Distance and similarity (I)

Hongxin Zhang zhx@cad.zju.edu.cn

State Key Lab of CAD\&CG, ZJU 2015-03-24

In the last lesson

- Data driven decomposition:
- Data driven curve fitting
- Singular value decomposition (the power of orthogonal basis)
- A sort of spectral analysis
- PCA and its related techniques are very useful

In the last lesson

－Mathematical concepts and techniques
－Least squares（LSQ）
－Curve fitting
－Norm（范数）and inner product（内积）
－Singular value decomposition
－Eigen vectors and eigen－values
－Low rank matrix approximation and decomposition

Today's Talk

- Pre-processing: Distance / metric learning
- ISO-map
- LLE
- What is similarity? How to Clustering
- Spectral based
- E-M based
- MOG and K-means
- Mean shift

Clustering

- Given set of data points, group them, find the overall structure
- Unsupervised learning
- Learn the similarity. Which patient are similar? (or customers, faces, earthquakes, ...)

Distance

－Given n－dimensional vector x, y
－Euclidian（L² distance）

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y} ; 2)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

－L¹ distance

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y} ; 1)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

－Lº distance（Minkowsky）

$$
\begin{aligned}
& \operatorname{dist}(\mathbf{x}, \mathbf{y} ; p)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{p}\right)^{1 / p} \\
& \operatorname{dist}(\mathbf{x}, \mathbf{y} ; \infty)=\max _{i}\left|x_{i}-y_{i}\right|
\end{aligned}
$$

Distance, Norm and inner product

- Distance
- Norm

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y} ; 2)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

$$
\operatorname{norm}(\mathbf{x} ; 2):=\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

- Inner product

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

$$
\begin{aligned}
\operatorname{norm}(\mathbf{x}-\mathbf{y} ; 2)=\operatorname{dist}(\mathbf{x}, \mathbf{y} ; 2) \quad & \operatorname{dist}(x, y ; 2)=(\mathbf{x} \cdot \mathbf{x}+\mathbf{y} \cdot \mathbf{y}-2 \mathbf{x} \cdot \mathbf{y})^{1 / 2} \\
& =\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{y}\|_{2}^{2}-2 \mathbf{x} \cdot \mathbf{y}\right)^{1 / 2}
\end{aligned}
$$

Dimensional aware distances

- Along dimension j :

$$
R_{j}=\max _{i} x_{i, j}-\min _{i} x_{i, j}
$$

$$
\bar{x}_{j}=\frac{1}{N} \sum_{i=1}^{N} x_{i, j} \quad S_{j}=\left(\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i, j}-\bar{x}_{j}\right)^{2}\right)^{1 / 2}
$$

- Normalized data:

$$
x_{i, j}^{\prime}=\frac{x_{i, j}-\bar{x}_{j}}{R_{j}} \quad x_{i, j}^{\prime}=\frac{x_{i, j}-\bar{x}_{j}}{S_{j}}
$$

M-distance

- Consider the dependency of different dimensions
$\operatorname{dist}(\mathbf{x}, \mathbf{y} ; \mathbf{M})=(\mathbf{x}-\mathbf{y})^{\mathrm{T}} \mathbf{M}^{-1}(\mathbf{x}-\mathbf{y})$
- M is the covariance matrix of data
- Transform invariance

Data whitening

设有均值为零的随机信号向量 \boldsymbol{x} ，其自相关矩阵为

$$
R_{x}=E\left[x x^{T}\right] \neq I
$$

很明显，R_{x} 是对称矩阵，且是非负定的（所有特征值都大于或等于0）。
现在，寻找一个线性变换 B 对 x 进行变换，即 $y=B x$ ，使得

$$
R_{y}=B E\left[x x^{T}\right] B^{T}=I
$$

上式的含义是：y的各分量是不相关的，即 $E\left[y_{i} y_{j}\right]=\delta_{i j}$ 。通常将这个过程称为＂空间解相关＂，＂空间白化＂或＂球化＂。 B 称为空间解相关矩阵（空间白化矩阵，球化矩阵）。

由 R_{x} 的性质可知，其存在特征值分解：

$$
R_{x}=Q \Sigma Q^{T}
$$

Q 是正交矩阵，Σ 是对角矩阵，其对角元素是 R_{x} 特征值。
令

$$
\begin{equation*}
B=\Sigma^{-1 / 2} Q^{T} \tag{1}
\end{equation*}
$$

$$
R_{y}=B E\left[x x^{T}\right] B^{T}=I
$$

上式的含义是：y的各分量是不相关的，即 $E\left[y_{i} y_{j}\right]=\delta_{i j}$ 。通常将这个过程称为＂空间解相关＂，＂空间白化＂或＂球化＂。 B 称为空间解相关矩阵（空间白化矩阵，球化矩阵）。

由 R_{x} 的性质可知，其存在特征值分解：

$$
R_{x}=Q \Sigma Q^{T}
$$

Q 是正交矩阵，Σ 是对角矩阵，其对角元素是 R_{x} 特征值。
令

$$
\begin{equation*}
B=\Sigma^{-1 / 2} Q^{T} \tag{1}
\end{equation*}
$$

则有

$$
R_{y}=\left(\Sigma^{-1 / 2} Q^{T}\right) Q \Sigma Q^{T}\left(\Sigma^{-1 / 2} Q^{T}\right)^{T}=I
$$

因此，通过矩阵 B 线性变换后，y 的各个分量变得不相关了。
对于 R_{x} 来说，特征值分解和奇异值分解是等价的，而奇异值分解的数值算法比特征值分解的数值算法具有更好的稳定性，因此一般都用奇异值分解来构造空间解相关矩阵 B 。

应该注意到，＂空间解相关＂不能保证各分量信号之间的＂独立性＂，但它能够简化盲分离算法或改善分离算法的性能。

More complex method for distance computing

- PCA ...
- structure aware
- Main idea:
- Find a suitable mapping
- Compute distance in mapped space
- Available techniques
- MDS + global geodesic distance: ISO-MAP
- Local distance approximation: LLE
- ...

Classical Multi－dimensional Scaling

－MDS：多维标度法
－Main idea：
－Compute（match）distance between samples
－Use SVD to find similarity

Isomap: (Science 2001) Isometric feature mapping

- Preserve the intrinsic geometry of the data.
- Use the geodesic distances on manifold between all pairs.

Three steps algorithm

Isomap:
 Construct Neighborhood Graph

- Determine which points are neighbors, based on the distances d(i,j) .
- K nearest neighbors
- ε-radius

- Create a graph G, with edges between neighbors and distance weights.

Isomap: Compute Shortest Paths

- Estimate the geodesic distances.
- Compute all-pairs shortest paths in G.
- Can be done using Floyd's algorithm, $o\left(N^{2} \ln N\right)$.

$$
\begin{aligned}
& d_{G}(i, j)=d(i, j) \text { neighborin } \mathrm{g} \mathrm{i}, \mathrm{j} \\
& d_{G}(i, j)=\infty \quad \text { othewise } \\
& \text { for } \mathrm{k}=1,2, \ldots, \mathrm{~N}
\end{aligned}
$$

$$
d_{G}(i, j)=\min \left\{d_{G}(i, j), d_{G}(i, k)+d_{G}(k, j)\right\}
$$

Isomap:
 Construct d-dimensional Embedding

Classical MDS with $\mathrm{d}_{\mathrm{G}}(\mathrm{i}, \mathrm{j})$, minimize the cost function:

$$
\begin{gathered}
E=\left\|\tau\left(D_{G}\right)-\tau\left(D_{Y}\right)\right\|_{L^{2}} \\
\text { where } D_{Y}(i, j)=\left\|y_{i}-y_{j}\right\|^{D_{G}(i, j)=d_{G}(i, j)}
\end{gathered}
$$

and

$$
\tau(D)=\frac{-1}{2}\left(I-\frac{1}{N}\right) D^{\cdot 2}\left(I-\frac{1}{N}\right)
$$

Solution: take top d eigenvectors of the matrix $\tau\left(D_{G}\right)$

Isomap:
 Classical Multi-dimensional Scaling

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{X} & =-\frac{1}{2} \mathbf{J} \mathbf{E} \mathbf{J} \quad \text { E: Euclidian distance matrix } \\
\mathbf{B} & =-\frac{1}{2} \mathbf{J} \mathbf{M} \mathbf{J} \quad \text { M: Manifold distance matrix } \\
L(\hat{\mathbf{X}}) & =\left\|-\frac{1}{2} \mathbf{J}(\mathbf{E}-\mathbf{M}) \mathbf{J}\right\| \\
& =\left\|\hat{\mathbf{X}} \hat{\mathbf{X}}^{\prime}-\mathbf{B}\right\| \\
\mathbf{B} & =\mathbf{Q} \Lambda \mathbf{Q}^{\prime} \quad \hat{\mathbf{X}}=\mathbf{Q}_{+} \mathbf{\Lambda}_{+}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
c_{i} & =\sum_{a=1}^{m} x_{i a}^{2} \\
d_{i j}^{2} & =\sum_{a=1}^{m}\left(x_{i a}-x_{j a}\right)^{2} \\
\mathbf{E} & =\mathbf{c} \mathbf{1}^{\prime}+1 \mathbf{c}^{\prime}-2 \mathbf{X} \mathbf{X}^{\prime} \\
\mathbf{J} & =\mathbf{I}-\frac{1}{n} \mathbf{1} \mathbf{1}^{\prime} \\
\mathbf{B} & \left.=-\frac{1}{2} \mathbf{J} \mathbf{(c} \mathbf{1}^{\prime}+1 \mathbf{c}^{\prime}-2 \mathbf{X X}^{\prime}\right) \mathbf{J} \\
& =-\frac{1}{2} \mathbf{J c} \mathbf{0}^{\prime}-\frac{1}{2} \mathbf{0} \mathbf{c}^{\prime} \mathbf{J}+\mathbf{J X X} \mathbf{X}^{\prime} \mathbf{J} \\
& =\mathbf{X X}^{\prime} .
\end{aligned}
$$

Eigen-structure analysis again

Isomap:
 Classical Multi-dimensional Scaling (2D)

$$
\begin{aligned}
\mathbf{J} & =\operatorname{eye}(n)-\operatorname{ones}(n) \cdot / n ; \\
\mathbf{B} & =-0.5 * \mathbf{J} * \mathbf{M} * \mathbf{J} ; \\
& \% \text { Find largest eigenvalues }+ \text { their eigenvectors: } \\
{[\mathbf{Q}, \mathbf{L}] } & =\operatorname{eigs}\left(\mathbf{B}, 2,,^{\prime} \mathrm{LM}^{\prime}\right) ; \\
& \% \operatorname{Extract} \text { the coordinates: } \\
\text { newy } & =\operatorname{sqrt}(\mathbf{L}(1,1)) \cdot * \mathbf{Q}(:, 1) ; \\
\text { newx } & =\operatorname{sqrt}(\mathbf{L}(2,2)) \cdot * \mathbf{Q}(:, 2) ;
\end{aligned}
$$

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of a face. (b) The flattened texture image of the face.

Isomap: Examples

- $N=2000$ images 64×64 pixels $\mathrm{K}=6$

Isomap: More Results

Input: 698
images of 64x64

$$
\mathrm{K}=7, \mathrm{~d}=2
$$

Outputs:

Two-dimensional Isomap embedding (with neighborhood graph).

Isomap: More Results

- Same inputs, but this time with $\mathrm{d}=3$

698 images of $64 \times 64 \mathrm{~K}=7$

Locally Linear Embedding (LLE)

- Recovers global nonlinear structure from locally linear fits.
- Each data point and it's neighbors is expected to lie on or close to a locally linear patch.
- Each data point is constructed by it's neighbors:

$$
\begin{gathered}
\overrightarrow{\hat{X}}_{i}=\sum_{j} W_{i j} \vec{X}_{j} \\
W_{i j}=0 \text { if } \quad \vec{X}_{j} \text { is not a neighbor of } \vec{X}_{i}
\end{gathered}
$$

LLE - main idea

LLE:
 Getting the Reconstruction Weights

- We want to minimize the error function:

$$
\varepsilon(W)=\sum_{i}\left|\vec{X}_{i}-\sum_{j} W_{i j} \vec{X}_{j}\right|^{2}
$$

- With the constrains:

$$
W_{i j}=0 \text { if } \vec{X}_{j} \text { is not a neighbor of } \vec{X}_{i}
$$

$$
\sum_{j} W_{i j}=1
$$

- Solution (using Lagrange multipliers):

$$
\begin{aligned}
& W_{j}=\sum_{k} C_{j k}^{-1}\left(\vec{X} \vec{\eta}_{k}+\lambda\right) \\
& \lambda=1-\sum_{j k} C_{j k}^{-1}\left(\vec{X} \vec{\eta}_{k}\right) / \sum_{j k} C_{j k}^{-1}
\end{aligned}
$$

LLE:
 Find Embedded Coordinates

- Choose d-dimensional
coordinates, Y, to minimize: $\phi(Y)=\sum_{i}\left|\vec{Y}_{i}-\sum_{j} W_{i j} \vec{Y}_{j}\right|^{2}$
Under: $\sum_{i} \vec{Y}_{i}=\overrightarrow{\mathrm{O}}, \frac{1}{\mathrm{~N}} \sum_{i} \vec{Y} \vec{Y}^{T}=I$
Quadratic form:

where:

$M=(I-W)^{T}(I-W)$

- Solution: compute bottom d+1 eigenvectors of M. (discard the last one)

LLE:
 Summary

- Input: N data items in D dimension (X).
- Output: d < D dimensional embedding coordinates (Y) for the input points.

Algorithm Pseudocode (I)

Find neighbors in X space
For $\mathrm{i}=1: \mathrm{N}$
compute the distance from Xi to every other point Xj find the K smallest distances assign the corresponding points to be neighbors of Xi end

Algorithm Pseudocode (II)

Solve for reconstruction weights W.
for $\mathrm{i}=1 \mathrm{~N}$
create matrix Z consisting of all neighbors of Xi subtract Xi from every column of Z
compute the local covariance $\mathrm{C}=\mathrm{Z}^{\prime *} \mathrm{Z}$
solve linear system $\mathrm{C}^{*} \mathrm{w}=1$ for w
set $\mathrm{Wij}=0$ if j is not a neighbor of I
set the remaining elements in the ith row of W equal to w/sum(w);
end

Compute embedding coordinates Y using weights W .
create sparse matrix $\mathrm{M}=(\mathrm{I}-\mathrm{W})^{\prime *}(\mathrm{I}-\mathrm{W})$
find bottom $d+1$ eigenvectors of M (corresponding to the $\mathrm{d}+1$ smallest eigenvalues)
set the q-th ROW of Y to be the $q+1$ smallest eigenvector (discard the bottom eigenvector [1,1,1,1...] with eigenvalue zero)

LLE:
 Example

- $\mathrm{N}=8588$ (RGB) images of lips of size 108×84. D=27216
- Num of neighbors $\mathrm{K}=16$

3333333333333333333333

Clustering

-

Spectral clustering

- The spectral clustering method we define relies on a random walk representation over the points. We construct this in three steps

1. a nearest neighbor graph
2. similarity weights on the edges:

$$
W_{i j}=\exp \left\{-\beta\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|\right\}
$$

where $W_{i i}=1$ and the weight is zero for non-edges.
3. transition probability matrix

$$
P_{i j}=W_{i j} / \sum_{j^{\prime}} W_{i j^{\prime}}
$$

Properties of the random walk

- If we start from i_{0}, the distribution of points i_{t} that we end up in after t steps is given by

$$
\begin{aligned}
& i_{1} \sim P_{i_{0} i_{1}}, \quad P_{i j}=\frac{W_{i j}}{W_{i}}, \text { where } W_{i}=\sum_{j} W_{i j} \\
& i_{2} \sim \sum_{i_{1}} P_{i_{0}, i_{1}} P_{i_{1} i_{2}}=\left[P^{2}\right]_{i_{0} i_{2}}, \\
& i_{3} \sim \sum_{i_{1}} \sum_{i_{2}} P_{i_{0}, i_{1}} P_{i_{1} i_{2}} P_{i_{2} i_{3}}=\left[P^{3}\right]_{i_{0} i_{3}}, \\
& \ldots \\
& i_{t} \sim\left[P^{t}\right]_{i_{0} i_{t}}
\end{aligned}
$$

where $P^{t}=P P \ldots P$ (t matrix products) and $[\cdot]_{i j}$ denotes the i, j component of the matrix.

Random walk and clustering

- The distributions of points we end up in after t steps converge as t increases. If the graph is connected, the resulting distribution is independent of the starting point

Even for large t, the transition probabilities $\left[P^{t}\right]_{i j}$ have a slightly higher probability of transitioning within "clusters" than across; we want to recover this effect from eigenvalues/vectors

Eigenvalues/vectors and spectral clustering

- Let W be the matrix with components $W_{i j}$ and D a diagonal matrix such that $D_{i i}=\sum_{j} W_{i j}$. Then

$$
P=D^{-1} W
$$

- To find out how P^{t} behaves for large t it is useful to examine the eigen-decomposition of the following symmetric matrix

$$
D^{-\frac{1}{2}} W D^{-\frac{1}{2}}=\lambda_{1} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\lambda_{2} \mathbf{z}_{2} \mathbf{z}_{2}^{T}+\ldots+\lambda_{n} \mathbf{z}_{n} \mathbf{z}_{n}^{T}
$$

where the ordering is such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$.

Eigenvalues/vectors cont'd

- The symmetric matrix is related to P^{t} since

$$
\left(D^{-\frac{1}{2}} W D^{-\frac{1}{2}}\right) \cdots\left(D^{-\frac{1}{2}} W D^{-\frac{1}{2}}\right)=D^{\frac{1}{2}}(P \cdots P) D^{-\frac{1}{2}}
$$

This allows us to write the t step transition probability matrix in terms of the eigenvalues/vectors of the symmetric matrix

$$
\begin{aligned}
P^{t} & =D^{-\frac{1}{2}}\left(D^{-\frac{1}{2}} W D^{-\frac{1}{2}}\right)^{t} D^{\frac{1}{2}} \\
& =D^{-\frac{1}{2}}\left(\lambda_{1}^{t} \mathbf{z}_{1} \mathbf{z}_{1}^{T}+\lambda_{2}^{t} \mathbf{z}_{2} \mathbf{z}_{2}^{T}+\ldots+\lambda_{n}^{t} \mathbf{z}_{n} \mathbf{z}_{n}^{T}\right) D^{\frac{1}{2}}
\end{aligned}
$$

where $\lambda_{1}=1$ and

$$
P^{\infty}=D^{-\frac{1}{2}}\left(\mathbf{z}_{1} \mathbf{z}_{1}^{T}\right) D^{\frac{1}{2}}
$$

Eigenvalues/vectors and spectral clustering

- We are interested in the largest correction to the asymptotic limit

$$
P^{t} \approx P^{\infty}+D^{-\frac{1}{2}}\left(\lambda_{2}^{t} \mathbf{z}_{2} \mathbf{z}_{2}^{T}\right) D^{\frac{1}{2}}
$$

Note: $\left[\mathbf{z}_{2} \mathbf{z}_{2}^{T}\right]_{i j}=z_{2 i} z_{2 j}$ and thus the largest correction term increases the probability of transitions between points that share the same sign of $z_{2 i}$ and decreases transitions across points with different signs

- Binary spectral clustering: we divide the points into clusters based on the sign of the elements of \mathbf{z}_{2}

$$
z_{2 j}>0 \Rightarrow \text { cluster } 1, \text { otherwise cluster } 0
$$

Spectral clustering: example

Components of the eigenvector corresponding to the second largest eigenvalue

Reference papers of SC

- A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, NIPS, (2001)
- Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV, (1999)
- J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE TPAMI, 22 (2000)
- And more about image segmentations ...
- Graph cut
- Mean-shift

Classical methods on cluster distance

- A linkage method: we have to be able to measure distances between clusters of examples C_{k} and C_{l}
a) Single linkage:

Nearest neighbor

$$
d_{k l}=\min _{i \in C_{k}, j \in C_{l}} d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

b) Average linkage:

$$
d_{k l}=\frac{1}{\left|C_{l}\right|\left|C_{k}\right|} \sum_{i \in C_{k}, j \in C_{l}} d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

c) Centroid linkage:

$$
d_{k l}=d\left(\overline{\mathbf{x}}_{k}, \overline{\mathbf{x}}_{l}\right), \quad \overline{\mathbf{x}}_{l}=\frac{1}{\left|C_{l}\right|} \sum_{i \in C_{l}} \mathbf{x}_{i}
$$

Hierarchical (bottom-up) clustering

- Hierarchical agglomerative clustering: we sequentially merge the pair of "closest" points/clusters
- The procedure

1. Find two closest points (clusters) and merge them
2. Proceed until we have a single cluster (all the points)

- Two prerequisites:

1. distance measure $\mathrm{d}(\mathrm{xi}, \mathrm{xj})$ between two points
2. distance measure between clusters (cluster linkage)

Hierarchical (bottom-up) clustering

- A dendrogram representation of hierarchical clustering

The height of each pair represents the distance between the merged clusters; the specific linear ordering of points is chosen for clarity

Clustering vs. Classification

- Clustering
- Instance: $\left\{\mathrm{x}_{i}\right\}_{i=1}^{N}$
- Learn: < $\mathbf{x}_{i}, t_{i}>$ and/or mapping from \mathbf{x} to $t(\mathbf{x})$
- Classification/Regression
- Instance: < $\mathbf{x}_{i}, t_{i}>$
- Learn: mapping from \mathbf{x} to $t(\mathbf{x})$

The End

新浪溦溥：＠浙大张宏嫩
微信公众号：

