDE
- How to numerically solve special PDEs

Applications of PDE

Optimization methods

- Linear methods
- Non-linear methods

How to prepare the final examination

读 Read

读书 Read book

读数学书 Read math book

很认真地读数学书 Read math book seriously