Point Estimation

Zhang Hongxin zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU 2014-02-27

What you need to know

- Point estimation: (点估计)
 - Maximal Likelihood Estimation (MLE)
 - Bayesian learning
 - Maximize A Posterior (MAP)
- Gaussian estimation
- Regression (回归)
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Bias-Variance trade-off

Your first consulting job

- An IT billionaire from Beijing asks you a question:
 - B: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
 - Y: Please flip it a few times ...

- Y: The probability is 3/5
- B: Why???
- Y: Because...

Binomial Distribution

• $P(\text{Heads}) = \theta, P(\text{Tails}) = 1 - \theta$ $D = \{T, H, H, T, T\}$

 $P(D \mid \theta) = (1 - \theta)\theta\theta (1 - \theta)(1 - \theta)$

- Flips are i.i.d. (Independent Identically distributed)
 - Independent events
 - Identically distributed according to Binomial distribution
- Sequence D of α_H Heads and α_T Tails

$$P(D \mid \theta) = \theta^{\alpha_{H}} (1 - \theta)^{\alpha_{T}}$$

Maximum Likelihood Estimation

- **Data**: Observed set D of α_H Heads and α_T Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?

 $D = \{T, H, H, T, T\}$

 MLE: Choose θ that maximizes the probability of observed data:

$$\hat{\theta} = \arg \max_{\theta} P(D \mid \theta)$$
$$= \arg \max_{\theta} \ln P(D \mid \theta) = \dots$$

Maximum Likelihood Estimation (cont.)

$$\hat{\theta} = \arg \max_{\theta} P(D \mid \theta)$$

$$= \arg \max_{\theta} \ln(\theta^{\alpha_{H}} (1-\theta)^{\alpha_{T}})$$

$$= \arg \max_{\theta} (\alpha_{H} \ln \theta + \alpha_{T} \ln(1-\theta))$$
• Set derivative to zero:

$$\frac{d}{d\theta} \ln P(D \mid \theta) = 0$$

$$\hat{\theta} = \frac{\alpha_{H}}{\alpha_{H} + \alpha_{T}} = \frac{2}{2+3}$$

How many flips do I need? $\hat{\theta} = \frac{\alpha_{H}}{\alpha_{H} + \alpha_{T}}$

- B: I flipped 2 heads and 3 tails.
- Y: $1 \theta = 3/5$, I can prove it!
- B: What if I flipped 20 heads and 30 tails?
- Y: Same answer, I can prove it!
- B: What's better?
- Y: Humm... The more the merrier???
- B: Is this why I am paying you the big bucks???

Simple bound (based on Höffding's inequality)

• For
$$N = \alpha_H + \alpha_T$$
 and $\hat{\theta} = \frac{\alpha_T}{\alpha_H + \alpha_T}$

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vc1/vc-l.html

• Let θ^* be the true parameter, for any $\epsilon > 0$:

$$P\left(\left|\hat{\theta} - \theta^*\right| \ge \varepsilon\right) \le 2e^{-2N\varepsilon^2} \le \delta$$

$$N \ge \frac{1}{2\varepsilon^2} [\ln 2 - \ln \delta]$$

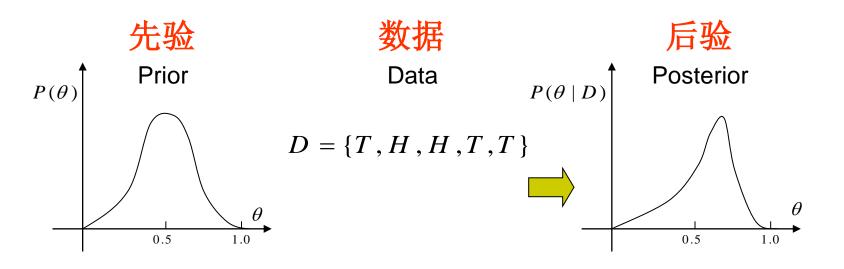
 $N \geq 270$; ($\varepsilon = 0.1, \delta = 0.01$)

PAC Learning

- PAC: Probably Approximate Correct
- B: I want to know the thumbtack parameter θ, within ε = 0.1, with probability at least 1-δ = 0.99. How many flips?
- Y: 270, 😳

Prior: knowledge before experiments

- B: Wait, I know that the thumbtack is "close" to 50-50. What can you ...?
- Y: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

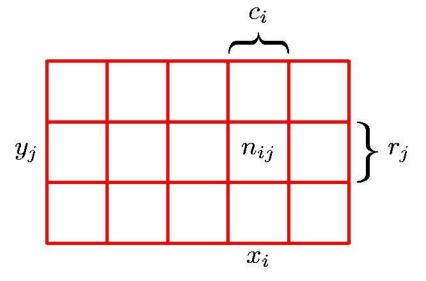


Bayesian Learning

• Bayes rule: Posterior $\rightarrow P(\theta \mid D) = \frac{Prior \quad Likelihood}{P(\theta)P(D \mid \theta)}$ $P(D) \leftarrow Data distribution$ (Normalization constant)

 $P(\theta \mid D) \propto P(\theta) P(D \mid \theta)$

Probability Theory





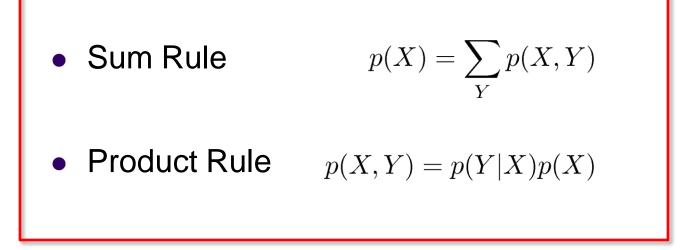
Product Rule

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

Probability concepts

- Random variables: x
- Probability (function): $P(X \leq x)$, P(x)
- Density (function): f(x),
- Independency: P(x, y)=P(x)P(y)
- Feature quantities:
 - Mean, expectation $E(x) = \int x f(x) dx$
 - Covariance
 - cov(*x*,*y*)=0, uncorrelatedness / irrelevant (统计无关)
 - Higher order moments

The Rules of Probability



Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

 $\text{posterior} \propto \text{likelihood} \times \text{prior}$

Bayesian Learning in our case

Likelihood function is simply Binomial:

$$P(D \mid \theta) = \theta^{\alpha_{H}} (1 - \theta)^{\alpha_{T}}$$

- What about prior?
 - Represent expert knowledge
 - Simple posterior form
- Conjugate priors: (共轭先验)
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution

Beta prior distribution – $P(\theta)$

• Prior: Beta distribution $\Gamma(x+1) = x\Gamma(x), \Gamma(1) = 1$

$$P(\theta) = \frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B(\beta_{H},\beta_{T})} \sim Beta(\theta \mid \beta_{H},\beta_{T}) = \frac{\Gamma(\beta)}{\Gamma(\beta_{H})\Gamma(\beta_{T})} \theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}$$

Likelihood: Binomial distribution

$$P(D \mid \theta) = \theta^{\alpha_{H}} (1 - \theta)^{\alpha_{T}}$$

• Posterior:

$$P(\theta \mid D) \propto P(\theta)P(D \mid \theta)$$

$$\propto \theta^{\alpha_{H}} (1-\theta)^{\alpha_{T}} \theta^{\beta_{H}-1} (1-\theta)^{\beta_{T}-1}$$

$$\sim Beta (\alpha_{H} + \beta_{H}, \alpha_{T} + \beta_{T})$$

Using Bayesian posterior

Posterior distribution:

 $P(\theta \mid D) \sim Beta (\alpha_{H} + \beta_{H}, \alpha_{T} + \beta_{T})$

- Bayesian inference:
 - No longer single parameter:

$$E[f(\theta)] \sim \int_0^1 f(\theta) P(\theta \mid D) d\theta$$

Integral, ☺

Expectation

- Random variable: θ
- Random function: $f(\theta)$
- Expectation:

 $E[f(\theta)] \sim \int_0^1 f(\theta) P(\theta \mid D) d\theta$

MAP: Maximum a posteriori approximation

$$P(\theta \mid D) \sim Beta (\alpha_H + \beta_H, \alpha_T + \beta_T)$$

 $E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid D) d\theta$

• MAP: use most likely parameter

$$\hat{\theta} = \arg \max_{\theta} P(\theta \mid D) \qquad E[f(\theta)] \approx f(\hat{\theta}) - \Phi$$

MAP for Beta distribution

 $P(\theta \mid D) \sim Beta (\alpha_{_H} + \beta_{_H}, \alpha_{_T} + \beta_{_T})$

MAP: use most likely parameter

$$\hat{\theta} = \arg \max_{\theta} P(\theta \mid D) = \frac{\alpha_T + \beta_T - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra thumbtack flips
- As $N = \alpha_T + \alpha_H \rightarrow \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

More ...

- B: Can we handle more complex cases?
- Y: Yes, :-D
- Prior: a mixture of beta distribution
 - $P(\theta) \sim 0.4 Beta(20,1) + 0.4 Beta(1,20) + 0.2 Beta(2,2)$

Multinomial distribution

- B: Now if I give you a dice (骰子), then ...
- Y: I can solve this problem in a similar way.
- Likelihood:

$$P(X = x^{k} | \mathbf{\theta}) = \theta_{k}, \ k = 1, 2, ..., r,$$

$$\mathbf{\theta} = \{\theta_{1}, ..., \theta_{r}\}, \ \theta_{1} + ... + \theta_{r} = 1$$

$$D = \{X_{1} = x_{1}, ..., X_{N} = x_{N}\} => \{N_{1}, ..., N_{r}\}$$

$$P(D \mid \boldsymbol{\theta}) = \prod_{i=1}^{r} \theta_{i}^{N_{i}}$$

Multinomial distribution

• Conjugate prior (Dirichlet distribution):

$$P(\boldsymbol{\theta}) = \operatorname{Dir}(\boldsymbol{\theta} \mid \alpha_1, ..., \alpha_r) = \frac{\Gamma(\alpha)}{\prod_{k=1}^r \Gamma(\alpha_k)} \prod_{k=1}^r \theta_k^{\alpha_k - 1}, \quad \alpha = \sum_{k=1}^r \alpha_k$$

• Solution:

$$P(X_{N+1} = x^{k} | D) = \int \theta_{k} \operatorname{Dir}(\boldsymbol{\theta} | \alpha_{1} + N_{1}, \dots, \alpha_{r} + N_{r}) d\boldsymbol{\theta} = \frac{\alpha_{k} + N_{k}}{\alpha + N}$$

• Important fact:

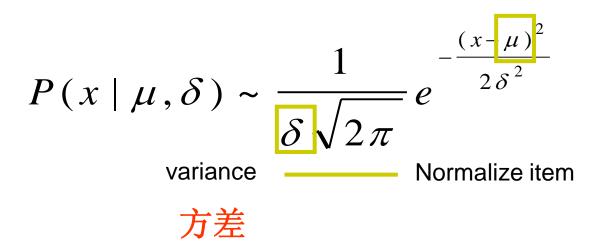
$$P(D) = \frac{\Gamma(\alpha)}{\Gamma(\alpha + N)} \prod_{k=1}^{r} \frac{\Gamma(\alpha_{k} + N_{k})}{\Gamma(\alpha_{k})}$$

Gaussian distribution

目

mean

Continuous random variable:



Consider the difference between continuous and discrete variables?

MLE for Gaussian

• Prob. of i.i.d. samples $D = \{x_1, x_2, \dots, x_N\}$

likelihood
$$P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

• The magic of log (to log-likelihood)

$$\ln P(D \mid \mu, \sigma) = \ln \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-(x_{i}-\mu)^{2}}{2\sigma^{2}}}$$
$$= -N \ln(\sigma\sqrt{2\pi}) - \sum_{i=1}^{N} \frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}$$

MLE for mean of a Gaussian

$$\frac{\partial}{\partial \mu} \ln P(D \mid \mu, \sigma) = \frac{\partial}{\partial \mu} \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$
$$= \frac{\partial}{\partial \mu} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$
$$= \sum_{i=1}^N \frac{(x_i - \mu)}{\sigma^2} = 0$$

$$\mu = \frac{1}{N} \sum_{i} x_{i}$$

MLE for variance of a Gaussian

 $\frac{\partial}{\partial \sigma} \ln P(D \mid \mu, \sigma) = \frac{\partial}{\partial \sigma} \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$ $= \frac{\partial}{\partial \sigma} [-N \ln \sigma \sqrt{2\pi}] - \sum_{i=1}^N \frac{\partial}{\partial \sigma} [\frac{(x_i - \mu)^2}{2\sigma^2}]$ $= -\frac{N}{\sigma} + \sum_{i=1}^N \frac{(x - \mu)^2}{\sigma^3} = 0$

$$\sigma^{2} = \frac{1}{N} \sum_{i} \left(x_{i} - \mu \right)^{2}$$

Gaussian parameters learning

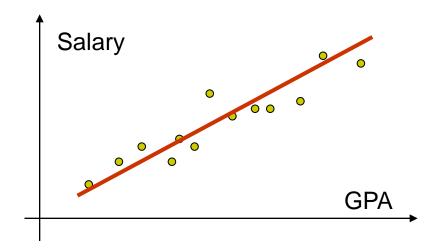
- $\hat{\mu} = \frac{1}{N} \sum_{i} x_{i}$ $\hat{\sigma}^{2} = \frac{1}{N} \sum_{i} (x_{i} \mu)^{2}$
- Bayesian learning: prior?
- Conjugate priors:

MLE

- Mean: Gaussian priors
- Variance: Wishart Distribution

Prediction of continuous variable

- B: Wait, that's not what I meant!
- Y: Chill out, dude.
- B: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- Y: I can regress that...



The regression problem

- Instances: $< \mathbf{x}_i, t_i >$
- Learn: mapping from x to t(x).
- Hypothesis space: $t(\mathbf{x}) \approx \hat{f}(x) = \sum_{i=1}^{n} w_{i}h_{i}$
 - Given, basis functions $H = \{h_1, \dots, h_k\}$
 - Find coefficients $\mathbf{w} = \{w_1, ..., w_k\}$
- Problem formulation:

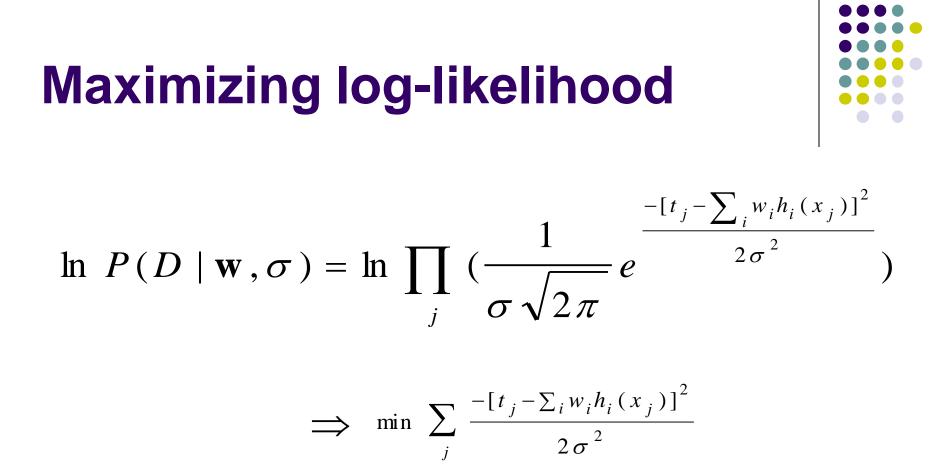
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left[t(\mathbf{x}_j) - \sum_{i=1}^{k} w_i h_i(x) \right]^2$$

But, why sum squared error?

• Model:

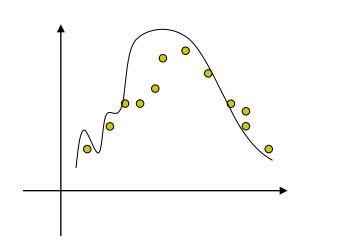
$$P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t - \sum_{i} w_{i} h_{i}(x)]^{2}}{2\sigma^{2}}}$$

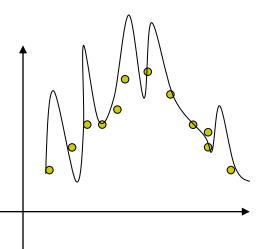
• Learn w using MLE



Bias-Variance Tradeoff

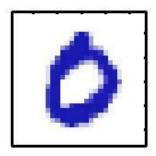
- Choice of hypothesis basis introduce learning bias:
 - More complex basis:
 - Less bias
 - More variance (over-fitting)

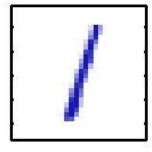


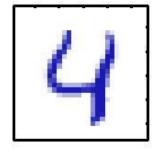


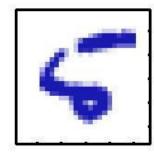
Example

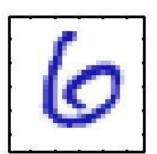
Handwritten Digit Recognition

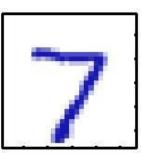


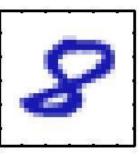


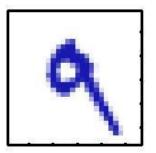




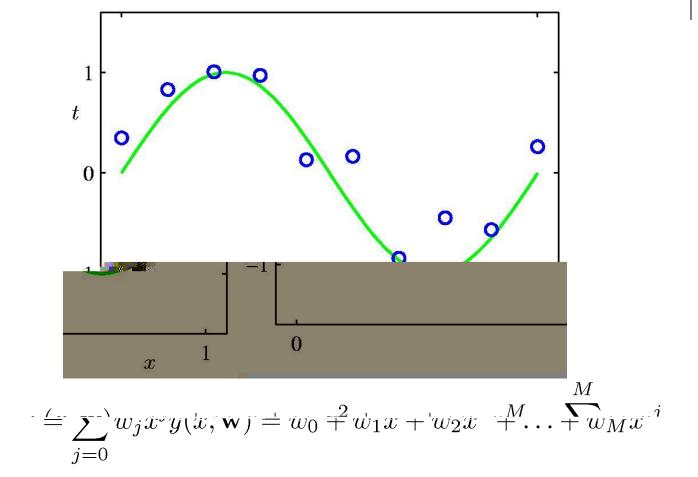




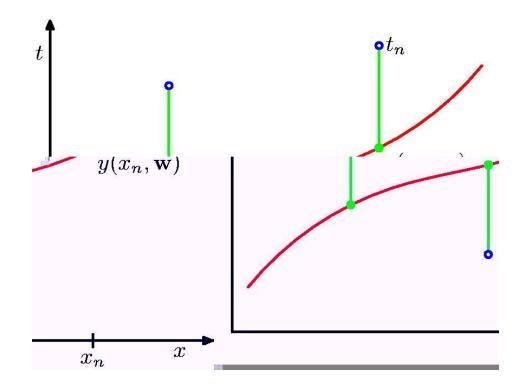


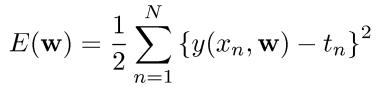


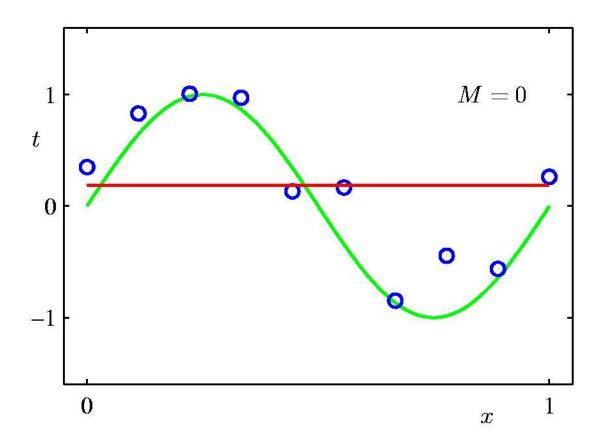
Polynomial Curve Fitting

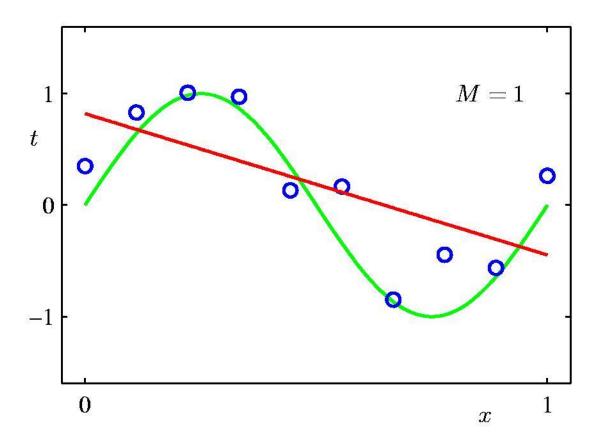


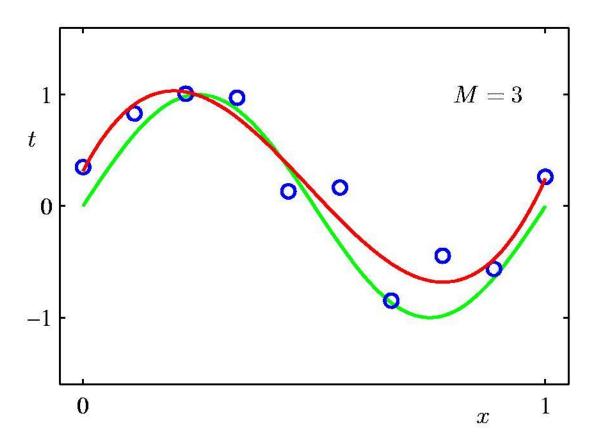
Sum-of-Squares Error Function

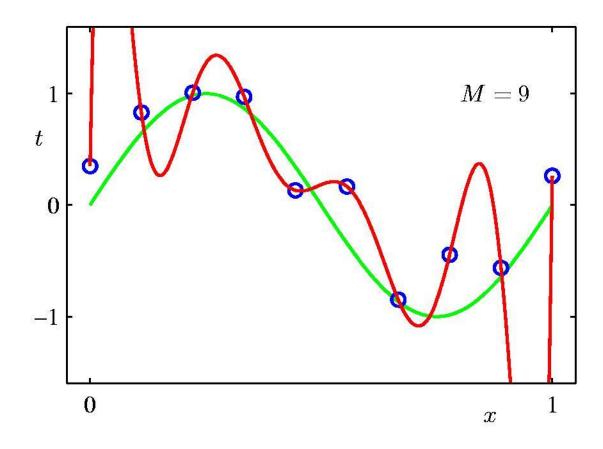




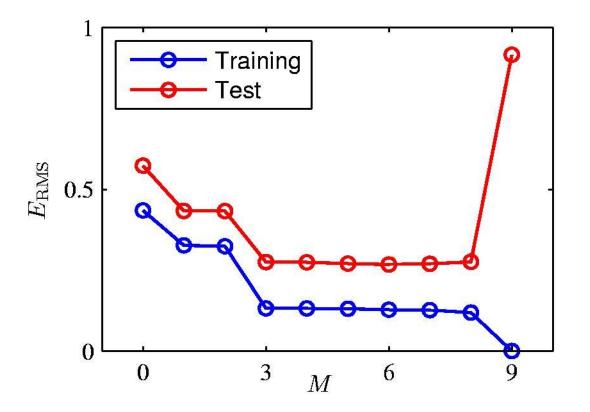








Over-fitting

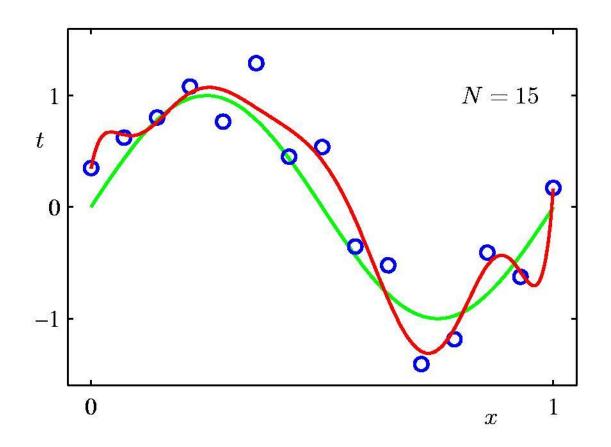


Root-Mean-Square (RMS) Error: $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$

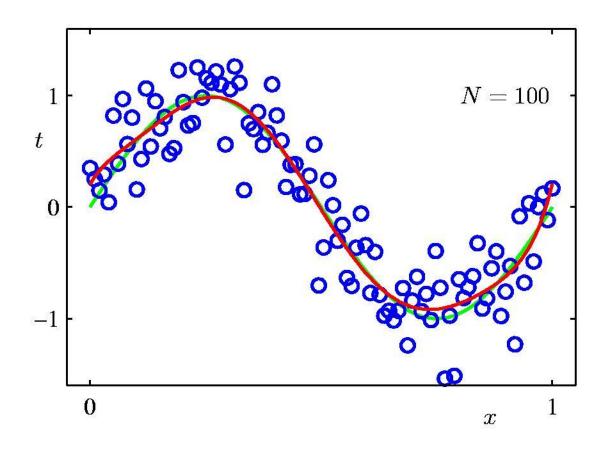
Polynomial Coefficients

	M = 0	M = 1	M=3	M=9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^{\star}				125201.43

Data Set Size: N = 15



Data Set Size: N = 100

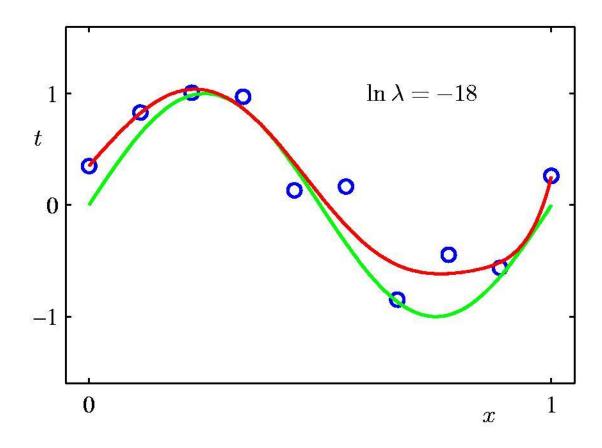


Regularization

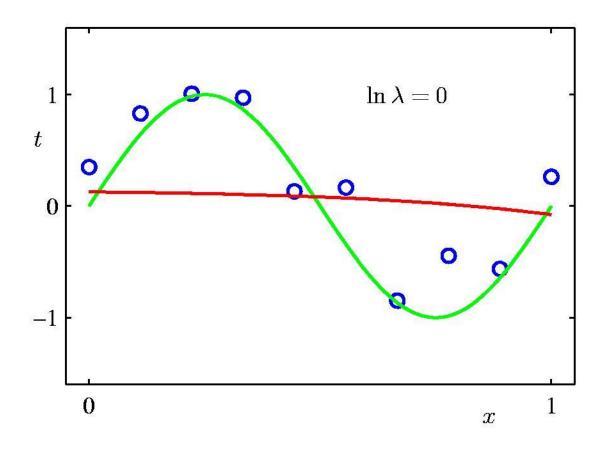
• Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

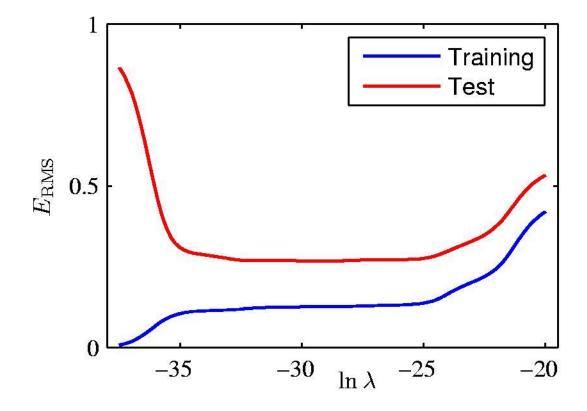
Regularization: $\ln \lambda = -18$



Regularization: $\ln \lambda = 0$



Regularization: $E_{\rm RMS}$ **vs.** $\ln \lambda$



What you need to know

- Point estimation:
 - Maximal Likelihood Estimation
 - Bayesian learning
 - Maximal a Posterior
- Gaussian estimation
- Regression
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians
- Bias-Variance trade-off

Homework

- Python programming
 - 1-D regression
- Finish the "Gaussian parameters learning"
 - Please use google, ^_*

The End

新浪微博: @浙大张宏鑫