Probabilistic Graphical Models (I)

Hongxin Zhang zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU 2015-03-31

Probabilistic Graphical Models

- Modeling many real-world problems => a large number of random variables
 - Dependences among variables may be used to reduce the size to encode the model (PCA?), or
 - They may be the goal by themselves, that is, the idea is to understand the correlations among variables.

Modeling the domain

- Discrete random variables
 - Take 5 random binary variables (A, B, C, D, E)
 - i.i.d. data from a multinomial distribution

A	В	\boldsymbol{C}	D	$\boldsymbol{\mathit{E}}$
а	~b	~ C	~d	~ e
a	b	~ C	d	~ e
а	~b	С	d	~ e

Goals

- (Parameter) Learning: using training data, estimate the joint distribution
 - Which are the values P(A, B, C, D, E),?
 - ... and if there were one hundred binary variables? (Size of model certainly greater than number of atoms on Earth!)
- Inference: Given the distribution P(A, B, C, D, E),
 - Belief updating: compute the probability of an event
 - What is the probability of A=a given E=e?
 - Maximum a posterior: compute the states of variables that maximize their probability.
 - Which state of A maximizes P(A / E=e)? Is it a or ~a?

The unstructured approach

To specify the joint distribution, there is an exponential number of values:

$$p(a, b, c, d, e), p(a, b, c, d, \neg e), p(a, b, c, \neg d, e),$$

 $p(a, b, c, \neg d, \neg e), p(a, b, \neg c, d, e), p(a, b, \neg c, d, \neg e),$
 $p(a, b, \neg c, \neg d, e), p(a, b, \neg c, \neg d, \neg e), \dots$

We can compute the probability of events by:

$$p(a) = \sum_{B,C,D,E} p(a,B,C,D,E)$$

$$p(a|d,\neg e) = \frac{p(a,d,\neg e)}{p(d,\neg e)} = \frac{\sum_{B,C} p(a,B,C,d,\neg e)}{\sum_{A,B,C} p(A,B,C,d,\neg e)}$$

There are exponentially many terms in the summations...

The naïve Bayesian approach

$$p(a, b) = p(a) p(b)$$

Application: Email spanning

Bayesian Networks

- An arbitrary joint distribution p(a, b, c) over three variables a, b, and c
 - the product rule of probability:

$$p(a, b, c) = p(c \mid a, b) p(a, b)$$

= $p(c \mid a, b) p(b \mid a) p(a)$

• General case: $p(x_1, x_2, ..., x_K)$

$$p(x_1, \ldots, x_K) = p(x_K | x_1, \ldots, x_{K-1}) \ldots p(x_2 | x_1) p(x_1)$$

Not fully connected graph

• Joint distribution: $p(x_1, x_2, ..., x_7)$

$$p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

General form

 For a graph with K nodes, the joint distribution is given by:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

• where pa_k denotes the set of parents of x_k , and $x = \{x_1, \dots, x_K\}$

Definitions

- A set of variables associated with nodes of a Directed Acyclic Graph (DAG).
 - Markov condition (w.r.t. the DAG): each variable is independent of its non-descendants given its parents.
 - For each variable (node), local probability distributions:
 - P(A), P(B|A=a), P(B|A=a), P(C|A=a), P(C|A=a), P(D|b, c), $P(D|\sim b, c)$, $P(D|\sim b, c)$; $P(D|\sim b, c)$, P(E|c), $P(E|\sim c)$,
 - All these values are precise.

Regression revisit: Polynomial Curve Fitting

$$\mathbf{h}(x) = \begin{pmatrix} h_0(x) \\ h_1(x) \\ \vdots \\ h_M(x) \end{pmatrix} \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{pmatrix} \mathbf{t} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix}$$

$$t = \mathbf{h}(x) \cdot \mathbf{w}$$
$$\mathbf{w} = (\mathbf{H}^{\mathrm{T}} \mathbf{H})^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{t}$$

Normal equation

$$t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \dots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x)$$

$$N$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

Example: Polynomial regression

$$t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \dots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x)$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

Example: Polynomial regression

$$t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \dots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x)$$

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

Example: Polynomial regression

$$t(x, \mathbf{w}) = w_0 + w_1 h_1(x) + w_2 h_2(x) + \dots + w_N h_N(x) = \sum_{j=0}^{N} w_j h_j(x)$$

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2)$$

the noise variance σ 2, and the hyperparameter α representing the precision of the Gaussian prior over **w**

- Consider an arbitrary DAG over D variables in which node i represents a single continuous random variable x_i having a Gaussian distribution
- The mean of this distribution is taken to be a linear combination of the states of its parent nodes pa_i of node i

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i \right)\right)$$

Linear-Gaussian models

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i \right)\right)$$

$$\ln p(\mathbf{x}) = \sum_{i=1}^{D} \ln p(x_i | \text{pa}_i)$$

$$= -\sum_{i=1}^{D} \frac{1}{2v_i} \left(x_i - \sum_{j \in \text{pa}_i} w_{ij} x_j - b_i \right)^2 + \text{const}$$

Linear-Gaussian models

$$p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij}x_j + b_i, v_i \right)\right)$$

$$x_i = \sum_{j \in pa_i} w_{ij} x_j + b_i + \sqrt{v_i} \epsilon_i \qquad \mathbb{E}[x_i] = \sum_{j \in pa_i} w_{ij} \mathbb{E}[x_j] + b_i$$

$$cov[x_i, x_j] = \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])]$$

$$= \mathbb{E}\left[(x_i - \mathbb{E}[x_i])\left\{\sum_{k \in pa_j} w_{jk}(x_k - \mathbb{E}[x_k]) + \sqrt{v_j}\epsilon_j\right\}\right]$$

$$= \sum_{k \in pa_j} w_{jk}cov[x_i, x_k] + I_{ij}v_j$$

- Case 1: no links in the graph $p(x_i|pa_i) = \mathcal{N}\left(x_i \left| \sum_{i \in pa_i} w_{ij} x_j + b_i, v_i \right.\right)$
 - The joint distribution:
 - 2D parameters and represents
 - D independent univariate Gaussian distributions.
- Case 2: fully connected graph
 - D(D-1)/2+D independent parameters
- Case 3:

$$\mu = (b_1, b_2 + w_{21}b_1, b_3 + w_{32}b_2 + w_{32}w_{21}b_1)^{\mathrm{T}}$$

$$\Sigma = \begin{pmatrix} v_1 & w_{21}v_1 & w_{32}w_{21}v_1 \\ w_{21}v_1 & v_2 + w_{21}^2v_1 & w_{32}(v_2 + w_{21}^2v_1) \\ w_{32}w_{21}v_1 & w_{32}(v_2 + w_{21}^2v_1) & v_3 + w_{32}^2(v_2 + w_{21}^2v_1) \end{pmatrix}$$

Conditional independence

- Three random variables: a, b and c
 - a is conditionally independent of b given c iff
 - P(a | b, c) = P(a | c)

$$a \perp \!\!\! \perp b \mid c$$

- This can be re-written in following way
 - P(a, b | c) = P(a | b, c) P(b | c)= P(a | c) P(b | c)

The joint distribution of a and b factorizes into the product of the marginal distribution of a and ~b.

Simple example (1)

- Joint distribution:
 - P(a, b, c) = P(a | c) P(b | c) P(c)
- Condition on c:
 - $P(a, b \mid c) = P(a, b, c) / P(c) = P(a \mid c) P(b \mid c)$
 - \Rightarrow $a \perp b \mid c$

Simple example (2)

- Joint distribution:
 - P(a, b, c) = P(a) P(c | a) P(b | c)

Factorization:

$$P(a,b) = \sum_{c} P(a,b,c) = P(a) \sum_{c} P(c \mid a) P(b \mid c)$$
$$= P(a) P(b \mid a)$$

Condition on c:

$$P(a,b \mid c) = \frac{P(a,b,c)}{P(c)} = \frac{P(a)P(c \mid a)}{P(c)}$$

$$= P(a \mid c)P(b \mid c)$$

$$= P(a \mid c)P(b \mid c)$$
Bayesian Theorem

Simple example (3)

- Joint distribution:
 - P(a, b, c) = P(a) P(b) P(c | a, b)
- a b c

Factorization:

$$P(a,b) = \sum_{c} P(a,b,c) = P(a)P(b)\sum_{c} P(c \mid a,b)$$
$$= P(a)P(b)$$

Condition on c:

$$P(a,b \mid c) = \frac{P(a,b,c)}{P(c)} = \frac{P(a)P(b)P(c \mid a,b)}{P(c)}$$

$$\neq P(a \mid c)P(b \mid c)$$

Conditional independence

Tail-to-Tail: yes

Head-to-Tail: yes

Head-to-Head: no

Markov condition

- We say that node y is a descendant of node x if there is a path from x to y in which each step of the path follows the directions of the arrows.
- If each variable is independent of its non-descendants given its parents, then:

$$B \perp \perp (C, E) | A$$
,
 $D \perp \perp (A, E) | (B, C)$,
 $E \perp \perp (A, B, D) | C$.

D-separation

- All possible paths from any node in A to any node in B. Any such path is said to be blocked if it includes a node such that either
 - the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set C
- If all paths are blocked, then A is said to be d-separated from B by C.

D-separation

- In graph (a), the path from a to b is not blocked by node c
- In graph (b), the path from a to b is blocked by node f and e

D-separation

- A particular directed graph represents a specific decomposition of a joint probability distribution into a product of conditional probabilities
- A directed graph is a filter

Markov blanket

• Joint distribution $p(x_1, \ldots, x_D)$ represented by a directed graph having D nodes

•
$$p(\mathbf{x}_{i}|\mathbf{x}_{\{j\neq i\}}) = \frac{p(\mathbf{x}_{1}, \dots, \mathbf{x}_{D})}{\int p(\mathbf{x}_{1}, \dots, \mathbf{x}_{D}) d\mathbf{x}_{i}}$$

$$= \frac{\prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k})}{\int \prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k}) d\mathbf{x}_{i}}$$

 The set of nodes comprising the parents, the children and the co-parents is called the Markov blanket

Markov Random Fields

 Also known as a Markov network or an undirected graphical model

Conditional independence properties:

Conditional dependence exists if there exists a path that connects any node in *A to any* node in *B.*

If there are no such paths, then the conditional independence property must hold.

Clique

- A subset of the nodes in a graph such that there exists a link between all pairs of nodes in the subset
 - In other words, the set of nodes in a clique is fully connected

- Maximal clique ...
- A four-node undirected graph showing a clique (outlined in green)
 and a maximal clique (outlined in blue)

Potential function

- x_C: the set of variables in that clique C
- The joint distribution is written as a product of potential functions $\psi_C(\mathbf{x}_C)$ over the maximal cliques of the graph

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

The quantity Z, called the partition function, is a normalization constant

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

• Potential functions $\psi_C(\mathbf{x}_C)$ are strictly positive. Possible choice

$$\psi_C(\mathbf{x}_C) = \exp\left\{-E(\mathbf{x}_C)\right\}$$

Image de-noising

Relation to directed graphs

- Joint distribution:
 - Directed:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\cdots p(x_N|x_{N-1})$$

Undirected:

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$\psi_{1,2}(x_1, x_2) = p(x_1)p(x_2|x_1)
\psi_{2,3}(x_2, x_3) = p(x_3|x_2)
\vdots
\psi_{N-1,N}(x_{N-1}, x_N) = p(x_N|x_{N-1})$$

Relation to directed graphs

 this process of 'marrying the parents' has become known as moralization, and the resulting undirected graph, after dropping the arrows, is called the moral graph.

Inference in Graphical Models

$$p(x,y) = p(x)p(y|x)$$

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Inference on a chain

(b)
$$x_1 \longrightarrow x_2 \longrightarrow x_N \longrightarrow x_{N-1}$$

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

Inference on a chain

(b)
$$x_1 \longrightarrow x_2 \longrightarrow x_N \longrightarrow x_{N-1}$$

$$p(x_n) = \frac{1}{Z}$$

$$\left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_2} \psi_{2,3}(x_2, x_3) \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \right] \cdots \right]$$

$$\mu_{\alpha}(x_n)$$

$$\left[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)\right] \cdots\right].$$
(8.52)

$$\mu_{\beta}(x_n)$$

$$p(x_{n}) = \frac{1}{Z}$$

$$\underbrace{\left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \cdots \left[\sum_{x_{2}} \psi_{2,3}(x_{2}, x_{3}) \left[\sum_{x_{1}} \psi_{1,2}(x_{1}, x_{2})\right]\right] \cdots\right]}_{\mu_{\alpha}(x_{n})}$$

$$\underbrace{\left[\sum_{x_{n+1}} \psi_{n,n+1}(x_{n}, x_{n+1}) \cdots \left[\sum_{x_{N}} \psi_{N-1,N}(x_{N-1}, x_{N})\right] \cdots\right]}_{\mu_{\beta}(x_{n})}.$$
(8.52)

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

$$\mu_{\beta}(x_n) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_n) \left[\sum_{x_{n+2}} \cdots \right]$$
$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_n) \mu_{\beta}(x_{n+1}).$$

$$p(x_{n-1}, x_n) = \frac{1}{Z} \mu_{\alpha}(x_{n-1}) \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\beta}(x_n)$$

Tree

 the joint distribution over a set of variables in the form of a product of factors

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

where x_s denotes a subset of the variables

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

- an undirected graph => a factor graph
 - create variable nodes corresponding to the nodes in the original undirected graph
 - create additional factor nodes corresponding to the maximal cliques x_s
 - Multiple choices of $f_{\rm g}$

- (a) An undirected graph with a single clique potential $\psi(x1, x2, x3)$.
- (b) A factor graph with factor $f(x1, x2, x3) = \psi(x1, x2, x3)$ representing the same distribution as the undirected graph.
- (c) A different factor graph representing the same distribution, whose factors satisfy $fa(x1, x2, x3)fb(x1, x2) = \psi(x1, x2, x3)$.

The sum-product algorithm

$$p(x) = \sum_{\mathbf{x} \setminus x} p(\mathbf{x})$$
 $p(\mathbf{x}) = \prod_{s \in \text{ne}(x)} F_s(x, X_s)$

The sum-product algorithm

$$p(x) = \prod_{s \in ne(x)} \left[\sum_{X_s} F_s(x, X_s) \right]$$
$$= \prod_{s \in ne(x)} \mu_{f_s \to x}(x).$$

$$\mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

$$\mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M)G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

$$\mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{xm}} G_m(x_m, X_{sm}) \right]$$

$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m) \quad (8.66)$$

$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm})$$

Junction tree algorithm

- deal with graphs having loops
- Algorithm:
 - directed graph => undirected graph (moralization)
 - The graph is triangulated
 - join tree
 - Junction tree
 - a two-stage message passing algorithm, essentially equivalent to the sum-product algorithm

 Computer-Generated Residential Building Layouts [SIG ASIA 2010]

The End

新浪微博: @浙大张宏鑫

微信公众号:

