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Probabilistic Graphical Models 

¸Modeling many real-world problems   =>       

a large number of random variables 

¸ Dependences among variables may be used to 

reduce the size to encode the model (PCA ?), or 

 

¸ They may be the goal by themselves, that is, the idea 

is to understand the correlations among variables. 



Modeling the domain 

¸Discrete random variables 

¸ Take 5 random binary variables (A, B, C, D, E) 

¸ i.i.d. data from a multinomial distribution 

A B C D E 

a ~b ~c ~d ~e 

a   b ~c   d ~e 

a ~b   c   d ~e 



Goals 

¸ (Parameter) Learning: using training data, estimate the joint 

distribution 

¸ Which are the values  P(A, B, C, D, E),? 

¸ ... and if there were one hundred binary variables?  (Size of 

model certainly greater than number of atoms on Earth!) 

¸ Inference: Given the distribution P(A, B, C, D, E), 

¸ Belief updating: compute the probability of an event 

¸ What is the probability of A=a given E=e ? 

¸ Maximum a posterior: compute the states of variables that 

maximize their probability.                 

¸ Which state of A maximizes  P(A | E=e) ? Is it a or ~a ? 

 



The unstructured approach 

¸ To specify the joint distribution, there is an exponential number of values: 

 

 

 

 

 

 

¸ We can compute the probability of events by: 

 

 

 

 

 

 

¸ There are exponentially many terms in the summations...  



The naïve Bayesian approach  

 

p(a, b) = p(a) p( b) 

 

¸Application: Email spanning 



Bayesian Networks 

¸An arbitrary joint distribution p(a, b, c) over 

three variables a, b, and c 

¸ the product rule of probability: 

p(a, b, c) = p(c | a, b) p( a, b) 

                = p(c | a, b) p(b | a) p(a) 

 

¸General case: p(x1,  x2, é , xK)  

 



Not fully connected graph 

¸ Joint distribution: p(x1,  x2, é , x7)  



General form 

¸ For a graph with K nodes, the joint distribution is 

given by: 

 

 

 

¸ where pak denotes the set of parents of xk, and   

x = {x1, . . . , xK}  



Definitions 

¸ A set of variables associated with nodes of a Directed Acyclic 

Graph (DAG). 

¸ Markov condition (w.r.t. the DAG): each variable is independent of its 

non-descendants given its parents. 

¸ For each variable (node), local probability distributions: 

¸ P(A), P(B|A=a), P(B|A=a), P(C|A=a), P(C|A=~a), P(D|b, c), P(D|~b, c), P(D|~b,c); 

P(D|~b,~c), P(E|c), P(E|~c), 

¸ All these values are precise. 



Regression revisit: 

Polynomial Curve Fitting  
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Example:  

Polynomial regression 
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Example:  

Polynomial regression 
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Example:  

Polynomial regression 
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the noise variance ů2, and 
the hyperparameter Ŭ 

representing the precision of 
the Gaussian prior over w 



Linear-Gaussian models 

¸ Consider an arbitrary DAG over D variables in which 

node i represents a single continuous random variable xi 

having a Gaussian distribution 

 

¸ The mean of this distribution is taken to be a linear 

combination of the states of its parent nodes pai of node i 



Linear-Gaussian models 



Linear-Gaussian models 



Linear-Gaussian models 

¸ Case 1: no links in the graph 
¸ The joint distribution:   

¸ 2D parameters and represents  

¸ D independent univariate Gaussian distributions. 

 

¸ Case 2: fully connected graph 
¸ D(D-1)/2+D  independent parameters 

 

¸ Case 3: 

 

 

 



Conditional independence 

¸ Three random variables: a, b and c 

¸ a is conditionally independent of b given c iff 

¸ P( a | b, c) = P( a | c ) 

¸ This can be re-written in following way 

¸ P( a, b | c) = P( a | b, c ) P ( b | c) 

                     = P( a | c ) P ( b | c) 

The joint distribution of a and b factorizes into the product of the 

marginal distribution of a and ~b.   

a Ƨ  b | c 



Simple example (1) 

¸ Joint distribution: 

¸ P( a, b, c ) = P( a | c ) P( b | c ) P( c ) 

 

¸Condition on c: 

¸ P( a, b | c ) = P( a , b, c ) /  P( c ) = P( a | c ) P( b | c )  

¸ =>  a Ƨ  b | c 

 

a b 

c 



Simple example (2) 

¸ Joint distribution: 

¸ P( a, b, c ) = P( a ) P( c | a ) P( b | c ) 

¸ Factorization: 

 

 

¸Condition on c: 

 

a b 

c 
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Bayesian Theorem 



Simple example (3) 

¸ Joint distribution: 

¸ P( a, b, c ) = P( a ) P( b ) P( c | a, b ) 

¸ Factorization: 

 

 

¸Condition on c: 

 

a b 

c 
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a Ƨ  b | c 



Conditional independence 

¸ Tail-to-Tail: yes 

 

 

¸Head-to-Tail: yes 

 

 

¸Head-to-Head: no 

a b 

c 

a b 

c 

a b 

c 



Markov condition 

¸ We say that node y is a descendant of node x if there is a path from 

x to y in which each step of the path follows the directions of the 

arrows. 

¸ If each variable is independent of its non-descendants given its 

parents, then: 



D-separation 

¸ All possible paths from any node in A to any node in B. Any 

such path is said to be blocked if it includes a node such 

that either 

¸ the arrows on the path meet either head-to-tail or tail-to-tail 

at the node, and the node is in the set C, or 

¸ the arrows meet head-to-head at the node, and neither the 

node, nor any of its descendants, is in the set C 

¸ If all paths are blocked, then A is said to be d-separated from 

B by C. 



D-separation 

¸ In graph (a), the path from a to b is not blocked 

by node c 

¸ In graph (b), the path from a to b is blocked by 

node f and e 



D-separation 

¸ A particular directed graph represents a specific 

decomposition of a joint probability distribution into a 

product of conditional probabilities 

¸ A directed graph is a filter 



Markov blanket 

¸ Joint distribution p(x1, . . . , xD) represented by a directed 

graph having D nodes 

¸ conditional distribution 

 

 

 

¸ The set of nodes comprising the parents, the children 

and the co-parents is called the Markov blanket 



Markov Random Fields 

¸Also known as a Markov network or an 

undirected graphical model 

 

¸Conditional independence properties: 

 Conditional dependence exists if 
there exists a path that connects 
any node in A to any node in B.  

 

If there are no such paths, then 
the conditional independence 
property must hold. 



Clique 

¸ A subset of the nodes in a graph such that there exists a link 

between all pairs of nodes in the subset  

¸ In other words, the set of nodes in a clique is fully connected 

 

¸ Maximal clique é 

¸ A four-node undirected graph showing a clique (outlined in green) 

and a maximal clique (outlined in blue) 

 





Image de-noising 

 



Relation to directed graphs 

¸ Joint distribution: 
¸ Directed: 

 

 

¸ Undirected: 



Relation to directed graphs 



Relation to directed graphs 

¸ this process of ómarrying the parentsô has become known 
as moralization, and the resulting undirected graph, after 
dropping the arrows, is called the moral graph. 



Inference in Graphical Models 



Inference on a chain 



Inference on a chain 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Tree 



Factor graph 

¸ the joint distribution over a set of variables in 

the form of a product of factors 

 

 

¸where xs denotes a subset of the variables 



Factor graph 



Factor graph 

¸ an undirected graph => a factor graph 

¸ create variable nodes corresponding to the 

nodes in the original undirected graph 

¸ create additional factor nodes corresponding to 

the maximal cliques xs 

¸ Multiple choices of fg.  



Factor graph 

(a) An undirected graph with a single clique potential ɣ(x1, x2, x3).  

(b) A factor graph with factor f(x1, x2, x3) = ɣ(x1, x2, x3) 

representing the same distribution as the undirected graph.  

(c) A different factor graph representing the same distribution, 

whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ɣ(x1, x2, x3). 



The sum-product algorithm 

¸ The problem of finding the marginal p(x) for 

particular variable node x 
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The sum-product algorithm 

¸ The problem of finding the marginal p(x) for 

particular variable node x 

 



The sum-product algorithm 

¸ The problem of finding the marginal p(x) for 

particular variable node x 

 


