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MARKOV CHAINS AND HMM 



Example: Video Textures 

 Problem statement 

video clip video texture 

SIGGRAPH 2000. Schoedl et. al. 



The approach 

How do we find good transitions? 

 



Finding good transitions 

Compute L2 distance Di, j between all frames 

Similar frames make good transitions  

frame i 

frame j 



Demo: Fish Tank 



Mathematic model of  

Video Texture 

A sequence of random variables 

{ADEABEDADBCAD} 

A sequence of random variables 

{BDACBDCACDBCADCBADCA} 

Mathematic Model 

The future is independent of the 

past and given by the present. 

Markov Model 



Markov Property 

 Formal definition 

 Let X={Xn}n=0…N be a sequence of random 

variables taking values  sk N  if and only if 

P(Xm=sm|X0=s0,…,Xm-1=sm-1) = P(Xm=sm| Xm-1=sm-1)  

 

then the X fulfills Markov property 

 

 Informal definition 

 The future is independent of the past given the 

present. 



History of MC 

 Markov chain theory developed around 1900.   

 Hidden Markov Models developed in late 1960’s.  

 Used extensively in speech recognition in 1960-70.  

 Introduced to computer science in 1989.  

 

 
 Bioinformatics. 

 Signal Processing 

 Data analysis and Pattern recognition 

Applications 



Markov Chain 

 A Markov chain is specified by 

 state space             S = { s1, s2..., sn } 

 initial distribution  a0 

 transition matrix     A 

 
 Where A(n)ij= aij = P(qt=sj|qt-1=si) 

 

 Graphical Representation 

 as a directed graph where 
 Vertices represent states  

 Edges represent transitions with positive probability 



 Marginal Probability – sum the joint 

probability 

 

 

 

 Conditional Probability 

Probability Axioms 
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Calculating with Markov chains 

 Probability of an observation sequence:  

 Let X={xt}
L

t=0 be an observation sequence from 

the Markov chain {S, a0, A} 

 

 

 

 

 







Motivation of  

Hidden Markov Models 

 Hidden states  
 The state of the entity we want to model is often not 

observable:  

 The state is then said to be hidden.  

 Observables  
 Sometimes we can instead observe the state of entities 

influenced by the hidden state. 

 A system can be modeled by an HMM if:  
 The sequence of hidden states is Markov  

 The sequence of observations are independent (or Markov) 
given the hidden  



Hidden Markov Model 

 Definition M={S,V,A,B, } 

 Set of states                       S = { s1,  s2, …, sN} 

 Observation symbols        V = { v1, v2, …, vM} 

 Transition probabilities  

 A between any two states    aij = P(qt=sj|qt-1=si) 

 Emission probabilities  

 B within each state     bj(Ot) = P( Ot=vj| qt = sj) 

 Start probabilities              = {a0} 

Use  = (A, B, ) to indicate the parameter set of the model. 

q2 q1 q3 q4 qn 

O1 O2 O3 O4 On 

… 



Generating a sequence by the 

model 

Given a HMM, we can generate a sequence of length n as follows: 

 
1. Start at state q1 according to prob a0t1  

 

2. Emit letter o1 according to prob et1(o1) 

 

3. Go to state q2 according to prob at1t2 

 

4. … until emitting on  1 

2 

N 

… 

1 

2 

N 

… 

1 

2 

N 

… 

… 

… 

… 

1 

2 

N 

… 

o1 o2 o3 on 

2 

1 

N 

2 

0 

b2(o1) 

a02 



Example 



Calculating with Hidden Markov 

Model 

Consider one such fixed state sequence 

  

 

 

The observation sequence O for the Q is 
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 The probability of such a state sequence Q 
 
 

 

 

The probability that O and Q occur simultaneously, 

 is simply the product of the above two terms, i.e., 
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Calculating with Hidden Markov 

Model (cont.) 



Example 

 



The three main questions on 

HMMs 

1. Evaluation 
GIVEN  a HMM M=(S, V, A, B, ), and a sequence O, 

FIND  P[O|M] 

 

2. Decoding 
GIVEN a HMM M=(S, V, A, B, ), and a sequence O, 

FIND             the sequence Q of states that maximizes P(O, Q | ) 

 

3. Learning 
GIVEN a HMM M=(S, V, A, B, ), with unspecified  

                     transition/emission probabilities and a sequence Q, 

FIND             parameters  = (ei(.), aij) that maximize P[x|] 



Evaluation 

 Find the likelihood a sequence is generated by the model 

 

 A straightforward way （穷举法） 

 The probability of O is obtained by summing all possible state 

sequences q giving 
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Complexity is O(NT) 

Calculations is unfeasible 

1 
2 

N 
… 

1 
2 

N 
… 

1 
2 

N 
… 

… 
… 

… 

1 
2 

N 
… 

o1 o2 o3 on 

2 
1 

N 

2 
0 

b2(o1) 

a02 



The Forward Algorithm 

 A more elaborate algorithm 

 The Forward Algorithm 
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The Forward Algorithm 
The Forward variable  

 

 

We can compute α(i) for all N, i,  

Initialization:  

 α1(i) = a0ib0i(O1)     i = 1…N 

Iteration: 

 

  

Termination: 
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The Backward Algorithm 
The backward variable  
 
 
Similar, we can compute backward variable for all N, i,  
 
Initialization:  
 
  
Iteration: 
 
  
 
Termination: 
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Decoding 

GIVEN a HMM, and a sequence O. 
  Suppose that we know the parameters of the Hidden 

Markov Model and the observed sequence of observations 
O1, O2, ... , OT. 

FIND the sequence Q of states that maximizes 

P(Q|O,) 

  Determining the sequence of States q1, q2, ... , qT, which 

is optimal in some meaningful sense. (i.e. best “explain” 

the observations) 



Decoding 

Consider 

 

To maximize the above probability is equivalent to maximizing 
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Viterbi Algorithm 

[Dynamic programming] 
 
Initialization: 

 δ1(i)  = a0ibi(O1) ,     i = 1…N 

 ψ1(i) = 0. 

Recursion: 

  δt(j)  = maxi [δt-1(i) aij]bj(Ot) t=2…T j=1…N 

  ψ1(j) = argmaxi [δt-1(i) aij]  t=2…T j=1…N 

Termination: 

 P*  = maxi δT(i)  

 qT* = argmaxi [δT(i) ]  

Traceback: 

  qt* = ψ1(q*t+1 )   t=T-1,T-2,…,1. 
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The Viterbi Algorithm 

Similar to “aligning” a set of states to a sequence 

 

Time:  O(K2N) 

Space: O(KN) 

x1   x2   x3 ………………………………………..xN 

State 1 

2 

K 

Vj(i) 



Learning 

 Estimation of Parameters of a Hidden Markov Model 

1. Both the sequence of observations O and the 

sequence of states Q is observed  

 learning  = (A, B, )  

2. Only the sequence of observations O are 

observed  

 learning Q and  = (A, B, ) 

  



Maximal Likelihood Estimation  

 Given O and Q, the Likelihood is given by: 
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Maximal Likelihood Estimation  

 the log-Likelihood is:  
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In such case these parameters computed by 

Maximum Likelihood Estimation are:  
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Maximal Likelihood Estimation 

= the MLE of bi computed from the 

observations ot where qt = Si. 

 



Maximal Likelihood Estimation 

 Only the sequence of observations O are observed 

 

 

 

 It is difficult to find the Maximum Likelihood Estimates 

directly from the Likelihood function.  

 The Techniques that are used are 

  1. The Segmental K-means Algorith 

  2. The Baum-Welch (E-M) Algorithm 
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The Baum-Welch Algorithm 

 The E-M algorithm was designed originally to handle 

“Missing observations”.  

 

 In this case the missing observations are the states 

{q1, q2, ... , qT}.  

 

 Assuming a model, the states are estimated by 

finding their expected values under this model. (The 

E part of the E-M algorithm).  



The Baum-Welch Algorithm 

 With these values the model is estimated by 

Maximum Likelihood Estimation (The M part 

of the E-M algorithm).  

 

 The process is repeated until the estimated 

model converges. 

 



The Baum-Welch Algorithm 

Initialization: 

 Pick the best-guess for model parameters (or arbitrary) 

 

Iteration: 

 Forward 

 Backward 

 Calculate Akl, Ek(b) 

 Calculate new model parameters akl, ek(b) 

 Calculate new log-likelihood P(x|) 

  GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION 

Until P(x|) does not change much 



The Baum-Welch Algorithm 

Let                                     denote the joint distribution of 

Q,O  Consider the function:  

 

Starting with an initial estimate of                .  

 

A sequence of estimates           are formed  

by finding                  to maximize        

with respect to     . 
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The Baum-Welch Algorithm 

The sequence of estimates   

converge to a local maximum of the likelihood  

                          .  
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SPEECH RECOGNITION 

An example of HMM 



Speech Recognition 

 On-line documents of Java™ Speech API  

 http://java.sun.com/products/java-media/speech/ 

 On-line documents of Free TTS 

 http://freetts.sourceforge.net/docs/ 

 On-line documents of Sphinx-II 

 http://www.speech.cs.cmu.edu/sphinx/ 

 

http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://www.speech.cs.cmu.edu/sphinx/


Speech Recognition and 

Mobile applications 

 Siri 

 Cortana 

 Google speech 

 WeChat / Laiwang 

 

 科大讯飞 

http://shanghaiist.com/2013/08/05/wechat_updates_with_sticker_shop_and_games_version_5.php


Brief History of CMU Sphinx 

 Sphinx-I (1987) 
 The first user independent, high performance ASR of the world. 

 Written in C by Kai-Fu Lee (李開復博士，現任Google副總裁). 

 

 Sphinx-II (1992) 
 Written by Xuedong Huang in C. (黃學東博士，現為Microsoft Speech.NET團

隊領導人) 

 5-state HMM / N-gram LM. 

 

 Sphinx-III (1996) 
 Built by Eric Thayer and Mosur Ravishankar. 

 Slower than Sphinx-II but the design is more flexible. 

 

 Sphinx-4 (Originally Sphinx 3j) 
 Refactored from Sphinx 3. 

 Fully implemented in Java. (Not finished yet …) 



Components of CMU Sphinx 



Knowledge Base 

 The data that drives the decoder. 

 Three sets of data 

 Acoustic Model. 

 Language Model. 

 Lexicon (Dictionary). 

 









Acoustic Model 

 /model/hmm/6k 

 Database of statistical model. 

 Each statistical model represents a phoneme. 

 Acoustic Models are trained by analyzing 

large amount of speech data. 



HMM in Acoustic Model 

 HMM represent each unit of speech in the 
Acoustic Model. 

 Typical HMM use 3-5 states to model a 
phoneme. 

 Each state of HMM is represented by a set of 
Gaussian mixture density functions. 

 Sphinx2 default phone set. 

http://www.try.idv.tw/try/talks/phoneset_s2.html


Mixture of Gaussians 

 Represent each state in HMM. 

 Each set of Gaussian Mixtures are called 
“senones”. 

 HMM can share “senones”. 



Mixture of Gaussians 



Language Model 

 Describes what is likely to be spoken in a 

particular context 

 Word transitions are defined in terms of 

transition probabilities 

 Helps to constrain the search space 



N-gram Language Model 

 Probability of word N dependent on word N-1, N-2, ... 

 Bigrams and trigrams most commonly used 

 Used for large vocabulary applications such as dictation 

 Typically trained by very large (millions of words) corpus 



Markov Random field and CRF 

 See webpage 

 http://www.nlpr.ia.ac.cn/users/szli/MRF_Book

/MRF_Book.html 



Belief Network (Propagation) 

Y. Weiss and W. T. Freeman  
Correctness of Belief Propagation in Gaussian Graphical Models of 
Arbitrary Topology. in: Advances in Neural Information Processing 
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000. 
MERL-TR99-38.  

http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/


The End 
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