
Component Analysis 

Hongxin Zhang 

zhx@cad.zju.edu.cn 

 

State Key Lab of CAD&CG, ZJU 

2014-03-06 



What do you have to know in 

last lesson? 

¸Concepts 

¸ Random variable: x 

¸ (Bayesian) Probability: P(x) 

¸ Condition ~, Joint ~, and Marginal Probability 

¸ Density function f (x), Distribution, Gaussian 

(normal) distribution 

¸ Expectation, Mean, Variance, Moments 

¸ Likelihood, Prior, Posterior   

 



What do you have to know in 

last lesson? 

¸MLE, Bayesian reasoning, Bayes law, MAP 

¸ Conjugate distribution, beta distribution, gamma 

function 

 

¸Regression 

¸ Over fitting 

¸ Regularization  



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

Polynomial Curve Fitting  
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Fourier Transform 

¸ A mathematical operation 
¸ decomposes a signal (data sequence) into its constituent 

frequencies 

 

 

 

 
¸ Related techniques:  Different basis functions 

¸ (discrete) cosine transform, wavelet transform 

 

¸ Image / Video compression:  
¸ JPEG/JPEG 2000, MPEG (1/2/4), H.263/264 



Data compression =  

spectral transforms? 

¸Goal: choosing suitable transforms, so as to 

obtain high ñinformation packingò. 

¸ Raw data => Meaningful features. 

¸ Unsupervised/Automatic methods. 

 

¸ To exploit and remove information 

redundancies via transform.  



Feature extraction 

¸ Data independent 

¸ DFT, DWT, DCT 

¸ A single piece of signal 

 

¸ Spectral analysis 
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Feature extraction 

¸ Data independent 

¸ DFT, DWT, DCT 

¸ A single piece of signal 

 

¸ Data dependent 

¸ PCA, K-PCA, R-PCA, Factor Analysis, LDA, MDS, é 

¸ A set of signals (images, motion data, shapes,é) 

 

¸ Key: define desirable transforms 

¸ Data driven 

¸ Raw data => Feature space 



Example 

Handwritten Digit Recognition 



Digit data 

130 threes, a subset of 638 such threes and part of the 
handwritten digit dataset. Each ñthreeò is a 16 ¦ 16 grayscale 
image, and the variables xj, j = 1, . . . , 256 are the grayscale 
values for each pixel. 
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Digit: 

rank-2 model for threes 

w and X 

are both 

unknown ! 
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Apply to data set 

 

 

 

 

¸ d: data dimension 

¸ p: feature dimension 

¸N: number of data examples 

,

arg m in
T

-

X w

y X w

,

arg m in
T

-

X W

Y X W

( )1 2 N d N³
=Y y y y

( )1 2 N p N³
=W w w w

d

i
EÍy

p

i
EÍw

d p

( )1 2 d p d³
=X x x x



Data driven problem 

¸Given data Y 

¸ find transform x as well as feature w 

 

 

 

¸ Straightforward  solution: 

¸ Fix w, solve X by LSQ; then fix X, solve w LSQ é 

¸ Not good! 
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Solution: 

Singular Value Decomposition 

Let       be the centered          data matrix (assume           ). 

 

 

 

 
is the SVD of      , where  

ü U  is d¦d orthogonal, the left singular vectors. 

ü V  is N¦N orthogonal, the right singular vectors. 

ü S  is d¦N diagonal, with s1 Ó s2 Ó . . . Ó sd Ó 0, the singular values.  

 

V The SVD always exists, and is unique up to signs.  

V The columns of V are the principal components 
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Solution: 

Singular Value Decomposition 

Let       be the centered          data matrix (assume           ). 
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Simple example: 

Singular Value Decomposition 

¸ From wiki 

¸ http://en.wikipedia.org/wiki/Singular_value_decom

position 



Why SVD works? 

Let      be    with all but the first     diagonal 

elements set to zero. Then               solves 
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Why SVD works? (cont.) 

¸ Low-rank matrix approximation 

¸ Find     ,                      s.t. 

¸ Quick proof:  

¸ Equivalent to 

¸ Matrix                                              must be diagonal. 

 

 

 

¸ It follows that                           ,   
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Why it works? (cont.) 

¸Matrix decomposition (the inductive method) 

¸ When p=1 

 

 

 

 

¸ In general: 
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How to compute 

¸Matrix decomposition: 
¸ Mainly used in matlab, clapack: 

 

¸Relation to eigenvalue decomposition: 

 

 

 

¸ The columns of V (right singular vectors) are 
eigenvectors of Z 

 

2
:

T T T T
= = =Z Y Y V S U U S V V S V

2
=Z V S V



Compute eigen~ 

(vectors and values) 

¸Eigen problem 

¸Characteristic polynomial 

 

¸ Iterative method (when matrix is very huge) 

¸ Simplest method: v(n+1) = Z v(n) 

 

¸ Mostly used method: Lanczos method 

¸ http://en.wikipedia.org/wiki/Lanczos_algorithm 
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Principle component analysis 

¸Given data Y 

¸ find transform X as well as feature W 

 

 

 

¸ Given a new data ynew we fix transform X, then: 
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PCA: An Intuitive Approach 
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Let us say we have xi, i=1éN data points in d dimensions (d is large) 

 

If we want to represent the data set by a single point x0, then 

Can we justify this choice mathematically? 

Source: Chapter 3 of [DHS] 
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PCA: An Intuitive Approaché 

w= +x m e

Representing the data set xi, i=1éN by its mean is quite uninformative 

 

So letôs try to represent the data by a straight line of the form: 

This is equation of a straight line that says that it passes through m 

 

e is a unit vector along the straight line 

 

And the signed distance of a point x from m is w 

 

The training points projected on this straight line would be  

, 1 ...
i i
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PCA: An Intuitive Approaché 
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Letôs now determine wiôs  

Partially differentiating with respect to wi we get: 

Plugging in this expression for wi in J1 we get:  
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So minimizing J1 is equivalent to maximizing: 

PCA: An Intuitive Approaché 
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Subject to the constraint that e is a unit vector: 

Use Lagrange multiplier method to form the objective function: 

Differentiate to obtain the equation: 
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PCA: An Intuitive Approaché 
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The preceding analysis can be extended in the following way. 

 

Instead of projecting the data points on to a straight line, we may 

 

now want to project them on a d-dimensional plane of the form: 

d is much smaller than the original dimension p 

In this case one can form the objective function: 

It can also be shown that the vectors e1, e2, é, ep are p eigenvectors 
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PCA: Visually 

Data points are represented in a rotated orthogonal coordinate system: the origin 

is the mean of the data points and the axes are provided by the eigenvectors. 



Computation of PCA 

¸ In practice we compute PCA via SVD (singular value 
decomposition) 

¸ Form the centered data matrix: 

 

 

¸ Compute its SVD: 

 

 

¸ U and V are orthogonal matrices,  

¸ D is a diagonal (singular value) matrix 

[ ]1
( ) ( )

d N N³
= - -X x m x m

, , ,
( )

d d d d N d

T
=X U D V



Computation of PCAé 

¸ Note that the scatter matrix can be written as: 

 

 

 

¸ So the eigenvectors of S are the columns of U and the 

eigenvalues are the diagonal elements of D2 

¸ Take only a few significant eigenvalue-eigenvector 

pairs p<<d; The new reduced dimension 

representation becomes: 
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Computation of PCAé 

¸ Sometimes we are given only a few high dimensional data points, 

i.e.,  d >> N (mostly in image processing)  

¸ In such cases compute the SVD of XT: 

 

 

¸ So that we get: 

 

 

¸ Then, proceed as before, choose only p < N significant 

eigenvalues for data representation: 
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PCA: A Gaussian Viewpoint 
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PCA Examples 

¸ Image compression example 

¸Novelty detection example 

¸ Face recognition 



PCA: example 

Eigenfaces 

¸ G. D. Finlayson, B. Schiele & J. Crowley.  Comprehensive colour 

image normalization. ECCV 98 pp. 475~490. 

 

 

 

 

 

 

 

 

¸ Eigen-X, J 



Far beyond PCA 

¸Human bodies in 3D 

¸Human body representation in image 



PCA and  

dimensional reduction 

¸Space transform via SVD        

¸  YŸW 

¸Dimension:  

¸ d, N >> p 

 

 

¸Representation 

¸Errors é 



Problems of PCA 

¸ Only suitable for normal 

distributed data 

 

¸ More consideration 

¸ ICA: Independent 

components. 

¸ K-PCA: Nonlinear 

¸ é 

1
f

2
f



Kernel PCA 

¸ Assumption behind PCA is that the data points x are 

multivariate Gaussian 

 

¸ Often this assumption does not hold 

 

¸ However, it may still be possible that a transformation f(x) is 

still Gaussian, then we can perform PCA in the space of f(x) 

 

¸ Kernel PCA performs this PCA; however, because of ñkernel 

trick,ò it never computes the mapping f(x) explicitly! 



KPCA: Basic Idea 



Kernel PCA Formulation 

¸ We need the following fact: 

 

¸ Let v be a eigenvector of the scatter matrix:  

 

¸ Then v belongs to the linear space spanned by the data 

points xi  (i=1, 2, éN). 

 

¸ Proof:  
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Kernel PCA Formulationé 

¸ Let C be the scatter matrix of the centered mapping f(x): 

 

 

¸ Let L be an eigenvector of C, then L can be written as a 

linear combination: 

 

 

¸ Also, we have: 

 

¸ Combining, we get:   
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Kernel PCA Formulationé 
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Kernel PCA Formulationé 

K l=w wFrom the eigen equation 

And the fact that the eigenvector  L  is normalized to 1, we obtain: 
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KPCA Algorithm 

Step 1: Compute the Gram matrix: NjikK
jiij

,,1,),,( >== xx

Step 2: Compute (eigenvalue, eigenvector) pairs of K:  ( , ), 1, ,
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l
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Feature Map Centering 

So far we assumed that the feature map f(x) is centered for the data points x1,é xN 

Actually, this centering can be done on the Gram matrix without ever  

explicitly computing the feature map f(x). 
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A similar expression exist for projecting test features on the feature eigenspace 



KPCA: USPS Digit Recognition 

Scholkopf, Smola, Muller, ñNonlinear component analysis as a kernel eigenvalue problem,ò Technical report #44,  

Max Plank Institute, 1996. 

dT
yxk )(),( yx=Kernel function: 

(d) 

Classier: Linear SVM with features as kernel principal components 

N = 3000, p = 16-by-16 image 

Linear PCA 



Robust- 

Principal Component Analysis 

¸ reference 

1. Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Rank-sparsity 

incoherence for matrix decomposition. preprint 2009. 

2. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component 

analysis: Exact recovery of corrupted low-rank matrices via convex optimization. 

In: NIPS 2009. 

3. X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating 

direction methods. preprint, 2009. 

4. Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method 

for exact recovery of a corrupted low-rank matrices. Mathematical Programming, 

submitted, 2009. 

5. E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component 

Analysis? Submitted for publication, 2009. 



research trends 

¸ Appear in the latest 2008-2009 

¸ Theories are guaranteed and still refining; 
numerical algorithms are practical for 
1000¦1000 matrix (12 second) and still 
improving; applications not yet expand 

¸ Research background: comes from 

ŵ matrix completion problem 

Ŷ L1 norm and nuclear norm convex 
optimization 

 



RPCA: outlines 

 

¸Part I: theory 

 

¸Part II: numerical algorithm 

 

¸Part III: applications 



 

 

¸ Part I: theory 



PCA 

¸Given a data matrix M, assume 

  L0 is a Low-rank matrix  

  N0 is a small and i.i.d. Gaussian noise matrix 

¸Classical PCA seeks the best (in an L2 norm 

sense) rank-k estimate of L0 by solving 

 

 

¸ It can be solved by SVD 

2 



PCA example 

¸When noise are small Gaussian, PCA does 

well 



Defect of PCA 

¸When noise are not Gaussian, but appear 

like spike, i.e. data contains outliers, PCA 

fails 



RPCA 

¸ When noise are sparse spikes, another robust 

model (RPCA) should be built  

¸ Assume 

  L0 is a Low-rank matrix  

  S0 is a Sparse spikes noise matrix 

¸ Problem: we know M is composed by a low rank 

and a sparse matrix. Now, we are given M and 

asked to recover its original two components 

  Itôs purely a matrix decomposition problem  
 

 



ill-posed problem  

¸ We only observe M, itôs impossible to know 
which two matrices add up to be it. So without 
further assumptions, it canôt be solved: 

1.                                                  ,  another valid 

sparse-plus-low-rank decomposition might be                          
Thus, the low-rank matrix should be assumed to be not too sparse 

 2.                                               , with v being the first 

column of       . A reasonable sparse-plus-low-rank decomposition 
in this case might be                       and           Thus, the sparse 
matrix should be assumed to not be low-rank 



Assumptions about how L 

and S are generated 

 

1. Low-rank matrix L:  

 

 

2. Sparse matrix S: 

 



Under what conditions can M 

be correctly decomposed ? 

 

1. Let the matrices with rank Ò r(L) and with either the 

same row-space or column-space as L live in a matrix 

space denoted by T(L) 

2. Let the matrices with the same support as S and 

number of nonzero entries Ò those of S live in a matrix 

space denoted by O(S) 

 

¸ Then, if T(L) žO(S)=null, M can be correctly 

decomposed.  



Detailed conditions 

¸Various work in 2009 proposed different 

detailed conditions. They improved on each 

other, being more and more relaxed. 

¸Under each of these conditions, they proved 

that matrix can be precisely or even exactly 

decomposed. 



Conditions involving 

probability distributions 

 

 

 

 

 

¸ for B with rank k smaller than n, exact 

recovery is possible with high probability 

even when m is super-linear in n 



the latest condition developed 
¸ The work of [1] and [2] are parallel, latest [5] 

improved on them and yields the óbestô 

condition 

 



Brief remarks 

¸ in [5], they prove even if: 

 

1. the rank of L grows proportional to 

O(n/log2n)  

2. noise in S are of order O(n2) 

  

 exact decomposition is feasible 

 



Norm and Matrix Norm 

¸ L2 

¸LP, L1, LÐ, L0 

¸Nuclear Norm? 

 

 

¸ http://en.wikipedia.org/wiki/L0_norm#Zero_norm 

¸ http://en.wikipedia.org/wiki/Matrix_norm  

http://en.wikipedia.org/wiki/L0_norm
http://en.wikipedia.org/wiki/Matrix_norm


Norm and Matrix Norm 



 

 

¸ Part II: numerical algorithm 



Convex optimization 

¸ In order to solve the original problem, it is 
reformulated into optimization problem.  

¸ A straightforward propose is  

 

     but itôs not convex and intractable 

¸ Recent advances in understanding of the 
nuclear norm heuristic for low-rank solutions and 
the L1 heuristic for sparse solutions suggest 

     

     which is convex, i.e. exists a unique minima 



numerical algorithm 

¸ During just two years, a series of algorithms have been 
proposed, [4] provides all comparisons, and most 
codes available at 

  http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html 

¸ They include: 

1. Interior point method [1] 

2. iterative thresholding algorithm 

3. Accelerated Proximal Gradient (APG) [2] 

4. A dual approach [4] 

5. (latest & best) Augmented Lagrange Multiplier (ALM) 
[3,4]or Alternating Directions Method (ADM) [3,5] 

 

 

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html


ADM 
¸Problem 

¸ The corresponding Augmented Lagrangian 

function is 

 

¸              is the multiplier of the linear 

constraint. < > is trace inner product for 

matrix <X,Y>=trace(XTY) 

¸ Then, the iterative scheme of ADM is 

 



Two established facts 

¸ To approach the optimization, two well known 
facts is needed 

1. 

2. 

      is the soft thresholding operator 

 

 

 

   USVT is SVD of W  



Optimization solution 

¸Sparse A with L1 norm 

 

 

¸ Low-rank B with nuclear norm. Reformulate 

the objective so that previous fact can be 

used:  

 



Final algorithm of ADM 



 

 

¸Part III: application 



Applications [5] 

(1) background modeling from surveillance 

videos 

ŵ Airport video 

Ŷ Lobby video with varying illumination 

 

(2) removing shadows and specularities from 

face images 

 

 

 



Airport video 

¸ a video of 200 frames (resolution 
176¦144=25344 pixels) has a static 
background, but significant foreground 
variations 

¸ reshape each frame as a column vector 
(25344¦1) and stack them into a matrix M 
(25344¦200) 

¸Objective: recover the low-rank and sparse 
components of M  




