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Clustering vs. Classification 

 Clustering 

 Instance:  

 Learn:              and/or mapping from     to        

 

 Classification/Regression 

 Instance:  

 Learn: mapping from     to         
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Clustering and  

image segmentation 

 

 

 

 

Mean-shift segmentation 



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

alternative approach 
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Mixtures of Gaussians 

 Mixture distribution: 

 Assume P(x) is a mixture of K different Gaussians 

 Assume each data point, x is generated by 2-step process 

 Choose one of the K Gaussians as label 

 Generate x according to the Gaussian  

 

 

 What object function shall we optimize? 

 Maximize data likelihood 
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Mixtures of Gaussians (cont.) 

 Multivariate Gaussian model 

 

 

 How to generate it? 



Multi-variate density estimation 



Mixtures of Gaussians: 

Wishart distribution 

 A mixture of Gaussian Model: 

 

 

 

 Wishart prior 

High dimensional 

parameters 



Mixture density 



Mixture density 



Mixture density:  

posterior sampling 



Mixture density estimation 



Mixture density estimation 



Mixture density estimation: 

credit assignment 



The Expectation-Maximization 

algorithm 



Mixture density estimation: 

example 



The EM-algorithm 



The EM algorithm 



Regularized EM algorithm 



Selecting the number of 

components 



K-means clustering 



K-Means vs. 

Mixture of Gaussians 

 Both are iterative algorithms to assign points 
to clusters 

 

 Objective function 

 K Means: minimize 

 MoG: maximize likelihood  

 

 MoG the more general formulation 

 Equivalent to K Means when         , and σ→0 



Disadvantage of  

K-means and MOG 

 The result is sensitive to the initial data 

 How to determine the number of clusters 



K-means and whitening 

Learning Feature Representations with K-means, Adam Coates and Andrew Y. 

Ng. In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012 



K-means and whitening 



Mean shift 

 First proposed by Fukunaga in 1970’s 

 Wildly used since 1998 

 In computer vision 

 And other areas 

 

 

 
 The following several slides is mainly from: 

 http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf 

 

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf






 

Histogram-based estimates 

 You can use a variety of fitting techniques to 
produce a curve from a histogram 
 Lines, polynomials, splines, etc. 

 Also called regression/function approximation 

 Normalize to make this a density 

 

 If you know quite a bit about the underlying 
density you can compute a good bin size 
 But that’s rarely realistic in vision 

 And defeats the whole purpose of the non-parametric 
approach 

 



 

Nearest-neighbor estimate 

 To estimate the density, count the number of 

nearby data points 

 Like histogramming with sliding bins 

 Avoid bin-placement artifacts 

 

 

 We can fix ε and compute this quantity, 

or we can fix the quantity and compute ε 
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Parzen estimation 

 Each observed data increases our estimate of 
the probability nearby 
 Simplest case: raise the probability uniformly within a 

fixed radius 

 Place a fixed-height “box” at each data point, add them up 
to get the density estimate 

 This is nearest neighbor with fixed ε 

 

 More generally, you can use some slowly 
decreasing function (such as a Gaussian) 
 Called Kernel function 







 

Mean shift algorithm 

 Non-parametric method to compute the 

nearest mode of a distribution 

 Density increases as we get near “center” 







Kernel Density Estimation 

 Multivariate kernel density estimation 

 

 

 Kernels 

 Gaussian 
 

 Epanechnikov 
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Finding Mean-Shift Vector 

 Gradient computation 

 For symmetric kernel 

 

 

 

 

 

 Always converges to the local maximum! 
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The mean shift procedure 

 Give a point x 

1. Compute the mean shift vector 

 

 

 

2. Translate density estimation window: 

 

3. Iterate steps 1. and 2. until convergence 

i.e.,  
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Applications 

 Pattern recognition 
 Clustering 

 Image processing 
 Filtering 

 Segmentation 

 Density estimation 
 Density approximation 

 Particle filter 

 Mid-level application 
 Tracking 

 Background subtraction 



Summary 

 The distance computing plays an important 

role in data analysis to find out 

 the suitable similarity measurement 

 the intrinsic structure of data 

 

 Further reading on metric learning 

 In the next lesson, we will explore more 

complex data with structure  



Image segmentation based on 

mean shift 

 

 

 

 

Mean-shift segmentation 



Clustering 

 Hierarchical clustering 

 bottom-up 

 Flat clustering 

 Mixture of Gaussians 

 K-means 

 Spectral based clustering 



An example: ISO/BLE-charts 

 ISO-Charts:  
 ISOMAP + Spectral Clustering + Stretch Minimization 

 BLE-Charts: 

 Statistical Embedding + Spectral Clustering + Stretch Minimization  



The End 

新浪微博：@浙大张宏鑫 

 

              微信公众号： 


