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Clustering vs. Classification :

. Clustering
Instance: {x} .,
Learn: <x,,t > and/or mapping from x to t(x)

. Classification/Regression
Instance: <x,,t >
Learn: mapping from x to t(x)



Clustering and
Image segmentation

—

Mean-shift segmentation




Regression revisit:
Polynomial Curve Fitting
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Regression revisit: HE
alternative approach e

P(x)=q P(Z=z|p)N(x|m,S))
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Mixtures of Gaussians

Mixture distribution:
Assume P(x) is a mixture of K different Gaussians
Assume each data point, x is generated by 2-step process

Choose one of the K Gaussians as label z
Generate x according to the Gaussian N(m,,s.)

P(x)=q P(Z=z|p)N(x|m,S))
What object function shall we optimize?
Maximize data likelihood



Mixtures of Gaussians (cont.) |

Multivariate Gaussian model
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Multi-variate density estimation :

e A mixture of Gaussians model

where 0 = {p1,... . Prs 1y [y 21, .- ., 2k} contains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixtures of Gaussians: selc

Wishart distribution .

A mixture of Gaussian Model:

High dimensional
p(x|0) = Z pj p(X|pj, 2 parameters

Wishart prior

1 n'
Q) _ . —1 ¢
P(X|S,n") x S exp ( B Trace(X 5))
S = ‘prior'" covariance matrix

n' = equivalent sample size



Mixture density :

e Data generation process:
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p(x|) = Y P(y=j) -pxly=j) (generic mixture)
i=1.2

= Z pi-p(x|p;,X;)  (mixture of Gaussians)
i=1,2

e Any data point x could have been generated in two ways



Mixture density :

e If we are given just x we don't know which mixture
component this example came from

p(xl0) = > pip(x|p;. ;)
7=1,2

e We can evaluate the posterior probability that an observed
x was generated from the first mixture component

Ply=1) p(xly=1)
Zj:Lg Ply=17) -p(X|y =7)
p1p(x|p1, 1)
D j—12Pi D(X|py, Xj)

Py = 1|x.0)

e [his solves a credit assignment problem



Mixture density:

posterior sampling :

e Consider sampling x from the mixture density, then v from
the posterior over the components given x, and finally x/
from the component density indicated by :

X ~ p(x|6)
y ~ Py[x,0)
x' ~ p(x'y.0)

Is v a fair sample from the prior distribution P(y)?

Is x” a fair sample from the mixture density p(x’|6)?



Mixture density estimation :

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x[0) = p1 p(x|p1. X1) + p2 p(x|p2. o)

e |[f each example x; in the training set were labeled vy, =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.
<
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e Labeled examples = no credit assignment problem



Mixture density estimation :

When examples are already 2 ad s
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Mixture density estimation: 3

credit assignment :

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior
probabilities of which Gaussian ..
generated which example:

pili) = Ply: = jlxi.0)
where 3., ,p(j[i) =1 for all
1 =1,....n. agee

e When the Gaussians are almost identical (as in the figure),
p(1]i) = p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The Expectation-Maximization
algorithm

E-step: softly assign examples to mixture components

p(jli) — P(y; = j|x;,6), forall j=1,2andi=1,...,n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

n,; < Zﬁ(j\i) = Soft # of examples labeled j
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Mixture density estimation:
example




The EM-algorithm :

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x1, ..., X,:

n p(x;|0)
log p(data |#) = Z log (EJl p(Xi| g1, 1) + pa p(xi] o, E;j)
i=1

where 6 = {py, po, 11, j12, X1, o } contains all the parameters
of the mixture model.
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The EM algorithm :

e The EM-algorithm finds a local maximum of [(6: D)

E-step: evaluate the expected complete log-likelihood

J(6:0) = Z E pijix;.00) 108 (p_?-p(xfluy E?))

i=1
= Z > P(jlxi.61) log (p?p Xl -u?))
=1 7=1,2

M-step: find the new parameters by maximizing the
expected complete log-likelhood

ot AT IAX J(6;01)



Reqgularized EM algorithm :

e To maximize a penalized (regularized) log-likelihood

I'(0:D) =) logp(x|0) + log p(#)
i=1

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find # that maximize a
penalized expected complete log-likelihood:

J0:6) = > E,_piij.e) 102 (Pjp(xz'#-j-zj))
=1

+ log p(p1.p2) + log p(X1) + log p(21)

where, for example, p(p1, p2) could be a Dirichlet and each
p(2;) a Wishart prior.



Selecting the number of
components

e As a simple strategy for selecting the appropriate number
of mixture components, we can find & that minimize the
following asymptotic approximation to the description length:

- 1.
DL ~ — log p(datal|fy) + %log(n)

where n is the number of training points, 0 is the maximum
likelihood parameter estimate for the k-component mixture,
and dj, is the (effective) number of parameters in the k-
mixture.




K-means clustering

Given data <x, ... x>, and K, a}g{sign each x, to one of K clusters,
C,...Ck,minimizing ; _— v Vv°

Where #¢; Is mean over all points in cluster C,

K-Means Algorithm:

Initialize K1 - - - LK randomly

Repeat until convergence:

1. Assign each point x; to the cluster with the closest mean
2. Calculate the new mean for each cluster

s |O|Z”“""

z; €0




K-Means vs. oo
Mixture of Gaussians

. Both are iterative algorithms to assign points
to clusters

. Objective function
K Means: minimize
MoG: maximize likelihood (X|6\)

||Mw

2
E Hm — 1]
2,€C

. MoG the more general formulation
Equi val ent tozsz-1r Means wh



Disadvantage of
K-means and MOG

_ The result is sensitive to the initial data
~ How to determine the number of clusters




K-means and whitening 2o

Learning Feature Representations with K-means, Adam Coates and Andrew Y.
Ng. In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012



K-means and whitening :

1. Normalize inputs:

2) . z() —111'em1(;1:(")) ’
Vvar(z(®) + €norm

2. Whiten inputs:

[V, D] := eig(cov(z)); // So VDV = cov(z)
) ;= V(D + €geal) "2V T2 Vi

3. Loop until convergence (typically 10 iterations is enough):

g(i) . D(J)T,’L‘(’) 1fJ == arg :naxlp(l)T.lf(')l

3 Vj, i

0 otherwise.
D:=XS' +D
DY) := DU) /|| DY)||,V




Mean shift

. First proposed by Fuku

. Wildly used since 1998

In computer vision
And other areas

. The following several slides is mainly from:


http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf
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Histogram representation :

Histogram 10 bins
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Histogram-based estimates

You can use a variety of fitting techniques to
produce a curve from a histogram

Lines, polynomials, splines, etc.
Also called regression/function approximation
Normalize to make this a density

If you know quite a bit about the underlying
density you can compute a good bin size

But thatos rarely reali st

And defeats the whole purpose of the non-parametric
approach



Nearest-neighbor estimate

. To estimate the density, count the number of
nearby data points

Like histogramming with sliding bins
Avoid bin-placement artifacts
#{X | H)g - XH Ce}

N

p(X) =

We can fix Uand compute this quantity,
or we can fix the quantity and compute U



Parzen estimation

Each observed data increases our estimate of
the probability nearby

Simplest case: raise the probability uniformly within a
fixed radius

Placeafixed-hei ght fAboxo at each da
to get the density estimate

This is nearest neighbor with fixed U

More generally, you can use some slowly
decreasing function (such as a Gaussian)

Called Kernel function






