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In the last lesson

Data driven decomposition:
Data driven curve fitting

Singular value decomposition (the power of
orthogonal basis)

A sort of spectral analysis

PCA and its related technigues are very
useful



In the last lesson

Mathematical concepts and techniques
Least squares (LSQ)
Curve fitting
Norm ( ) and inner product (& )
Singular value decomposition
Eigen vectors and eigen-values

Low rank matrix approximation and
decomposition



Todayos Tal k

Pre-processing: Distance / metric learning
1ISO-map
LLE

. What is similarity”? How to Clustering

Spectral based

E-M based
MOG and K-means

Mean shift



Clustering °

Given set of data points, group them, find the
overall structure

Unsupervised learning

Learn the similarity. Which patient are similar?
(or customers, faces,

¥
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Distance

Given n-dimensional vector X, y
Euclidian (L? distance)
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Distance, Norm and HE
Inner product :
Distance
diSt(X,y;Z):;a (x _yi)z g
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Dimensional aware distances |

. Along dimension J: ¢ - naxx  -minx,
- 1 " ! | ! |
TN a1 oL s
= S & a (X, -%) ¢
(;N'lizl -

~ Normalized data:




M-distance

. Consider the dependency of different
dimensions

dist(x,y;M)=(x -y)'M " y)

M is the covariance matrix of data
_ Transform invariance



More complex method for
distance computing

PCA é

structure aware

Main idea:
Find a suitable mapping
Compute distance in mapped space

Avallable techniques

MDS + global geodesic distance: ISO-MAP

Local distance approximation: LLE
é




Classical 4

Multi-dimensional Scaling :

. MDS:

_ Main idea:
~ Compute (match) distance between samples
- Use SVD to find similarity



Isomap: (Science 2001)
Isometric feature mapping T

Preserve the intrinsic geometry of the data.

Use the geodesic distances on manifold between
all pairs.

Three steps algorithm




Isomap: 4

Construct Neighborhood Graph :

Determine which points are neighbors, based on the
distances d(i,)) .

A K nearest neighbors P

Create a graph G, with edgég—t)eiweén rieighbdrs
and distance weights.



Isomap: eelt
Compute Shortest Paths 2

Estimate the geodesic distances.

Compute all-pairs shortest paths in G.
Can be done wusingoninoydO©os

d. (i, J) =d(, J) neighboring i, ]

d (@, ))=mro othewise

_ Graph Distance

* Manifold Distance

fork =1,2,..., N
d.(, ) =mn{ d_ (1, J), d (,k)+d (K, J)}



Isomap:

Construct d-dimensional Embedding

Classical with dg(1,)),
minimize the cost function:

E =[¢(Dy)- £(D,)

|_2

whereD, (i, J) = Hyi - Y,
D, (@, ))=d,0, ))
and

r(D)==2- 35D -D)
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Solution: take top d
elgenvectoroef the

matrix ¢(D.)



Isomap:
Classical Vulti-dimensional
X 'X = -iJEJ E: Euclidian distance matrix
2
B = -iJM J M: Manifold distance matrix
2
L(X) = %J E — M)JH
_ [|xx’ —BH+
B-QAQ X-Q.A

caling °
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Eigen-structure analysis, SVD again



Isomap:
Classical Multi-dimensional Scaling (2D)
J = eye(n)—ones(n)./n;
B = —05+«J+M=xJ:
% Find largest eigenvalues+their eigenvectors:
Q.L] = eigs(B,2,’LM);
Y% Extract the coordinates:
newy = sqrt(L(1,1)).*Q(:1);
newx = sqrt(L(2,2)).*Q(:,2);




Isomap: application
texture mapping

o

V

(a) (b)

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of
a face. (b) The flattened texture image of the face.




Isomap

Examples
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Isomap: eelt

More Results :
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More Results

5

Isomap:

Same inputs, but this time with d=3

698 images of 64x64 K=7
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Locally Linear Embedding e
(LLE)

Recovers global nonlinear structure from locally

linear fits.

Each data point and 11t0s
lie on or close to a locally linear patch.

Each data point 1 s constr

o d
e =3 w, X,
i

d

d
W. =0 If X IS not a neighbor of X.

ij



000
000
LLE: oo
Getting the Reconstruction Weights
We want to minimize ld . df
the error function: ew)=a | Xi- a WX,
i J
With the constrains: Wij =0 i )((jj is not a neighbor of )((ji
aw, =1

]

Solution (using Lagrange multipliers):
ud
W =5 C, (XA, +/)

k dd
e -1 e -1
/ =1- Cjk(th) a C,

jk jk



LLE: I

Find Embedded Coordinates oo

Choose d-dimensional
coordinates, Y, to minimize: r¢v) =3

2

d d
Y - awy,

J

FON =& M, (%Y)

1

M= -W)  -W)

Solution: compute bottom d+1 eigenvectors of M.
(discard the last one)



LLE:
Summary

Input: N data items

In D dimension (X).

Output: d <D
dimensional
embedding
coordinates (Y) for
the input points.

% (1) select neighbors

fe)
0 © L« PR
o ° X, o
© ° e
&)
0
Dgo o o
(o] o ]
-1
\ @
Reconstruct with

linear weights

-
________

©  Map to embedded coordinates



LLE: 43+
Algorithm Pseudocode ()

Find neighbors in X space

For i=1:N
compute the distance from Xi to every other point X]
find the K smallest distances

assign the corresponding points to be neighbors of Xi
end

http://www.cs.toronto.edu/~roweis/lle/algorithm.htmi



LLE: 43+
Algorithm Pseudocode (ll)

Solve for reconstruction weights W.
fori=1:N
create matrix Z consisting of all neighbors of Xi
subtract Xi from every column of Z
compute the local covariance C=2"*Z
solve linear system C*w = 1 for w
set Wij=0 if | is not a neighbor of |
set the remaining elements in the ith row of W equal to
w/sum(w);

end



LLE: os
Algorithm Pseudocode (lI)

Compute embedding coordinates Y using weights W.
create sparse matrix M = (I-W)"*(I1-W)

find bottom d+1 eigenvectors of M (corresponding to
the d+1 smallest eigenvalues)

set the g-th ROW of Y to be the g+1 smallest
eigenvector (discard the bottom eigenvector [1,1,1,1...]
with eigenvalue zero)



LLE: os
Example

. N=8588 (RGB) images

of lips of size 108x84.
D=27216

. Num of neighbors K=16

I NI III3 33535 35550 WIHDD



Spectral clustering :

e [he spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps
1. a nearest neighbor graph

2. similarity weights on the edges: .

Wij = exp{—3|x; — x|}

where WW,;; = 1 and the weight is
zero for non-edges.

3. transition probability matrix of

Py = Wi/ Y Wi 2
j/




Properties of the random walk |

e |f we start from 17, the distribution of points 7; that we end
up in after ¢ steps is given by

m, i .
W~ Py Py= gl where W= 3T
J

E 2
32N P 1,71 2122 P}Z()Zf}

3 10
23N E E PZ()ZIPZLZZPMQ: [P ]Z'.()'ig? NS i #

A D

by ~ [Pf} 20 it 0 w

where P* = PP ... P (t matrix products) and [-];; denotes
the 7,7 component of the matrix.

01°




Random walk and clustering |

e [hedistributions of points we end up in after ¢ steps converge
as t increases. |f the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities [P’];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues/vectors

§
5
4
3
2 L
1
0
1
£




Eigenvalues/vectors and sel:

spectral clustering :

e Let IV be the matrix with components 1W;; and D a diagonal
matrix such that D;; = Zj Wi;. Then

P=D"'W

e To find out how P! behaves for large t it is useful to examine
the eigen-decomposition of the following symmetric matrix

T

T

1l 1
D 3WD™2 = \z12! + N\ozozi + ...+ N\ 2,2

where the ordering is such that [A{| > [Aa] > ... > |A,.].



Ei genval ues/ vecit:o

e The symmetric matrix is related to P! since
(DZWD™2).-- (D 2WD 2)=Dz(P---P)D"2

This allows us to write the t step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

Pt = D2 (D%WD%> D?

1 : : : 1
= D72 ()\flzlz’{ + Ahzozd 4+ ..+ )\I;lzﬂ,,lzz;) D2

where Ay = 1 and



Eigenvalues/vectors and sel:

spectral clustering :

e We are interested in the largest correction to the asymptotic
limit

P'~P*+ D2 (/\;:@zg) D?

Note: [zozd];; = 22:22; and thus the largest correction term

increases the probability of transitions between points that
share the same sign of 29, and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z»

z9j > 0 = cluster 1, otherwise cluster 0



Spectral clustering: example |:
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And more about | mage segmen
Graph cut
Mean-shift



