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In the last lesson

e Data driven decomposition:
Data driven curve fitting

Singular value decomposition (the power of
orthogonal basis)

A sort of spectral analysis

e PCA and its related technigues are very
useful



In the last lesson

e Mathematical concepts and techniques
Least squares (LSQ)
Curve fitting
Norm (J&#%) and inner product (P4 F4)
Singular value decomposition
Eigen vectors and eigen-values

Low rank matrix approximation and
decomposition



Today’s Talk

e Pre-processing: Distance / metric learning
1ISO-map
LLE

e What is similarity? How to Clustering

Spectral based

E-M based
MOG and K-means

Mean shift



Clustering °

e Given set of data points, group them, find the
overall structure

e Unsupervised learning

e Learn the similarity. Which patient are similar?
(or customers, faces, earthquakes, ...)
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Distance

e Given n-dimensional vector X, y
e Euclidian (L? distance)

1/2

dist(x,y;2) = (z (X, - y,)zj

e L! distance n
dist(x,y;1) = Z |xi = yi|

i=1

e LP distance (Minkowsky)
dist(x,y; p) = LZ (X; - yi)p}

i=1

1/ p

dist(x,y;o) = max|xi — yi|

PILE R



Distance, Norm and
Inner product

e Distance
[ )
dist(x,y;2) = LZ (x. —y,)

i=1

1/2

1/2

e Norm

N N,

norm(x;2) = ||x||2 = (Zn: xi2

e Inner product

Xy => XV,

i=1

1/2

norm(x —y;2) = dist(x,y;2) dist(x,y;2) = (x-X+y-y—-2x-y)

2 2
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Dimensional aware distances

o Along dimension j:

_ 12
N2

e Normalized data:

R =maxxj—minxj
| |
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Z(x.x)j
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M-distance

e Consider the dependency of different
dimensions

dist(x,y; M) = (X — y)TlVl _1(X -y)

e M Is the covariance matrix of data
e Transform invariance



More complex method for
distance computing

o PCA ...

e Structure aware

Main idea:
Find a suitable mapping
Compute distance in mapped space

Avallable techniques

MDS + global geodesic distance: ISO-MAP

Local distance approximation: LLE




Classical 4

Multi-dimensional Scaling :

o MDS: Z 4Tk
e Main idea:

e Compute (match) distance between samples
e Use SVD to find similarity




Isomap: (Science 2001)
Isometric feature mapping T

e Preserve the intrinsic geometry of the data.

e Use the geodesic distances on manifold between
all pairs.

Three steps algorithm




Isomap: 4

Construct Neighborhood Graph :

e Determine which points are neighbors, based on the
distances d(i,)) .

- K nearest neighbors P

« e-radius

e Create a graph G, with edgég—t)eiweén rieighbdrs
and distance weights.



Isomap:
Compute Shortest Paths 2

e Estimate the geodesic distances.
e Compute all-pairs shortest paths in G.
e Can be done using Floyd’s algorithm, o~ *inn).

d_.(, J)=d(, j) neighborin g 1, ]

d.(, j)=oo othewise

_ Graph Distance

* Manifold Distance

fork =1,2,..., N
d @, ))=min{d_(, j), d_(,k)+d_(k, j)}



Isomap:

Construct d-dimensional Embedding

Classical with dg(1,)),
minimize the cost function:

E =||7(Dy) — 7(D, )

where D, (1, J) z‘yi —Y;
D, O, ))=d,@, J)

and

7(D)=2-5)D (U —-)

L2

Solution: take top d
eigenvectors of the

matrix z(Dg)



Isomap:
Classical Multi-cimensional
X 'x — _L13g3  E: Euclidian distance matrix
E3:__iJhAJ M: Manifold distance matrix
2
L(X) = %J E - M)JH
— |XX/ —BH+

B=QAQ X=Q.A2
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Eigen-structure analysis, SVD again



Isomap:
Classical Multi-dimensional Scaling (2D)
J = eye(n)—ones(n)./n;
B = —05+«J+M=xJ:
% Find largest eigenvalues+their eigenvectors:
Q.L] = eigs(B,2,’LM);
Y% Extract the coordinates:
newy = sqrt(L(1,1)).*Q(:1);
newx = sqrt(L(2,2)).*Q(:,2);




Isomap: application
texture mapping

o

V

(a) (b)

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of
a face. (b) The flattened texture image of the face.




Isomap:
Examples

e N=2000 images
64x64 pixels K=6
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Isomap: eelt

More Results :
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Isomap:

More Results

e Same inputs, but this time with d=3

698 images of 64x64 K=7
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Locally Linear Embedding e
(LLE)

e Recovers global nonlinear structure from locally
linear fits.

e Each data point and it's neighbors is expected to
lie on or close to a locally linear patch.

e Each data point is constructed by it's neighbors:

—_—

>2i :Zwijij
j

W, =0 it X, Is not a neighbor of X.



000
000
LLE: oo
Getting the Reconstruction Weights
e We want to minimize B P
the error function: eW) =D X, = D WX,
i J
e \With the constrains: W. =0 if )Zj is not a neighbor  of X ;

ij
ZWij =1
J

e Solution (using Lagrange multipliers):
W, =>"C (X7, +A)

A _1—chj(xﬁk)/zcﬂj

jk jk



LLE: I

Find Embedded Coordinates oo

e Choose d-dimensional
coordinates, Y, to minimize: gv)=>"

2

\Z o ZWU\?,-
i

Under: "y, =0, 2> vy’ =1

A =S MYV, )

M= —-W) (1 —W)

e Solution: compute bottom d+1 eigenvectors of M.
(discard the last one)



LLE:
Summary

e Input: N data items

In D dimension (X).

e Output:d<D
dimensional
embedding
coordinates (Y) for
the input points.

% (1) select neighbors

fe)
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Reconstruct with

linear weights
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________

©  Map to embedded coordinates



LLE: 43+
Algorithm Pseudocode ()

Find neighbors in X space

For i=1:N
compute the distance from Xi to every other point X]
find the K smallest distances

assign the corresponding points to be neighbors of Xi
end

http://www.cs.toronto.edu/~roweis/lle/algorithm.htmi



LLE: 43+
Algorithm Pseudocode (ll)

Solve for reconstruction weights W.
fori=1:N
create matrix Z consisting of all neighbors of Xi
subtract Xi from every column of Z
compute the local covariance C=2"*Z
solve linear system C*w = 1 for w
set Wij=0 if | is not a neighbor of |
set the remaining elements in the ith row of W equal to
w/sum(w);

end



LLE: os
Algorithm Pseudocode (lI)

Compute embedding coordinates Y using weights W.
create sparse matrix M = (I-W)"*(I1-W)

find bottom d+1 eigenvectors of M (corresponding to
the d+1 smallest eigenvalues)

set the g-th ROW of Y to be the g+1 smallest
eigenvector (discard the bottom eigenvector [1,1,1,1...]
with eigenvalue zero)



LLE: oot
Example

e N=8588 (RGB) images

of lips of size 108x84.
D=27216

e Num of neighbors K=16

I NI III3 33535 35550 WIHDD




Spectral clustering :

e [he spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps
1. a nearest neighbor graph

2. similarity weights on the edges: .

Wij = exp{—3|x; — x|}

where WW,;; = 1 and the weight is
zero for non-edges.

3. transition probability matrix of

Py = Wi/ Y Wi 2
j/




Properties of the random walk |

e |f we start from 17, the distribution of points 7; that we end
up in after ¢ steps is given by

m, i .
W~ Py Py= gl where W= 3T
J

E 2
32N P 1,71 2122 P}Z()Zf}

3 10
23N E E PZ()ZIPZLZZPMQ: [P ]Z'.()'ig? NS i #

A D

by ~ [Pf} 20 it 0 w

where P* = PP ... P (t matrix products) and [-];; denotes
the 7,7 component of the matrix.

01°




Random walk and clustering |

e [hedistributions of points we end up in after ¢ steps converge
as t increases. |f the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities [P’];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues/vectors

§
5
4
3
2 L
1
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£




Eigenvalues/vectors and sel:

spectral clustering :

e Let IV be the matrix with components 1W;; and D a diagonal
matrix such that D;; = Zj Wi;. Then

P=D"'W

e To find out how P! behaves for large t it is useful to examine
the eigen-decomposition of the following symmetric matrix

T

T

1l 1
D 3WD™2 = \z12! + N\ozozi + ...+ N\ 2,2

where the ordering is such that [A{| > [Aa] > ... > |A,.].



Eigenvalues/vectors cont’d :

e The symmetric matrix is related to P! since
(DZWD™2).-- (D 2WD 2)=Dz(P---P)D"2

This allows us to write the t step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

Pt = D2 (D%WD%> D?

1 : : : 1
= D72 ()\flzlz’{ + Ahzozd 4+ ..+ )\I;lzﬂ,,lzz;) D2

where Ay = 1 and



Eigenvalues/vectors and sel:

spectral clustering :

e We are interested in the largest correction to the asymptotic
limit

P'~P*+ D2 (/\;:@zg) D?

Note: [zozd];; = 22:22; and thus the largest correction term

increases the probability of transitions between points that
share the same sign of 29, and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z»

z9j > 0 = cluster 1, otherwise cluster 0



Spectral clustering: example |:
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Reference papers of SC :

e A.Y.Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:
Analysis and an algorithm, NIPS, (2001)

e Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV,
(1999)

e J. Shiand J. Malik, Normalized cuts and image segmentation, IEEE
TPAMI, 22 (2000)

e And more about image segmentations ...
e Graph cut
e Mean-shift




Classical methods on
cluster distance

e A linkage method: we have to be able to measure distances

between clusters of examples (). and
a) Single linkage:

dipy = min  d(x;, %)
icC).,jeC) :

b) Average linkage:

1
dp) = ——— d(x;, X
"= e 2 dx)

icCl.jeC)

c) Centroid linkage:

1
di = d(Xp, %), X = & Z X,

Nearest neighbor



Hierarchical (bottom-up) oo
clustering

e Hierarchical agglomerative clustering: we sequentially merge
the pair of “closest” points/clusters

e The procedure
Find two closest points (clusters) and merge them
Proceed until we have a single cluster (all the points)

e Two prerequisites:
distance measure d(xi, xj) between two points
distance measure between clusters (cluster linkage)



Hierarchical (bottom-up)
clustering

e A dendrogram representation of hierarchical clustering

2.5r

2+

1.5F

1+

D:JEE:LLLE:L I fgix

2430 510 2 5 3271219 114 6 1628 4 161321 7 23112220 & 1526172925

The height of each pair represents the distance between
the merged clusters; the specific linear ordering of points is

chosen for clarity




Clustering and
Image segmentation

—

Mean-shift segmentation
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Regression revisit: seco
» - . o0
Polynomial Curve Fitting :
1 00 ()Y (we ) [y
o/ | [ R
t / | hl(X) | | Wl | | y2
E X B o "I M T YT
0} - | 0 | | | |
m (X Wi n
o \ ) Wy ) LY
e S y =h(x) w
1k
w=(H H)'H y
0 . 1 Normal equation

M
y(x, w) = wq x4+ wox + ... +wyz™ = ijwj

y(x,w)=w, +wh (x)+w,h,(x)+...+w, h, (x)= Z thj(x)

7=0
M

j=0

Basis
function



Regression revisit:
alternative approach e

K

P(X):Z P(Z=z|z)N(X|u,,Z))

z=1

v

*

VAN



Mixtures of Gaussians

e Mixture distribution:
Assume P(x) is a mixture of K different Gaussians
Assume each data point, X is generated by 2-step process

Choose one of the K Gaussians as label :
Generate x according to the Gaussian N (x,.x,)

K

P(X)zz P(Z=z|z)N(X|[u, ,Z))

z=1

e What object function shall we optimize?
Maximize data likelihood



Mixtures of Gaussians (cont.) |

e Multivariate Gaussian model

! exp{ —l(X — )" (x—p) )

p(x|p. 2) = (Qﬂ)p/z‘g‘l/z 9

e How to generate it? B

T o
F, 2(x) = / p(z|p, 0?)dz % 032;% °
o —OQ og

w ~ Uniform(0,1) = x= F;‘iz(’li) ~ plalp. o?) ' 7\

S \
Zp p(.’i’?’_“i = (] (J'2 = 1) 7 — ["31\ . 'Zd]T s ;’f \

T ’ \ -
x = SV %z2 44 / \ )

=4 -3 -z -1 [] 1 z 3 4 =4 -3 -z -1 o 1 2 3 4




Multi-variate density estimation :

e A mixture of Gaussians model

where 0 = {p1,... . Prs 1y [y 21, .- ., 2k} contains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixtures of Gaussians: HE

Wishart distribution ¢

o A mixture of Gaussian Model:

High dimensional
p(x|0) = Z pj p(X|pj, 2 parameters

e Wishart prior

1 n'
Q) _ . —1 ¢
P(X|S,n") x S exp ( B Trace(X 5))
S = ‘prior'" covariance matrix

n' = equivalent sample size



Mixture density :

e Data generation process:

2 ?:. DE D::::‘:
P(y) i
" Shesmlse
_ &) 53
y=1 y=2 T
1 e® Duo
W
i
P(xly=1) P(x]y=2) :

p(x|) = Y P(y=j) -pxly=j) (generic mixture)
i=1.2

= Z pi-p(x|p;,X;)  (mixture of Gaussians)
i=1,2

e Any data point x could have been generated in two ways



Mixture density :

e If we are given just x we don't know which mixture
component this example came from

p(xl0) = > pip(x|p;. ;)
7=1,2

e We can evaluate the posterior probability that an observed
x was generated from the first mixture component

Ply=1) p(xly=1)
Zj:Lg Ply=17) -p(X|y =7)
p1p(x|p1, 1)
D j—12Pi D(X|py, Xj)

Py = 1|x.0)

e [his solves a credit assignment problem



Mixture density:

posterior sampling :

e Consider sampling x from the mixture density, then v from
the posterior over the components given x, and finally x/
from the component density indicated by :

X ~ p(x|6)
y ~ Py[x,0)
x' ~ p(x'y.0)

Is v a fair sample from the prior distribution P(y)?

Is x” a fair sample from the mixture density p(x’|6)?



Mixture density estimation :

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x[0) = p1 p(x|p1. X1) + p2 p(x|p2. o)

e |[f each example x; in the training set were labeled vy, =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.
<

%
et
w

e Labeled examples = no credit assignment problem



Mixture density estimation :

When examples are already 2 ad s
B . }% b o &
assigned to mixture °%¢ "-ﬁ“ 3
”%:% b
components (labeled), we
. . 1 °
can estimate each Gaussian .

independently R

o If n; is the number of examples labeled j, then for each
7 =1.2 we set

pj o= —

J n

) 1

My — E X
n; . ,
Toityi=j

~ 1 A . .
Xj > (ki) (xi = )"
RRETE



Mixture density estimation: sel:

credit assignment :

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior
probabilities of which Gaussian ..
generated which example:

pili) = Ply: = jlxi.0)
where 3., ,p(j[i) =1 for all
1 =1,....n. agee

e When the Gaussians are almost identical (as in the figure),
p(1]i) = p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The Expectation-Maximization
algorithm

E-step: softly assign examples to mixture components

p(jli) — P(y; = j|x;,6), forall j=1,2andi=1,...,n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

n,; < Zﬁ(j\i) = Soft # of examples labeled j

=1
pi o
i T
1 T )
i o— — > plili)x;




The EM-algorithm :

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x1, ..., X,:

n p(x;|0)
log p(data |#) = Z log (EJl p(Xi| g1, 1) + pa p(xi] o, E;j)
i=1

where 6 = {py, po, 11, j12, X1, o } contains all the parameters
of the mixture model.

200
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The EM algorithm :

e The EM-algorithm finds a local maximum of [(6: D)

E-step: evaluate the expected complete log-likelihood

J(6:0) = Z E pijix;.00) 108 (p_?-p(xfluy E?))

i=1
= Z > P(jlxi.61) log (p?p Xl -u?))
=1 7=1,2

M-step: find the new parameters by maximizing the
expected complete log-likelhood

ot AT IAX J(6;01)



Reqgularized EM algorithm :

e To maximize a penalized (regularized) log-likelihood

I'(0:D) =) logp(x|0) + log p(#)
i=1

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find # that maximize a
penalized expected complete log-likelihood:

J0:6) = > E,_piij.e) 102 (Pjp(xz'#-j-zj))
=1

+ log p(p1.p2) + log p(X1) + log p(21)

where, for example, p(p1, p2) could be a Dirichlet and each
p(2;) a Wishart prior.



Selecting the number of
components

e As a simple strategy for selecting the appropriate number
of mixture components, we can find & that minimize the
following asymptotic approximation to the description length:

- 1.
DL ~ — log p(datal|fy) + %log(n)

where n is the number of training points, 0 is the maximum
likelihood parameter estimate for the k-component mixture,
and dj, is the (effective) number of parameters in the k-
mixture.




Mixture density estimation:
example




K-means clustering

Given data <x, ... x>, and K, a}g{sign each x, to one of K clusters,
C,...Ck,minimizing ; _— v Vv°

Where #¢; Is mean over all points in cluster C,

K-Means Algorithm:

Initialize K1 - - - LK randomly

Repeat until convergence:

1. Assign each point x; to the cluster with the closest mean
2. Calculate the new mean for each cluster

s |O|Z”“""

z; €0




K-Means vs. oo
Mixture of Gaussians

e Both are iterative algorithms to assign points
to clusters

e Objective function .
K Means: minimize J=2 2 llwi—ny
MoG: maximize likelihood pxe

N

e MoG the more general formulation
Equivalent to K Means when 3z -s1, and 0—0



Disadvantage of

K-means and MOG °

e The result Is sensitive to the initial data
e How to determine the number of clusters



Mean shift

e First proposed by Fukunaga in 1970’s

e Wildly used since 1998
In computer vision
And other areas

e The following several slides is mainly from:


http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf
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Histogram representation :

Histogram 10 bins
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Histogram-based estimates

e YOu can use a variety of fitting techniques to
produce a curve from a histogram
Lines, polynomials, splines, etc.
Also called regression/function approximation
Normalize to make this a density

e If you know quite a bit about the underlying
density you can compute a good bin size
But that’s rarely realistic in vision

And defeats the whole purpose of the non-parametric
approach



Nearest-neighbor estimate

e To estimate the density, count the number of
nearby data points

Like histogramming with sliding bins
Avoid bin-placement artifacts
#{x, |Hxi — XHS e}

p(x) =
N

We can fix € and compute this quantity,
or we can fix the quantity and compute ¢



Parzen estimation

e Each observed data increases our estimate of
the probability nearby

Simplest case: raise the probability uniformly within a
fixed radius

Place a fixed-height “box” at each data point, add them up
to get the density estimate

This Is nearest neighbor with fixed €

e More generally, you can use some slowly
decreasing function (such as a Gaussian)

Called Kernel function
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Importance of sca

h=05

(<




Mean shift algorithm

e Non-parametric method to compute the
nearest mode of a distribution

Density increases as we get near “center”




Image and histogram

X %
u* 0\ D



Local modes >
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Kernel Density Estimation

e Multivariate kernel density estimation

fo0=—— 3 Lk S,
R S
nhdiz_;'h h

e Kernels

Gaussian 4 1y 2
K, =(27) exp(—;HxH)

Epanechnikov

2

[1/2¢,*(d + 2)@—|jx

« ) if ]| <1

E
0 otherwise



Finding Mean-Shift Vector

e Gradient computation
For symmetric kernel

VT (X) = S K (% Xi\I 1 n —x |
nhd+2 — N L h n (X—X \ |

I W
=l n )]

e Always converges to the local maximum!



The mean shift procedure

e Give a point X
Compute the mean shift vector

n \ —l
. |Z><Kt J |

" 2 ((X—X. h
e e e
L “n )]

Translate density estlmatlon window:

(t+1)

X <« x4V (x(t))

lterate steps 1. and 2. until convergence
.., Vf(x)—>0



Applications

e Pattern recognition
Clustering

e Image processing
Filtering
Segmentation

e Density estimation
Density approximation
Particle filter

e Mid-level application

Tracking
Background subtraction




Summary

e The distance computing plays an important
role in data analysis to find out

the suitable similarity measurement
the intrinsic structure of data

e Further reading on metric learning

e |In the next lesson, we will explore more
complex data with structure



