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Probabilistic Graphical Models

e Modeling many real-world problems =>
a large number of random variables

Dependences among variables may be used to
reduce the size to encode the model (PCA ?), or

They may be the goal by themselves, that is, the idea
IS to understand the correlations among variables.



Modeling the domain :

e Discrete random variables

o Take 5 random binary variables (A, B, C, D, E)
e II1.d. data from a multinomial distribution

a ~b ~C ~d ~e
a b ~C d ~e
a ~b C d ~e




Goals <

e (Parameter) Learning: using training data, estimate the joint
distribution

e Which are the values P(A, B, C, D, E),?

e ...and if there were one hundred binary variables? (Size of
model certainly greater than number of atoms on Earth!)

e [nference: Given the distribution P(A, B, C, D, E),
e Belief updating: compute the probability of an event
e What is the probability of A=a given E=¢e ?

e Maximum a posterior: compute the states of variables that
maximize their probability.

e Which state of A maximizes P(A|E=e) ?Isitaor~a?



The unstructured approach :

e To specify the joint distribution, there is an exponential number of values:

p(a.b,c,d,e), p(a,b,c,d,—e),p(a, b, c,—d, e),
p(a, b, c,—d,—e), p(a, b,—c,d, e), p(a, b,—c,d, —e),
p(a, b, —c.—d,e),p(a, b,—c,—d,—e),...

e We can compute the probability of events by:

p(a)= Y  p(a.B.C.D.E)
B.C.D,E
p(a,d,—e)  >.gcp(a B, C,d e

p(d.—e) >_ag.cP(A B, C.d —e)
e There are exponentially many terms in the summations...

plald.—e) =



The naive Bayesian approach |:

p(a, b) = p(a) p(b)

e Application: Emall spanning



Bayesian Networks :
e An arbitrary joint distribution p(a, b, c) over
three variables a, b, and ¢ 0
o the product rule of probability: b

p(a, b, c) =p(c|a, b)p(a b)
=p(c|a, b)p(b]|a)p(a)

e General case: p(Xy, X, ..., Xx)

plry,...,2x) =plrk|re, ..., rK—1)-..plxalxy)p(xy)



Not fully connected graph :

e Joint distribution: p(X;, X,, ..., X7)

plx)p(xe)p(xs)p(axy|xy, xo, x3)p(xs|xy, 23)p(xe|cs)p(r7|24, X5)




General form e

e For a graph with K nodes, the joint distribution is
given by:

K
p(x) = | | p(akpay,)
k=1

e Where pa, denotes the set of parents of x,, and
X=Xy, ... %}



Definitions

e A set of variables associated with nodes of a Directed Acyclic
Graph (DAG).

Markov condition (w.r.t. the DAG): each variable is independent of its
non-descendants given its parents.
For each variable (node), local probability distributions:

P(A), P(BJA=a), P(B|A=a), P(C|A=a), P(C|A=~a), P(D|b, c), P(D|~b, c), P(D|~b,c);
P(D|~b,~c), P(E|c), P(E|~c),

All these values are precise.



Regression revisit:
Polynomial Curve Fitting :

0 1

t(x,w)=wy +wh (x)+w,h,(x)+..+w

_p Hp (tn W

hy (X) =

w=(HH)"H't

Normal equation

N
IRJUNES
j=0



Example: T
Polynomial regression 3
|

N
t(x,w) =wy +wh (x)+w,h,(x)+...+wyhy(x)= Z thj(x)
j=0

N
p(t.w) =p(w) | [ p(tn|w)
n=1



Example: 33

Polynomial regression :
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N
t(x,w) =wy +wh (x)+w,h,(x)+...+wyhy(x)= Z thj(x)

) = p(wW prw



Example: $31-
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Polynomial regression :
: Q,f QQP‘%Q% ( L ) X
t ffﬁ %\x
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N
t(x,w) =wy +wh (x)+w,h,(x)+...+wyhy(x)= Z thj(x)
j=0

N the noise variance 02, and
p(t.wlX,a,0?) = p(w|a) H p(tn|w,z,,0%)  the hyperparametera
representing the precision of

n=1 the Gaussian prior over w



Linear-Gaussian models

e Consider an arbitrary DAG over D variables in which
node I represents a single continuous random variable x;
having a Gaussian distribution

e The mean of this distribution is taken to be a linear
combination of the states of its parent nodes pa; of node |

p(xi|lpa;) =N

Ly E Wy4.L g + 1’,';'1' . Uy

j':_—p&z'



Linear-Gaussian models s

p(xi|lpa;) =N (;.r:l Z w;iT; + b;. Ul)

JE€pa;

D
np(x) = Z In p(z;|pa;)
i=1

2
€r; — E wijrj — by |+ const
JEpa;

D
i=1

1
2'1,-‘1'



Linear-Gaussian models s

plailpay) = N | x| Y wigay + bi, vy

JE€pa;

r; — Z Wij L + b«g + \/af«g E[;’I:?;] = Z 'H.-*«,gj:[E[iI-'j] + b«;j

Jjepa; JjEpa;

covlzy, ;] = E[(z; — E[z])(z; — Elz;])]

p— '\ —

— E [(z:i —E[z]) Y wik(er — Elz]) + u5¢5 0

kepa; )

= E Wk COV [;’Jf:?;g ifk] + I’ij U

kepa;



Linear-Gaussian models s
Z WijT; +5i-1'5)

JjEpa;

e Case 1. nolinks inthe graph  p(z(pa,) =N (1
e The joint distribution:

2D parameters and represents
D independent univariate Gaussian distributions.

e Case 2: fully connected graph
e D(D-1)/2+D independent parameters

e Case 3: Orl .Oh O

T
= (b1, bo + wa1by, by + w3sbs + waswa1by)

5] Wa11q W3aWa1 V1
i ] ER 3 i \2 79 ¢ 1 9 # 12 R
2 = Waq Uy Vg + w3 Vy waa(vg + w3 v1)

¥ F41 A a1 1 _12_‘ . _!2 o _1'2.‘
W3 vy Wi (Ve + w3 v1) V3 + w3y (ve + w3 vy)




Conditional independence :

e Three random variables: a, b and c
e ais conditionally independent of b given c iff
e P(a|b,c)=P(alc) aJ_L b|C

e This can be re-written in following way

e P(a,blc)=P(alb,c)P(b]c)
=P(afc)P(b]c)

The joint distribution of a and b factorizes into the product of the

marginal distribution of a and ~b.



Simple example (1) O/O\O i
a b

e Joint distribution:
e P(a,b,c)=P(alc)P(b|c)P(c)

e Condition on c:
e P(a,b|c)=P(a,b,c)/ P(c)=P(alc)P(b]|c)
o => ad bjc
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Simple example (2) :
a b

e Joint distribution:
e P(a,b,c)=P(a)P(cla)P(b|c) [a--Db]|c
e Factorization:
P(a,b)=> P(a,b,c)=P(a)) P(cla)P(b]c)

c c

= P(a)P(b|a)
e Condition on c:

P(a,b,c) |P(a)P(c|a)

P(c) P(c)
= P(alc)P(bfc)

P(a,b|c) =

P(blc)

——> Bayesian Theorem



Simple example (3)

a b
e Joint distribution:

o P(a,b,c)=P(a)P(b)P(C|a’b)J_a/b/rc/

e Factorization:
P(a,b)=> P(a,b,c)=P(a)P(b)> P(cl|a,b)

= P(a)P (b)
e Condition on c:

P(a,b,c) B P(a)P(b)P(c|a,b)

P(c) P(c)
= P(alc)P(b|c)

P(a,b|c) =




Conditional independence

C
e Tall-to-Tall: yes

e Head-to-Talil: yes

e Head-to-Head: no




Markov condition

e We say that node y is a descendant of node x if there is a path from

X to y in which each step of the path follows the directions of the
arrows.

e |f each variable is independent of its non-descendants given its
parents, then:

B1L(C.E)A.
D_LL(A, E)|(B,C),
E1L(A, B.D)|C.



D-separation

e All possible paths from any node in A to any node in B. Any
such path is said to be blocked if it includes a node such
that either

the arrows on the path meet either head-to-tail or tail-to-tail
at the node, and the node is in the set C, or

the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in the set C

e If all paths are blocked, then A is said to be d-separated from
B by C.



D-separation :

® allb]|f

e In graph (a), the path from a to b is not blocked
Dy node ¢

e In graph (b), the path from a to b is blocked by
node fand e




D-separation :

e A particular directed graph represents a specific
decomposition of a joint probability distribution into a
product of conditional probabilities

e A directed graph is a filter




Markov blanket :

e Joint distribution p(x,, . . ., Xp) represented by a directed

graph having D nodes
P(Xi|X(jziy) = -
/p(xl- S :XD) dxi
HP(XMP%)

k
/ I [ p(xelpay) dx;
k

e The set of nodes comprising the parents, the children

and the co-parents is called the Markov blanket



Markov Random Fields °

e Also known as a Markov network or an
undirected graphical model

e Conditional independence properties:

Conditional dependence exists If
there exists a path that connects
any node in A to any node in B.

If there are no such paths, then
the conditional independence
property must hold. Nt

--—
- b R




Clique

e A subset of the nodes in a graph such that there exists a link
between all pairs of nodes in the subset

In other words, the set of nodes in a cligue is fully connected
Maximal clique ...

A four-node undirected graph showing a clique (outlined in green)
and a maximal clique (outlined in blue)






Image de-noising




Relation to directed graphs :

1 T2 TN_1 TN
@ (O O)— - ore
1 L2 LN IN-1

e Joint distribution:
e Directed:

e Undirected:
1 | lI i
p(x) = ?15"1,2(1?1: T9)Ua (T2, 23) - UN_1,N(ZN_1,ZN)



Relation to directed graphs :

. o I N_1 N
T T9 LN N1
Ura(rr,ee) = play)p(ralar)
V23(72,73) = plas|aa)

Un_anN(@ZN_1.2N) = plen|ry_1)



Relation to directed graphs :

I s Iy I3

Io

Irq

(@)

p(x) = p(x1)p(xe)p(xs)p(24|21, 29, 73)

e this process of ‘marrying the parents’ has become known
as moralization, and the resulting undirected graph, after
dropping the arrows, is called the moral graph.



Inference in Graphical Models

(a) (b) (c)

plx,y) = p(x)p(y|x)

p(rly) =

plylx)p(x)

p(y)



Inference on a chain e

T T LIN_-1 LN
s} Iro TN IN_-1

1 | ,.
p(x) = Eﬁ'ﬂl,z(ﬂ:h ro)to 3(x9, 23) - Un_1 N(TN_1,TN)

plan) =2 2 2 2 b

—1ITn41



Inference on a chain e

T T LIN_-1 LN
s} Iro TN IN_-1
1

plan) = VA

{Z Vn—1n(Tn_1,00) - [Z V23(wa, 73) [Z L?1:2(1’1-11“-2)” }
fa(Tn)

{Z Unnt1(Tn, Tngr) - - [Z UN_1 N (N1, iI’N)] - } : (8.52)
Tn41 TN

'

pp(an)



Inference on a chain e

Passing of local messages around on the graph

1
p(in\‘ - ?
{Z Un—1n(Tn_1,2n) - {Z V2,3(22, x3) [Z U12(21, il“-z)” a }
fta(Tn)
[Z 'blll"n_._n—l—l ('-Tnn ir'n—H) T [Z 'Ir":’f\-’—l,f\-’(ﬂ?f\-"—b IN)] t -‘ . (852)
[$n+l Iy J
15(Tn)

1
p(rﬂ) — ?;u'f:r (Tp )ru',-'ﬂ (In)



Inference on a chain e

Passing of local messages around on the graph

,-ua:(ir-n—lj ,-uaf(irn) .-u;':?(?rn) ﬁilﬁ(In—Fl)
Iy In-1 I'n Inil LN
fo(Tn) = Z Un—1n(Tn_1,7n) Z
Ty—1 _3371—2 ]
1 ,.
plx,) = ?;fﬂ(:rn);fﬁ(mn) = Z Un—1,n(Tn—1,Tn)fa(Tn_1).
Tn—1

() = 3 ol 22
i |



Inference on a chain e

Passing of local messages around on the graph

ﬁﬁ(fn) — EE::¢H+1m($ﬂ+lf$ﬂ) ZE:"'

Tn4+1 Tn42

}ﬂi?ﬁzzzzfﬂa(fn)ﬂﬁ(xn) = EE:’¢n+1m($n+1,In)ﬁﬁ($n+1y

Tn4+1



Inference on a chain e

Passing of local messages around on the graph

#af(irn—lj Ha(Tn) ;u;'_"f(?r?l) ﬁ£|8(17n+1)

1

E,U-a (irn—l J'?ﬁjn—l:n (11”-”_1 s Lp ),-"-f-,-'ﬂ (#Tn)

p(Zn—1,2n) =



Tree °

(@) (b) (c)



Factor graph

e the joint distribution over a set of variables in
the form of a product of factors

Hi‘ Xs)

e Where x, denotes a subset of the variables



Factor graph :

P(X) = fa(21,22) fo(21, ft?z)fc(fifza fl?s)fd(ﬂfg)

fa o fe fd



Factor graph

e an undirected graph => a factor graph
create variable nodes corresponding to the
nodes in the original undirected graph

create additional factor nodes corresponding to
the maximal cliques x.

Multiple choices of fg.



Factor graph :

I7 X9 T €Ir9 T Iro

Jo
3 r3 s

(@) (b) (c)

@ An undirected graph with a single cligue potential y(x71, x2, x3).
) A factor graph with factor f(x1, x2, x3) = w(x1, x2, x3)
representing the same distribution as the undirected graph.

) A different factor graph representing the same distribution,

whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = w(x1, x2, x3).



The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

p(x) = ZP(X) p(xX) = H Fy(x, Xy)

x\x scne(x)

!U'fs—'l? (‘I}J
—— :
s T :

Fy(z, X,)




The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

plr) = H ZFS(:E.XS)
sene(z) L Xs
— H xu'fh—*r(l)
sene(x)




The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

> Filz, X

s, —a(2)




The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

Fo(r, Xs) = fs(z.21,. ..o 2m)Gr (21, Xa1) ... Gy (2, Xomr)

> Filz, X

T




The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

ff,—a(x) = Z > felwan,oan) ] [Z Gm(i‘m-X.st]

TM mene(f)\z LXzm
- Z Z fq 1 L1, :Eﬂ'lf) H ru'.'rm—hfg(ll?m) (8()6)
za mene(fo)\z




Junction tree algorithm

e deal with graphs having loops

e Algorithm:
directed graph => undirected graph (moralization)
The graph is triangulated
join tree
Junction tree

a two-stage message passing algorithm,
essentially equivalent to the sum-product
algorithm



Graph inference example :

e Computer-Generated Residential Building
Layouts [SIG ASIA 2010]




MARKOV CHAINS AND HMM




Example: Video Textures :

e Problem statement

video clip video texture

SIGGRAPH 2000. Schoedl et. al.



The approach

P

How do we find good transitions?



Finding good transitions

Compute L, distance D, ; between all frames
> frame |

frame |

"
Similar frames make good transitions



Demo: Fish Tank




Mathematic model of eoe?

Video Texture .

A sequence of random variables A sequence of random variables
{ADEABEDADBCAD} {BDACBDCACDBCADCBADCA}

Markov Model

The future is independent of the
past and given by the present.



Markov Property
e Formal definition XIO—X;O X;O X;O—'

Let X={X,},-, y be a sequence of random
variables taking values s, eN if and only if
I:)(Xm:Smle:SO’ ""Xm-lzsm-l) = P(Xm:Sml Xm-lzsm-l)

then the X fulfills Markov property

e Informal definition

The future Is independent of the past given the
present.



History of MC

e Markov chain theory developed around 1900.

e Hidden Markov Models developed in late 1960’s. |
e Used extensively in speech recognition in 1960-70.
e Introduced to computer science in 1989. /

Andrel Andreyevich Markov

Applications

» Bioinformatics.
» Signal Processing
» Data analysis and Pattern recognition



Markov Chain

e A Markov chain is specified by

e state space S={5;,S....5, }
e Initial distribution a,

" . Ay a, a
e transition matrix A Q) W @

Where A(n);= a; = P(0=5j|0-1=Si) lx\_k A l\*—l/ |

e Graphical Representation

as a directed graph where
o Vertices represent states
o Edges represent transitions with positive probability




Probability Axioms

e Marginal Probability — sum the joint
probability

P(x=a,)= Z P(x=a,,y)

ye A,
e Conditional Probability
P(x=a;,y =b;)

P(x:ai|y:bj)s o0y b ) ifP(y:bj);tO.
T




Calculating with Markov chains

e Probability of an observation sequence:
o Let X={x}"_,be an observation sequence from

the Markov chain {S, a,, A}

P(x)=P(x,.....
= P(x;
= P(x,

=b

X

!

L
=]

X[ qaeenn X )P(X, X aaeenss Xy )

X, )P, X 5)

ol

X, X,)

XX

P(x,)




Example

Assume we are modeling a time series of high and low pressures
during the Danish autumn.

Let S =1H.L} I]_T_{i i} and ;1:{

0.2 0.8
1111

03 0.7/

Graphical representation of A

02 07
O

NN
N /\ 03/\/




Example

Comparing likelihoods

We want to know the likelihood of one week of high pressure in
Denmark (DK) versus California (Cal).

x=HHHHHHH
oY e oY s
P(x| DK) P(x|Cal)

=D 0,050 540 A Ay

6
301 Loo0017%
11\ 3

6
) ~0.19%
7\ 3

= bH aHH aHH CIHH aHH CIHH aHH aHH

5




Motivation of T
Hidden Markov Models

e Hidden states

e The state of the entity we want to model is often not
observable:

The state is then said to be hidden.

e Observables

e Sometimes we can instead observe the state of entities
Influenced by the hidden state.

e A system can be modeled by an HMM if:
o The sequence of hidden states is Markov

e The seguence of observations are independent (or Markov)
given the hidden




Hidden Markov Model os

e Definition M={S,V,A,B, T}
e Set of states S={s; S, ..., S\}
e Observation symbols V={vy Vy ..., vy}
e Transition probabilities

A between any two states a, = P(g=s|q..=s)
e Emission probabilities

B within each state b(0) =P(0zv| q,=s)
e Start probabilities 7T = {ap}

Use A = (A, B, T) to indicate the parameter set of the model.

666,



Generating a sequence by the |3s::

model 3

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state g, according to prob a,;

2. Emit letter o, according to prob e (0,)

3. Go to state g, according to prob a,

4. ... until emitting o,




000
0000
o000
o000
| X J
Example :
Model of high and low pressures
Assume we can not measure high and low pressures.
The state of the weather is influenced by the air pressure.
We make an HMM with hidden states representing high and low
pressure and observations representing the weather:
0.2 0.7
r’) 0.8 o
i ~ e Py
sl VR
Hiddenstatess LLLLHHL | || H | L
Observations: wres ¢ o © % N \“a 0. P NS
w 0.8 v 0.2
@ 0.2 0.8




Calculating with Hidden Markov sost

Model °

Consider one such fixed state sequence
Q = 0,9, J+

The observation sequence O for the Q Is
P(O|Q,A4)=]] P(O,ld,,4)

= b, (0,)-b, (0,)---b, (O,)

666,



Calculating with Hidden Markov :
Model (cont.)

The probability of such a state sequence Q

P (Q | /1) - aoqlaqlqz . aq2q3 o aqT—qu

The probability that O and Q occur simultaneously,
IS simply the product of the above two terms, i.e.,

P(O,Q[|4)=P(O]|Q,4)P(Q]|A)

P(0,Q[4)=a,,b, (0))a, b, (OZ)aqzqs 8y 6 P, (Or)



Example

P(x,m)
Z(Hw_ﬂ‘f_[i'?}}{u” !{R}){u” ¢, }( 1€ ;{R}}{um H[%)){HHH (S Na,, e, (R))
L1110 A 1010 010 A T010 01010
=0.0006278
0.2 0.7
e 0.8 il
f:-"‘— — _%x'x\ }—2__
/ a /N
Hiddenstatess LLLLHHL | || H | L)
Observations: weee « @ ¢ ¢« ¥ NN ) NS
< 0.8 v 0.2
= 0.2 = 0.8




. . 0000
The three main questions on | g2
o0

HMMs .
1. Evaluation

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND P[O|M]
2. Decoding

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND the sequence Q of states that maximizes P(O, Q | A)
3. Learning

GIVEN a HMM M=(S, V, A, B, n), with unspecified

transition/emission probabilities and a sequence Q,
FIND parameters 0= (e(.), ;) that maximize P[x|{]



Evaluation :

>  Find the likelihood a sequence is generated by the model

> A straightforward way (55257%)

»  The probability of O is obtained by summing all possible state
sequences q giving

P(O[4)=> P(O|Q,4)P(Q[4)

all Q
- Z ”qlbql (Ol)aqlqzqu (OZ)aqzqg Ay e qu (O;)
Q1.92,---d7
@ @ @
NGRS
Complexity is O(NT) Q ® ®
Calculations is unfeasible b.(d \
2(d4)



The Forward Algorithm

e A more elaborate algorithm
e The Forward Algorithm

P(014) =Y a- (i)

o, (1) = [ a,(i)a, b, (0,)

P(0,0,12) =3 a,(i)




The Forward Algorithm

The Forward variable
a,(i)=P(0,0,--0,q,=S,|4)

We can compute af(i) for all N, i,

Initialization:
o (1) = agb,(0,) i=1..N
lteration: N
a., (i) =[> a/()a,lb,(O,,) t=1...T -1

Termination:

PO14)=Y a, (i)




The Backward Algorithm :

The backward variable

,Bt(i) = P(Ot+1ot+2 OT |qt = Si’;t)
Similar, we can compute backward variable for all N, i,

Initialization:
B (i)=1,i=1,.,N
lteration: \
B.(i)=> a,b.(0,,)8,.,(i) =T-1T-2, L1<i<N
ji=1

Termination:

P(O[4)=> a,b(0,)B(])



Consider a. (i) =P(0,0,...0,,0q, =S| 1) o

P(O.,q; =3)) _ aT(iT)

PO)  Ya,li)

Thus P (g, = S,]0) =

P(O,q, =S5, ‘
Also P(q, = Si‘O)= ©.9,=5)
P (O)
P(0,0,:0,,0q,=5,,0.,0,,0;)
P (O)
= P(00,--0,q, =5)P(0,,0,,-0,]00,---0,,q, =5;)
. P (O
Forward, o,(i) () Backward, 5, (i)
— P (0102 Ot =S, )|P(Ot+1 t+2 OT |qt - Si)
P (O)




Decoding

GIVEN a HMM, and a sequence O.

Suppose that we know the parameters of the Hidden
Markov Model and the observed sequence of observations
O, 0, .., 0.

FIND the sequence Q of states that maximizes
P(Q[O,4)
Determining the sequence of States q,, q,, ..., gy, which

IS optimal in some meaningful sense. (i.e. best “explain”
the observations)
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Decoding :
Consider p(Qo, 1) = P(0,Q[4)
P (O 1]2)

To maximize the above probability is equivalent to maximizing
P(©,Q[4)
=ab a.b a . b

Iy 140; il 1,0, lyl3 1504

A best path finding problem
max P (O,Q | A1) \ \ ¢ \
=max In( P (O,Q | 1))
=max( In(a b _)+in(a_ b . ).+ (aiT_liniToT )

g 1104 Il 1,0,
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Viterbi Algorithm :
[Dynamic programming]
Initialization:

o0.(1) =a,bi(0,), i=1...N
wll((li)): g.o. (On), i N ‘
Recursion: 01 02 03 On
5,() = max; [5.4() a]b,(0)  t=2..T j=1...N
W, (j) = argmax; [5,(i) ay] t=2...T j=1...N

Termination:
P* = max; O.(i)
dr* = argmax; [0+(1) ]
Traceback:
0 = Wi(q*u1 ) t=T-1,T-2,...,1.




The Viterbi Algorithm 2
State 1
2 0
K

Similar to “aligning” a set of states to a sequence

Time: O(K?N)
Space: O(KN)




Learning

e Estimation of Parameters of a Hidden Markov Model

1. Both the sequence of observations O and the
sequence of states Q is observed

learning A = (A, B, 7)

2. Only the sequence of observations O are
observed

learning Q and A = (A, B, 7)



Maximal Likelihood Estimation | ¢

e Given O and Q, the Likelihood is given by:

L(A,B,z)=a,b, a,b, b ...a. . b

1,04 I1I2 1,0, I2I3 1,04 I+ 4l I+ O



Maximal Likelihood Estimation

e the log-Likelihood is:
I(A,B,7)=In L(A,B,7z)=1In (ai )+ In (bi 01)+ In (ailiz)

+ In (ai2i3 )+ In (bisos) +In ( 1 1iT )+ In (biTOT )

—Zf In (a, )ZZfln( )+ ZZ"‘

=1 j=1 |lo

where f,, = the number of times state i occurs in the first state

f.. = the number of times state i changes to state j.

By = f (y|¢9i) (or p(y|¢9i) in the discrete case)

Y = the sum of all observations o, where g, = S,



Maximal Likelihood Estimation | ¢

In such case these parameters computed by
Maximum Likelihood Estimation are:

f

ij

) fo .
a = — a. = . and
1

i ij M
>,
j=1

b. = the MLE of b; computed from the
observations o, where g, = S;.



Maximal Likelihood Estimation

e Only the sequence of observations O are observed

LAB7T Zabab b. ...a. .b.

i, 10 igi, 50, |2|3 50, ir it ipOp
Iy 0y iy

It is difficult to find the Maximum Likelihood Estimates
directly from the Likelihood function.

The Techniques that are used are

1. The Segmental K-means Algorith
2. The Baum-Welch (E-M) Algorithm



The Baum-Welch Algorithm

e The E-M algorithm was designed originally to handle
“Missing observations”.

e In this case the missing observations are the states
{a;, a2, -, A}

e Assuming a model, the states are estimated by
finding their expected values under this model. (The
E part of the E-M algorithm).



The Baum-Welch Algorithm

e With these values the model Is estimated

0y

Maximum Likelihood Estimation (The M part

of the E-M algorithm).

e The process is repeated until the estimated

model converges.



The Baum-Welch Algorithm :

Initialization:
Pick the best-guess for model parameters (or arbitrary)

lteration:

Forward

Backward

Calculate Ay, E,(b)

Calculate new model parameters a, e, (b)

Calculate new log-likelihood P(x | 6)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | ©) does not change much




The Baum-Welch Algorithm e

Let f(O,Q‘;t): L(0,Q,4) denote the joint distribution of
Q,0. Consider the function:
Q(4,2)=E,(n L(0,Q,4)Q. 1)

Starting with an initial estimate of 1 (1) .

A sequence of estimates {2} are formed
by finding 4 — 2™ to maximize Q(4,4™)
with respectto 4 .



The Baum-Welch Algorithm :

The sequence of estimates {1™}
converge to a local maximum of the likelihood




Speech Recognition

e On-line documents of Java™ Speech API

e On-line documents of Free TTS
http://freetts.sourceforge.net/docs/

e On-line documents of Sphinx-lI
http://www.speech.cs.cmu.edu/sphinx/


http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/

Speech Recognition and
Mobile applications

o Sirl
e Google speech
e \VeChat / Laiwang



http://shanghaiist.com/2013/08/05/wechat_updates_with_sticker_shop_and_games_version_5.php

Brief History of CMU Sphinx

e Sphinx-1(1987)

The first user independent, high performance ASR of the world.
Written in C by Kai-Fu Lee (% [l fg{ﬁ‘lj » = Googleﬁ%’:}i’l?&).

e Sphinx-Il (1992)

Written by Xuedong Huang in C. (Fﬁﬁjﬂﬁl# » ZFlEsMicrosoft Speech.NET[E!

[FapiE *)
5- state HMM / N-gram LM.

e Sphinx-lll (1996)

Built by Eric Thayer and Mosur Ravishankar.
Slower than Sphinx-Il but the design is more flexible.

e Sphinx-4 (Originally Sphinx 3))
Refactored from Sphinx 3.

Fully implemented in Java. (Not finished yet ..

)
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Components of CMU Sphinx
D
Application
_é_ ____.XE______Application
%: Recognizer
A

Features Feedback ™)
K nowledge
Front End Decoder Base |
dA=g
Input L _...I* Tedoo & v
y Knowledge
Control




Knowledge Base

e The data that drives the decoder.

e Three sets of data
Acoustic Model.
Language Model.
Lexicon (Dictionary).




Speech Recognition Architecture

« Observations : O =o0,,0,,05, "0,

@ Word Sequences : W =w,w,,wy, -, w

i

&= Probabilistic implementation can be expressed :

W = argmax P(W | O)

WelL
% Then we can use Bayes' rule to break it down :

1 (O |\ WHYPW

W =argmax P(W |O) = arg max PO ]| PV)
WeL Wel P(O)

[ \
PV ]0) = PWO) i P(O|W) = PIro)

P(O) P(W)

. P(W|0)-P(0)= P(WO)=P(O|W)-PW) |




Speech Recognition Architecture

& For each potential sentence we are still
examining the same observations (), which

must have the same probability 2O).

W = arg max P(W ‘ ()) _ —¥ Posterior probability
Wel

) _
= arg max POW)PI) =argmax P(O |W)P(W)

el P(O) 7 /

Observation likelihood Prior probability
Acoustic model Language model




Speech Recognition Architecture

| Figure 7.2 Schematic architecture for a speech
recognition

e AMWWMWWWWWMMWWWMWWWW i

Feature Extraction | J IJ

(Sional Brocesaing T i
e HHHHHHHHHHHHHHH
A

Phone Likelihood
Estimation (Gaussians l l l
or Neural Networks)

Phone ay 0.70 ay 0.80 ay 0.80 n 0.50
N—gram Gramm ar aa 0.22 aa 0.12 aa 0.12 en 0.20
Likelihoods ax 0.04 ax 0.04 ax 0.04 m 0.12
" 01 = \ P(Olq) eh 0.03 eh 0.03 eh 0.03 em0.11
al| 03 01
Decodmg (Viterbi l l l l l l l
HMM Lexicon —=»or Stack Decoder)
(J (} L J L )L J
SLOAS
(J .
g g & Words 1 need a



Acoustic Model

e /model/hnmm/6k
e Database of statistical model.
e Each statistical model represents a phoneme.

e Acoustic Models are trained by analyzing
large amount of speech data.



HMM in Acoustic Model

e HMM represent each unit of speech in the
Acoustic Model.

e Typical HMM use 3-5 states to model a
phoneme.

e Each state of HMM is represented by a set of
Gaussian mixture density functions.

e Sphinx2


http://www.try.idv.tw/try/talks/phoneset_s2.html

Mixture of Gaussians

e Represent each state in HMM.

e Each set of Gaussian Mixtures are called
“senones’.

e HMM can share “senones’.

&~ -y

AQ\ SO AQN

Gaussian Mixtures




Mixture of Gaussians .

1

Nix, p,2)=
S e

172 EXP[_ %(-": — Y I (x— ;U)J

T

Flo)- £

4
C, >0 H 2'5;::1
P

(Gaussian mixtures with enough mixture components can

approximate any distribution.
G‘IIO Q2 (-\’I
O N OESO

AN\ SO AL

Gaussian Mixtures

o, N (X 44,2, ) Horh




Language Model

e Describes what is likely to be spoken in a
particular context

e \Word transitions are defined in terms of
transition probabillities

e Helps to constrain the search space

/P\/\/\
vvv

hood



N-gram Language Model

e Probability of word N dependent on word N-1, N-2, ...

e Bigrams and trigrams most commonly used

e Used for large vocabulary applications such as dictation
e Typically trained by very large (millions of words) corpus

[Unigram Pipack) ]

N
[Bigrarn _ /(ﬁchkumm })sba\ckww@s) j

[ Trigram P(back |don't, look) Cﬁbacklsun, strikes) B P{back] empire, stﬁkesﬂ




Markov Random field and CRF |:

e See webpage

e http://www.nlpr.ia.ac.cn/users/szli/MRF_Book
IMRF_Book.html




Belief Network (Propagation) |:

Y. Weiss and W. T. Freeman
Correctness of Belief Propagation in Gaussian Graphical Models of
Arbitrary Topology. in: Advances in Neural Information Processing
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000.

MERL-TR99-38. @ @



http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/

