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Clustering vs. Classification 

¸Clustering 

¸ Instance:  

¸ Learn:              and/or mapping from     to        

 

¸Classification/Regression 

¸ Instance:  

¸ Learn: mapping from     to         
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Clustering and  

image segmentation 

 

 

 

 

Mean-shift segmentation 



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

alternative approach 
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Mixtures of Gaussians 

¸ Mixture distribution: 

¸ Assume P(x) is a mixture of K different Gaussians 

¸ Assume each data point, x is generated by 2-step process 

¸Choose one of the K Gaussians as label 

¸Generate x according to the Gaussian  

 

 

¸ What object function shall we optimize? 

¸ Maximize data likelihood 
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Mixtures of Gaussians (cont.) 

¸Multivariate Gaussian model 

 

 

¸How to generate it? 



Multi-variate density estimation 



Mixtures of Gaussians: 

Wishart distribution 

¸A mixture of Gaussian Model: 

 

 

 

¸Wishart prior 

High dimensional 

parameters 



Mixture density 



Mixture density 



Mixture density:  

posterior sampling 



Mixture density estimation 



Mixture density estimation 



Mixture density estimation: 

credit assignment 



The Expectation-Maximization 

algorithm 



Mixture density estimation: 

example 



The EM-algorithm 



The EM algorithm 



Regularized EM algorithm 



Selecting the number of 

components 



K-means clustering 



K-Means vs. 

Mixture of Gaussians 

¸Both are iterative algorithms to assign points 
to clusters 

 

¸Objective function 

¸ K Means: minimize 

¸ MoG: maximize likelihood  

 

¸MoG the more general formulation 

¸ Equivalent to K Means when         , and ůŸ0 



Disadvantage of  

K-means and MOG 

¸ The result is sensitive to the initial data 

¸How to determine the number of clusters 



K-means and whitening 

Learning Feature Representations with K-means, Adam Coates and Andrew Y. 

Ng. In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012 



K-means and whitening 



Mean shift 

¸First proposed by Fukunaga in 1970ôs 

¸Wildly used since 1998 

¸ In computer vision 

¸ And other areas 

 

 

 
¸ The following several slides is mainly from: 

¸ http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf 

 

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf






 

Histogram-based estimates 

¸ You can use a variety of fitting techniques to 
produce a curve from a histogram 
¸ Lines, polynomials, splines, etc. 

¸ Also called regression/function approximation 

¸ Normalize to make this a density 

 

¸ If you know quite a bit about the underlying 
density you can compute a good bin size 
¸ But thatôs rarely realistic in vision 

¸ And defeats the whole purpose of the non-parametric 
approach 

 



 

Nearest-neighbor estimate 

¸ To estimate the density, count the number of 

nearby data points 

¸ Like histogramming with sliding bins 

¸Avoid bin-placement artifacts 

 

 

¸We can fix Ů and compute this quantity, 

or we can fix the quantity and compute Ů 
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Parzen estimation 

¸ Each observed data increases our estimate of 
the probability nearby 
¸ Simplest case: raise the probability uniformly within a 

fixed radius 

¸ Place a fixed-height ñboxò at each data point, add them up 
to get the density estimate 

¸ This is nearest neighbor with fixed Ů 

 

¸ More generally, you can use some slowly 
decreasing function (such as a Gaussian) 
¸ Called Kernel function 




