Mathematics in computer science

Hongxin Zhang zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU 2014-02-27

Syllabus

- This 2 months short course:
 - covers a set of data driven techniques
 - optimization methods
 - from basic and state-of-the-art.

- You will learn fundamental algorithms of multivariate analysis
- And see the stories behind these algorithms, theory and applications.
- It is going to be fun and hard work.

Rough schedule

- 02.27: Introduction & Point estimation
- 03.06: Component Analysis
- 03.13: Distance and similarity
- 03.20: Graphical models
- 03.27: Linear programming
- 04.03: Linear programming
- 04.10: Quadratic programming
- 04.17: Non-linear programming

反思

- It is not a pure machine learning course
 - Although we will discuss a lot on machine learning things
- We will focus on mathematical methods and their underlying motivation
 - Representation and presentation
 - Thinking in mathematical way
 - Happy working with mathematics

Principle

Simple is beauty!

Make a balance between theories and real applications

• 哲學(philosophy)是從希臘字「Φιλοσοφία」(philosophia)轉變而來,意思為「熱愛智慧」,或是比較少用的「智慧的朋友」。

Prerequisites

- Probabilities
- Basic statistics
- Algorithms
- Programming
 - Mostly your choice of language: C/C++, MATLAB, JAVA
- We provide some background, but the class will be fast paced

Text books

- Pattern Classification (2nd Edition)
 - by Duda, Hart and Stork
- Information Theory, Inference, and Learning Algorithms
 - by David MacKay

Text books

http://research.microsoft.com/en-us/um/people/cmbishop/prml/

Text books

- From data mining area
 - Mining of Massive Datasets
 - http://infolab.stanford.edu/~ullman/mmds.html

Internet resources

http://www.cad.zju.edu.cn/home/zhx/csmath

Evaluation

- Homework: 40%
 - Python programming
 - Course notes

- Course paper: 40%
 - Read top-level (10 selected) papers, and report main idea

In class performance: 20%

 Data driven is becoming ubiquitous in science, engineering and beyond

 This class should give you the basic foundation for applying DD and developing new methods

•

1.

2.

3.

4