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What you need to know 

 Point estimation: (点估计) 

 Maximal Likelihood Estimation (MLE) 

 Bayesian learning 

 Maximize A Posterior (MAP) 

 Gaussian estimation 

 Regression （回归） 

 Basis function = features 

 Optimizing sum squared error 

 Relationship between regression and Gaussians 

 Bias-Variance trade-off 



Your first consulting job 

 An IT billionaire from Beijing asks you a 
question: 
 B: I have thumbtack, if I flip it, what’s the 

probability it will fall with the nail up? 

 Y: Please flip it a few times … 

 

 

 Y: The probability is 3/5 

 B: Why??? 

 Y: Because… 



Binomial Distribution 

 P(Heads) = θ, P(Tails) = 1-θ 

 

 Flips are i.i.d. (Independent Identically distributed) 

 Independent events 

 Identically distributed according to Binomial 

distribution 

 Sequence D of αH Heads and αT Tails 

 

 

THDP


 )1()|( 

)1)(1()1()|(  DP

},,,,{ TTHHTD 



Maximum Likelihood Estimation 

 Data: Observed set D of αH Heads and αT Tails 

 Hypothesis: Binomial distribution 

 Learning θ is an optimization problem 

 What’s the objective function? 

 

 MLE: Choose θ that maximizes the probability of 

observed data: 
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Maximum Likelihood 

Estimation (cont.) 

 

 

 

 

 Set derivative to zero: 

))1ln(ln(maxarg

))1(ln(maxarg

)|(maxargˆ





















TH

TH

DP

0)|(ln 


DP
d

d

32

2ˆ







TH

H








How many flips do I need? 

 

 

 B: I flipped 2 heads and 3 tails. 

 Y: 1- θ = 3/5, I can prove it! 

 B: What if I flipped 20 heads and 30 tails? 

 Y: Same answer, I can prove it! 

 B: What’s better? 

 Y: Humm… The more the merrier??? 

 B: Is this why I am paying you the big bucks??? 
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Simple bound 

(based on Höffding’s inequality) 

 For                          and      

 

 

 Let θ* be the true parameter, for any ε>0: 
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http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vc1/vc-l.html 



PAC Learning 

 PAC: Probably Approximate Correct 

 B: I want to know the thumbtack parameter θ, 

within ε = 0.1, with probability at least 1-δ = 

0.99. How many flips? 

 Y: 270,  

 



Prior:  

knowledge before experiments 

 B: Wait, I know that the thumbtack is “close” to 50-50. What can 

you …? 

 Y: I can learn it the Bayesian way… 

 

 Rather than estimating a single θ, we obtain a distribution over 

possible values of θ 
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Bayesian Learning 

 Bayes rule: 

 

 

 Or equivalently: 
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Prior Likelihood 

Data distribution 

(Normalization constant) 



Probability Theory 

Sum Rule 

 

 

 

Product Rule 
 



Probability concepts 

 Random variables: x 

 Probability (function): P(X ≤x), P(x) 

 Density (function): f(x),  

 Independency: P(x, y)=P(x)P(y) 

 Feature quantities: 

 Mean, expectation E(x) = ∫ x f(x) dx 

 Covariance 

 cov(x,y)=0, uncorrelatedness / irrelevant (统计无关) 

  Higher order moments 



The Rules of Probability 

 

 Sum Rule 

 

 Product Rule 



Bayes’ Theorem 

posterior  likelihood × prior 



Bayesian Learning in our case 

 Likelihood function is simply Binomial: 

 

 

 What about prior? 
 Represent expert knowledge 

 Simple posterior form 

 Conjugate priors: （共轭先验） 
 Closed-form representation of posterior 

 For Binomial, conjugate prior is Beta distribution 
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Beta prior distribution – P(θ) 

 Prior: Beta distribution 

 

 

 Likelihood: Binomial distribution 

 

 Posterior: 
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Using Bayesian posterior 

 Posterior distribution: 

 

 Bayesian inference: 

 No longer single parameter: 

 

 

 Integral,  
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Expectation 

 Random variable: θ 

 Random function: f(θ) 

 Expectation: 
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MAP:  

Maximum a posteriori approximation 

 MAP: use most likely parameter 
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approximation 



MAP for Beta distribution 

 MAP: use most likely parameter 

 

 

 Beta prior equivalent to extra thumbtack flips 

 As                       , prior is “forgotten” 

 But, for small sample size, prior is important! 
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More …  

 B: Can we handle more complex cases? 

 Y: Yes, :-D 

 

 Prior: a mixture of beta distribution 

   ( ) ~ 0.4 (20,1) 0.4 (1, 20) 0.2 (2, 2)P Beta Beta Beta  



Multinomial distribution 

 B: Now if I give you a dice (骰子), then … 

 Y: I can solve this problem in a similar way. 

 Likelihood: 
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Multinomial distribution 

 Conjugate prior (Dirichlet distribution): 

 

 

 Solution: 

 

 

 Important fact: 
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Gaussian distribution 
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Continuous random variable: 

Consider the difference between continuous and discrete variables? 

mean 

variance Normalize item 

方差 

均值 



MLE for Gaussian 

 Prob. of i.i.d. samples },,,{
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 The magic of log (to log-likelihood) 
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likelihood 



MLE for mean of a Gaussian 
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MLE for variance of a Gaussian 
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Gaussian parameters learning 

 MLE 

 

 

 

 Bayesian learning: prior? 

 Conjugate priors: 

 Mean: Gaussian priors 

 Variance: Wishart Distribution 
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Prediction of continuous 

variable  

 B: Wait, that’s not what I meant! 

 Y: Chill out, dude. 

 B: I want to predict a continuous variable for 
continuous inputs: I want to predict salaries from 
GPA. 

 Y: I can regress that… 

GPA 

Salary 



The regression problem 

 Instances:  

 Learn: mapping from     to      . 

 Hypothesis space: 

 Given, basis functions 

 Find coefficients  

 Problem formulation: 
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But, why sum squared error? 

 Model: 

 

 

 Learn w using MLE  

 

2

2

2

])([

2

1
),,|( 









i

ii xhwt

etP wx



Maximizing log-likelihood 
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Bias-Variance Tradeoff 

 Choice of hypothesis basis introduce learning 

bias: 

 More complex basis: 

 Less bias 

 More variance (over-fitting) 



Example 

Handwritten Digit Recognition 



Polynomial Curve Fitting  



Sum-of-Squares Error 

Function 



0th Order Polynomial 



1st Order Polynomial 



3rd Order Polynomial 



9th Order Polynomial 



Over-fitting 

Root-Mean-Square (RMS) Error: 



Polynomial Coefficients    



Data Set Size:  

9th Order Polynomial 



Data Set Size:  

9th Order Polynomial 



Regularization 

 Penalize large coefficient values 



Regularization:  



Regularization:  



Regularization:           vs.  



What you need to know 

 Point estimation: 

 Maximal Likelihood Estimation 

 Bayesian learning 

 Maximal a Posterior 

 Gaussian estimation 

 Regression 

 Basis function = features 

 Optimizing sum squared error 

 Relationship between regression and Gaussians 

 Bias-Variance trade-off 



Homework 

 Python programming 

 1-D regression  

 

 Finish the “Gaussian parameters learning” 

 Please use google, ^_* 



The End 
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