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Clustering vs. Classification 

 Clustering 

 Instance:  

 Learn:              and/or mapping from     to        

 

 Classification/Regression 

 Instance:  

 Learn: mapping from     to         
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Clustering and  

image segmentation 

 

 

 

 

Mean-shift segmentation 



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

alternative approach 
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Mixtures of Gaussians 

 Mixture distribution: 

 Assume P(x) is a mixture of K different Gaussians 

 Assume each data point, x is generated by 2-step process 

 Choose one of the K Gaussians as label 

 Generate x according to the Gaussian  

 

 

 What object function shall we optimize? 

 Maximize data likelihood 
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Mixtures of Gaussians (cont.) 

 Multivariate Gaussian model 

 

 

 How to generate it? 



Multi-variate density estimation 



Mixtures of Gaussians: 

Wishart distribution 

 A mixture of Gaussian Model: 

 

 

 

 Wishart prior 

High dimensional 

parameters 



Mixture density 



Mixture density 



Mixture density:  

posterior sampling 



Mixture density estimation 



Mixture density estimation 



Mixture density estimation: 

credit assignment 



The Expectation-Maximization 

algorithm 



Mixture density estimation: 

example 



The EM-algorithm 



The EM algorithm 



Regularized EM algorithm 



Selecting the number of 

components 



K-means clustering 



K-Means vs. 

Mixture of Gaussians 

 Both are iterative algorithms to assign points 
to clusters 

 

 Objective function 

 K Means: minimize 

 MoG: maximize likelihood  

 

 MoG the more general formulation 

 Equivalent to K Means when         , and σ→0 



Disadvantage of  

K-means and MOG 

 The result is sensitive to the initial data 

 How to determine the number of clusters 



K-means and whitening 

Learning Feature Representations with K-means, Adam Coates and Andrew Y. 

Ng. In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012 



K-means and whitening 



Mean shift 

 First proposed by Fukunaga in 1970’s 

 Wildly used since 1998 

 In computer vision 

 And other areas 

 

 

 
 The following several slides is mainly from: 

 http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf 

 

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf






 

Histogram-based estimates 

 You can use a variety of fitting techniques to 
produce a curve from a histogram 
 Lines, polynomials, splines, etc. 

 Also called regression/function approximation 

 Normalize to make this a density 

 

 If you know quite a bit about the underlying 
density you can compute a good bin size 
 But that’s rarely realistic in vision 

 And defeats the whole purpose of the non-parametric 
approach 

 



 

Nearest-neighbor estimate 

 To estimate the density, count the number of 

nearby data points 

 Like histogramming with sliding bins 

 Avoid bin-placement artifacts 

 

 

 We can fix ε and compute this quantity, 

or we can fix the quantity and compute ε 
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Parzen estimation 

 Each observed data increases our estimate of 
the probability nearby 
 Simplest case: raise the probability uniformly within a 

fixed radius 

 Place a fixed-height “box” at each data point, add them up 
to get the density estimate 

 This is nearest neighbor with fixed ε 

 

 More generally, you can use some slowly 
decreasing function (such as a Gaussian) 
 Called Kernel function 







 

Mean shift algorithm 

 Non-parametric method to compute the 

nearest mode of a distribution 

 Density increases as we get near “center” 







Kernel Density Estimation 

 Multivariate kernel density estimation 

 

 

 Kernels 

 Gaussian 
 

 Epanechnikov 
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Finding Mean-Shift Vector 

 Gradient computation 

 For symmetric kernel 

 

 

 

 

 

 Always converges to the local maximum! 
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The mean shift procedure 

 Give a point x 

1. Compute the mean shift vector 

 

 

 

2. Translate density estimation window: 

 

3. Iterate steps 1. and 2. until convergence 

i.e.,  
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Applications 

 Pattern recognition 
 Clustering 

 Image processing 
 Filtering 

 Segmentation 

 Density estimation 
 Density approximation 

 Particle filter 

 Mid-level application 
 Tracking 

 Background subtraction 



Summary 

 The distance computing plays an important 

role in data analysis to find out 

 the suitable similarity measurement 

 the intrinsic structure of data 

 

 Further reading on metric learning 

 In the next lesson, we will explore more 

complex data with structure  



Image segmentation based on 

mean shift 

 

 

 

 

Mean-shift segmentation 



Clustering 

 Hierarchical clustering 

 bottom-up 

 Flat clustering 

 Mixture of Gaussians 

 K-means 

 Spectral based clustering 



An example: ISO/BLE-charts 

 ISO-Charts:  
 ISOMAP + Spectral Clustering + Stretch Minimization 

 BLE-Charts: 

 Statistical Embedding + Spectral Clustering + Stretch Minimization  



The End 
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