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In the last lesson 

 Data driven decomposition: 

 Data driven curve fitting 

 Singular value decomposition (the power of 

orthogonal basis) 

 A sort of spectral analysis 

 PCA and its related techniques are very 

useful 



In the last lesson 

 Mathematical concepts and techniques 

 Least squares (LSQ) 

 Curve fitting 

 Norm (范数) and inner product (内积) 

 Singular value decomposition 

 Eigen vectors and eigen-values 

 Low rank matrix approximation and 

decomposition 



Today’s Talk 

 Pre-processing: Distance / metric learning 

 ISO-map 

 LLE 

 

 What is similarity? How to Clustering 

 Spectral based 

 E-M based 

 MOG and K-means 

 Mean shift 



 Clustering 

 Given set of data points, group them, find the 
overall structure 

 Unsupervised learning 

 Learn the similarity. Which patient are similar? 
(or customers, faces, earthquakes, …) 



Distance 

 Given n-dimensional vector x, y 

 Euclidian (L2 distance) 

 

 

 L1 distance 

 

 Lp distance (Minkowsky) 
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Distance, Norm and  

inner product 

 Distance 

 

 Norm 

 

 Inner product 
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Dimensional aware distances 

 Along dimension j: 

 

 

 Normalized data: 
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M-distance 

 Consider the dependency of different 

dimensions  

 

 

 M is the covariance matrix of data 

 Transform invariance 
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More complex method for 

distance computing 

 PCA … 

 structure aware 

 Main idea:  

 Find a suitable mapping 

 Compute distance in mapped space 

 

 Available techniques 

 MDS + global geodesic distance: ISO-MAP 

 Local distance approximation: LLE 

 … 



Classical  

Multi-dimensional Scaling 

 MDS: 多维标度法 

 Main idea: 

 Compute (match) distance between samples 

 Use SVD to find similarity 

 



Isomap: (Science 2001)  

Isometric feature mapping 

 Preserve the intrinsic geometry of the data. 

 Use the geodesic distances on manifold between 

all pairs. 

Three steps algorithm 



Isomap: 

Construct Neighborhood Graph  

 Determine which points are neighbors, based on the 

distances d(i,j) . 

• K nearest neighbors  

• ε-radius  

 

 

 

 Create a graph G, with edges between neighbors 

and distance weights.  



Isomap: 

Compute Shortest Paths 

 Estimate the geodesic distances. 

 Compute all-pairs shortest paths in G. 

 Can be done using Floyd’s algorithm,              . 
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Isomap: 

Construct d-dimensional Embedding 

Classical MDS with dG(i,j),  

minimize the cost function: 
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Isomap: 

Classical Multi-dimensional Scaling 

M: Manifold distance matrix 
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E: Euclidian distance matrix 

Eigen-structure analysis, SVD again 



Isomap: 

Classical Multi-dimensional Scaling (2D) 



Isomap: application 

texture mapping 



Isomap: 

Examples 

 N=2000 images 

64x64 pixels K=6 



Isomap: 

More Results 

Input: 698 

images of 64x64 

K=7, d=2 

Outputs: 



Isomap: 

More Results 

 Same inputs, but this time with d=3 

698 images of 64x64 K=7 



Locally Linear Embedding 

(LLE) 

 Recovers global nonlinear structure from locally 

linear fits. 

 Each data point and it’s neighbors is expected to 

lie on or close to a locally linear patch. 

 Each data point is constructed by it’s neighbors:  
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LLE: 

Getting the Reconstruction Weights 

 We want to minimize 

the error function: 

 

 With the constrains: 

 Solution (using Lagrange multipliers): 
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LLE: 

Find Embedded Coordinates  

 Choose d-dimensional  

 coordinates, Y, to minimize: 

 

 Under:  
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 Solution: compute bottom d+1 eigenvectors of M. 

 (discard the last one) 



LLE: 

Summary 

 Input: N data items 

in D dimension (X). 

 

 Output: d < D 

dimensional 

embedding 

coordinates (Y) for 

the input points.  



LLE: 

Algorithm Pseudocode (I) 

Find neighbors in X space  

For i=1:N 

 compute the distance from Xi to every other point Xj 

 find the K smallest distances  

 assign the corresponding points to be neighbors of Xi 

end 

http://www.cs.toronto.edu/~roweis/lle/algorithm.html 



LLE: 

Algorithm Pseudocode (II) 

Solve for reconstruction weights W.  

for i=1:N 

 create matrix Z consisting of all neighbors of Xi 

subtract Xi from every column of Z 

 compute the local covariance C=Z'*Z 

 solve linear system C*w = 1 for w 

 set Wij=0 if j is not a neighbor of I 

 set the remaining elements in the ith row of W equal to 

w/sum(w); 

end  



LLE: 

Algorithm Pseudocode (III) 

Compute embedding coordinates Y using weights W.  

  

 create sparse matrix M = (I-W)'*(I-W) 

 

 find bottom d+1 eigenvectors of M (corresponding to 
the d+1 smallest eigenvalues)  

 

 set the q-th ROW of Y to be the q+1 smallest 
eigenvector (discard the bottom eigenvector [1,1,1,1...] 
with eigenvalue zero)  



LLE: 

Example 

 N=8588 (RGB) images 

 of lips of size 108x84. 

D=27216 

 Num of neighbors K=16 



Spectral clustering 



Properties of the random walk 



Random walk and clustering 



Eigenvalues/vectors and 

spectral clustering 



Eigenvalues/vectors cont’d 



Eigenvalues/vectors and 

spectral clustering 



Spectral clustering: example 



Reference papers of SC 

 A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: 

Analysis and an algorithm, NIPS, (2001) 

 Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV, 

(1999) 

 J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE 

TPAMI, 22 (2000) 

 

 And more about image segmentations … 

 Graph cut 

 Mean-shift 



Classical methods on  

cluster distance 

Nearest neighbor 



Hierarchical (bottom-up) 

clustering 

 Hierarchical agglomerative clustering: we sequentially merge 

the pair of “closest” points/clusters 

 

 The procedure 

1. Find two closest points (clusters) and merge them 

2. Proceed until we have a single cluster (all the points) 

 Two prerequisites: 

1. distance measure d(xi, xj) between two points 

2. distance measure between clusters (cluster linkage) 



Hierarchical (bottom-up) 

clustering 



Clustering and  

image segmentation 

 

 

 

 

Mean-shift segmentation 



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

alternative approach 
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Mixtures of Gaussians 

 Mixture distribution: 

 Assume P(x) is a mixture of K different Gaussians 

 Assume each data point, x is generated by 2-step process 

 Choose one of the K Gaussians as label 

 Generate x according to the Gaussian  

 

 

 What object function shall we optimize? 

 Maximize data likelihood 
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Mixtures of Gaussians (cont.) 

 Multivariate Gaussian model 

 

 

 How to generate it? 



Multi-variate density estimation 



Mixtures of Gaussians: 

Wishart distribution 

 A mixture of Gaussian Model: 

 

 

 

 Wishart prior 

High dimensional 

parameters 



Mixture density 



Mixture density 



Mixture density:  

posterior sampling 



Mixture density estimation 



Mixture density estimation 



Mixture density estimation: 

credit assignment 



The Expectation-Maximization 

algorithm 



The EM-algorithm 



The EM algorithm 



Regularized EM algorithm 



Selecting the number of 

components 



Mixture density estimation: 

example 



K-means clustering 



K-Means vs. 

Mixture of Gaussians 

 Both are iterative algorithms to assign points 
to clusters 

 

 Objective function 
 K Means: minimize 

 MoG: maximize likelihood  

 

 MoG the more general formulation 
 Equivalent to K Means when         , and σ→0 



Disadvantage of  

K-means and MOG 

 The result is sensitive to the initial data 

 How to determine the number of clusters 



Mean shift 

 First proposed by Fukunaga in 1970’s 

 Wildly used since 1998 

 In computer vision 

 And other areas 

 

 

 
 The following several slides is mainly from: 

 http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf 

 

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf






 

Histogram-based estimates 

 You can use a variety of fitting techniques to 
produce a curve from a histogram 
 Lines, polynomials, splines, etc. 

 Also called regression/function approximation 

 Normalize to make this a density 

 

 If you know quite a bit about the underlying 
density you can compute a good bin size 
 But that’s rarely realistic in vision 

 And defeats the whole purpose of the non-parametric 
approach 

 



 

Nearest-neighbor estimate 

 To estimate the density, count the number of 

nearby data points 

 Like histogramming with sliding bins 

 Avoid bin-placement artifacts 

 

 

 We can fix ε and compute this quantity, 

or we can fix the quantity and compute ε 
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Parzen estimation 

 Each observed data increases our estimate of 
the probability nearby 
 Simplest case: raise the probability uniformly within a 

fixed radius 

 Place a fixed-height “box” at each data point, add them up 
to get the density estimate 

 This is nearest neighbor with fixed ε 

 

 More generally, you can use some slowly 
decreasing function (such as a Gaussian) 
 Called Kernel function 







 

Mean shift algorithm 

 Non-parametric method to compute the 

nearest mode of a distribution 

 Density increases as we get near “center” 







Kernel Density Estimation 

 Multivariate kernel density estimation 

 

 

 Kernels 

 Gaussian 
 

 Epanechnikov 
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Finding Mean-Shift Vector 

 Gradient computation 

 For symmetric kernel 

 

 

 

 

 

 Always converges to the local maximum! 
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The mean shift procedure 

 Give a point x 

1. Compute the mean shift vector 

 

 

 

2. Translate density estimation window: 

 

3. Iterate steps 1. and 2. until convergence 

i.e.,  
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Applications 

 Pattern recognition 
 Clustering 

 Image processing 
 Filtering 

 Segmentation 

 Density estimation 
 Density approximation 

 Particle filter 

 Mid-level application 
 Tracking 

 Background subtraction 



Summary 

 The distance computing plays an important 

role in data analysis to find out 

 the suitable similarity measurement 

 the intrinsic structure of data 

 

 Further reading on metric learning 

 In the next lesson, we will explore more 

complex data with structure  


