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Probabilistic Graphical Models 

 Modeling many real-world problems   =>       

a large number of random variables 

 Dependences among variables may be used to 

reduce the size to encode the model (PCA ?), or 

 

 They may be the goal by themselves, that is, the idea 

is to understand the correlations among variables. 



Modeling the domain 

 Discrete random variables 

 Take 5 random binary variables (A, B, C, D, E) 

 i.i.d. data from a multinomial distribution 

A B C D E 

a ~b ~c ~d ~e 

a   b ~c   d ~e 

a ~b   c   d ~e 



Goals 

 (Parameter) Learning: using training data, estimate the joint 

distribution 

 Which are the values p(A, B, C, D, E),? 

 ... and if there were one hundred binary variables?  (Size of 

model certainly greater than number of atoms on Earth!) 

 Inference: Given the distribution p(A, B, C, D, E), 

 Belief updating: compute the probability of an event 

 What is the probability of A=a given E=e ? 

 Maximum a posterior: compute the states of variables that 

maximize their probability.                 

 Which state of A maximizes p(A | E=e) ? Is it a or ~a ? 

 



The unstructured approach 

 To specify the joint distribution, there is an exponential number of values: 

 

 

 

 

 

 

 We can compute the probability of events by: 

 

 

 

 

 

 

 There are exponentially many terms in the summations...  



The naïve Bayesian approach 

 

p(a, b) = p(a) p( b) 

 

 Application: Email spanning 



Bayesian Networks 

 An arbitrary joint distribution p(a, b, c) over 

three variables a, b, and c 

 the product rule of probability: 

p(a, b, c) = p(c | a, b) p( a, b) 

                = p(c | a, b) p(b | a) p(a) 

 

 General case: p(x1,  x2, … , xK)  

 



Not fully connected graph 

 Joint distribution: p(x1,  x2, … , x7)  



General form 

 For a graph with K nodes, the joint distribution is 

given by: 

 

 

 

 where pak denotes the set of parents of xk, and   

x = {x1, . . . , xK} 



Definitions 

 A set of variables associated with nodes of a Directed Acyclic 

Graph (DAG). 

 Markov condition (w.r.t. the DAG): each variable is independent of its 

non-descendants given its parents. 

 For each variable (node), local probability distributions: 

 P(A), P(B|A=a), P(B|A=a), P(C|A=a), P(C|A=~a), P(D|b, c), P(D|~b, c), P(D|~b,c); 

P(D|~b,~c), P(E|c), P(E|~c), 

 All these values are precise. 



Regression revisit: 

Polynomial Curve Fitting  
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Example:  

Polynomial regression 
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Example:  

Polynomial regression 
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Example:  

Polynomial regression 
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the noise variance σ2, and 
the hyperparameter α 

representing the precision of 
the Gaussian prior over w 



Linear-Gaussian models 

 Consider an arbitrary DAG over D variables in which 

node i represents a single continuous random variable xi 

having a Gaussian distribution 

 

 The mean of this distribution is taken to be a linear 

combination of the states of its parent nodes pai of node i 



Linear-Gaussian models 



Linear-Gaussian models 



Linear-Gaussian models 

 Case 1: no links in the graph 
 The joint distribution:   

 2D parameters and represents  

 D independent univariate Gaussian distributions. 

 

 Case 2: fully connected graph 
 D(D-1)/2+D  independent parameters 

 

 Case 3: 

 

 

 



Conditional independence 

 Three random variables: a, b and c 

 a is conditionally independent of b given c iff 

 P( a | b, c) = P( a | c ) 

 This can be re-written in following way 

 P( a, b | c) = P( a | b, c ) P ( b | c) 

                     = P( a | c ) P ( b | c) 

The joint distribution of a and b factorizes into the product of the 

marginal distribution of a and ~b.   

a ╨  b | c 



Simple example (1) 

 Joint distribution: 

 P( a, b, c ) = P( a | c ) P( b | c ) P( c ) 

 

 Condition on c: 

 P( a, b | c ) = P( a , b, c ) /  P( c ) = P( a | c ) P( b | c )  

 =>  a ╨  b | c 

 

a b 

c 



Simple example (2) 

 Joint distribution: 

 P( a, b, c ) = P( a ) P( c | a ) P( b | c ) 

 Factorization: 

 

 

 Condition on c: 

 

a b 

c 
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a ╨  b | c 

Bayesian Theorem 



Simple example (3) 

 Joint distribution: 

 P( a, b, c ) = P( a ) P( b ) P( c | a, b ) 

 Factorization: 

 

 

 Condition on c: 

 

a b 

c 
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P a P b
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a ╨  b | c 



Conditional independence 

 Tail-to-Tail: yes 

 

 

 Head-to-Tail: yes 

 

 

 Head-to-Head: no 

a b 

c 

a b 

c 

a b 

c 



Markov condition 

 We say that node y is a descendant of node x if there is a path from 

x to y in which each step of the path follows the directions of the 

arrows. 

 If each variable is independent of its non-descendants given its 

parents, then: 



D-separation 

 All possible paths from any node in A to any node in B. Any 

such path is said to be blocked if it includes a node such 

that either 

 the arrows on the path meet either head-to-tail or tail-to-tail 

at the node, and the node is in the set C, or 

 the arrows meet head-to-head at the node, and neither the 

node, nor any of its descendants, is in the set C 

 If all paths are blocked, then A is said to be d-separated from 

B by C. 



D-separation 

 In graph (a), the path from a to b is not blocked 

by node f  and e 

 In graph (b), the path from a to b is blocked by 

node f and e 



D-separation 

 A particular directed graph represents a specific 

decomposition of a joint probability distribution into a 

product of conditional probabilities 

 A directed graph is a filter 



Markov blanket 

 Joint distribution p(x1, . . . , xD) represented by a directed 

graph having D nodes 

 conditional distribution 

 

 

 

 The set of nodes comprising the parents, the children 

and the co-parents is called the Markov blanket 



Markov Random Fields 

 Also known as a Markov network or an 

undirected graphical model 

 

 Conditional independence properties: 

 Conditional dependence exists if 
there exists a path that connects 
any node in A to any node in B.  

 

If there are no such paths, then 
the conditional independence 
property must hold. 



Clique 

 A subset of the nodes in a graph such that there exists a link 

between all pairs of nodes in the subset  

 In other words, the set of nodes in a clique is fully connected 

 

 Maximal clique … 

 A four-node undirected graph showing a clique (outlined in green) 

and a maximal clique (outlined in blue) 

 



Potential function 

 xC  : the set of variables in that clique C 

 The joint distribution is written as a product of potential functions ψC(xC) 

over the maximal cliques of the graph 

 

 

 

 

  The quantity Z, called the partition function, is a normalization constant 

 

 

 

 

 Potential functions ψC(xC) are strictly positive. Possible choice 



Image de-noising 

 



Relation to directed graphs 

 Joint distribution: 
 Directed: 

 

 

 Undirected: 



Relation to directed graphs 



Relation to directed graphs 

 this process of ‘marrying the parents’ has become known 
as moralization, and the resulting undirected graph, after 
dropping the arrows, is called the moral graph. 



Inference in Graphical Models 



Inference on a chain 



Inference on a chain 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Inference on a chain 

Passing of local messages around on the graph 



Tree 



Factor graph 

 the joint distribution over a set of variables in 

the form of a product of factors 

 

 

 where xs denotes a subset of the variables 



Factor graph 



Factor graph 

 an undirected graph => a factor graph 

 create variable nodes corresponding to the 

nodes in the original undirected graph 

 create additional factor nodes corresponding to 

the maximal cliques xs 

 Multiple choices of fg.  



Factor graph 

(a) An undirected graph with a single clique potential ψ(x1, x2, x3).  

(b) A factor graph with factor f(x1, x2, x3) = ψ(x1, x2, x3) 

representing the same distribution as the undirected graph.  

(c) A different factor graph representing the same distribution, 

whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3). 



The sum-product algorithm 

 The problem of finding the marginal p(x) for 

particular variable node x 

 



The sum-product algorithm 

 The problem of finding the marginal p(x) for 

particular variable node x 

 



The sum-product algorithm 

 The problem of finding the marginal p(x) for 

particular variable node x 

 



The sum-product algorithm 

 The problem of finding the marginal p(x) for 

particular variable node x 

 



The sum-product algorithm 

 The problem of finding the marginal p(x) for 

particular variable node x 

 



Junction tree algorithm 

 deal with graphs having loops 

 Algorithm: 

 directed graph => undirected graph (moralization) 

 The graph is triangulated 

 join tree 

 Junction tree 

 a two-stage message passing algorithm, 

essentially equivalent to the sum-product 

algorithm 



Graph inference example 

 Computer-Generated Residential Building 

Layouts [SIG ASIA 2010] 

 



Example: Video Textures 

 Problem statement 

video clip video texture 

SIGGRAPH 2000. Schoedl et. al. 



The approach 

How do we find good transitions? 

 



Finding good transitions 

Compute L2 distance Di, j between all frames 

Similar frames make good transitions  

frame i 

frame j 



Demo: Fish Tank 



Mathematic model of  

Video Texture 

A sequence of random variables 

{ADEABEDADBCAD} 

A sequence of random variables 

{BDACBDCACDBCADCBADCA} 

Mathematic Model 

The future is independent of the 

past and given by the present. 

Markov Model 



Markov Property 

 Formal definition 

 Let X={Xn}n=0…N be a sequence of random 

variables taking values  sk N  if and only if 

P(Xm=sm|X0=s0,…,Xm-1=sm-1) = P(Xm=sm| Xm-1=sm-1)  

 

then the X fulfills Markov property 

 

 Informal definition 

 The future is independent of the past given the 

present. 



History of MC 

 Markov chain theory developed around 1900.   

 Hidden Markov Models developed in late 1960’s.  

 Used extensively in speech recognition in 1960-70.  

 Introduced to computer science in 1989.  

 

 
 Bioinformatics. 

 Signal Processing 

 Data analysis and Pattern recognition 

Applications 



Markov Chain 

 A Markov chain is specified by 

 state space             S = { s1, s2..., sn } 

 initial distribution  a0 

 transition matrix     A 

 
 Where A(n)ij= aij = P(qt=sj|qt-1=si) 

 

 Graphical Representation 

 as a directed graph where 
 Vertices represent states  

 Edges represent transitions with positive probability 



 Marginal Probability – sum the joint 

probability 

 

 

 

 Conditional Probability 

Probability Axioms 

( ) ( , )

Y

i i

y A

P x a P x a y



  

( , )
( | )  i f  ( ) 0 .

( )

i j

i j j

j

P x a y b
P x a y b P y b

P y b

 
    





Calculating with Markov chains 

 Probability of an observation sequence:  

 Let X={xt}
L

t=0 be an observation sequence from 

the Markov chain {S, a0, A} 

 

 

 

 

 







Motivation of  

Hidden Markov Models 

 Hidden states  
 The state of the entity we want to model is often not 

observable:  

 The state is then said to be hidden.  

 Observables  
 Sometimes we can instead observe the state of entities 

influenced by the hidden state. 

 A system can be modeled by an HMM if:  
 The sequence of hidden states is Markov  

 The sequence of observations are independent (or Markov) 
given the hidden  



Hidden Markov Model 

 Definition M={S,V,A,B, } 

 Set of states                       S = { s1,  s2, …, sN} 

 Observation symbols        V = { v1, v2, …, vM} 

 Transition probabilities  

 A between any two states    aij = P(qt=sj|qt-1=si) 

 Emission probabilities  

 B within each state     bj(Ot) = P( Ot=vj| qt = sj) 

 Start probabilities              = {a0} 

Use  = (A, B, ) to indicate the parameter set of the model. 

q2 q1 q3 q4 qn 

O1 O2 O3 O4 On 

… 



Generating a sequence by the 

model 

Given a HMM, we can generate a sequence of length n as follows: 

 
1. Start at state q1 according to prob a0t1  

 

2. Emit letter o1 according to prob et1(o1) 

 

3. Go to state q2 according to prob at1t2 

 

4. … until emitting on  1 

2 

N 

… 

1 

2 

N 

… 

1 

2 

N 

… 

… 

… 

… 

1 

2 

N 

… 

o1 o2 o3 on 

2 

1 

N 

2 

0 

b2(o1) 

a02 



Example 



Calculating with Hidden Markov 

Model 

Consider one such fixed state sequence 

  

 

 

The observation sequence O for the Q is 
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 The probability of such a state sequence Q 
 
 

 

 

The probability that O and Q occur simultaneously, 

 is simply the product of the above two terms, i.e., 
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Calculating with Hidden Markov 

Model (cont.) 



Example 

 



The three main questions on 

HMMs 

1. Evaluation 
GIVEN  a HMM M=(S, V, A, B, ), and a sequence O, 

FIND  P[O|M] 

 

2. Decoding 
GIVEN a HMM M=(S, V, A, B, ), and a sequence O, 

FIND             the sequence Q of states that maximizes P(O, Q | ) 

 

3. Learning 
GIVEN a HMM M=(S, V, A, B, ), with unspecified  

                     transition/emission probabilities and a sequence Q, 

FIND             parameters  = (ei(.), aij) that maximize P[x|] 



Evaluation 

 Find the likelihood a sequence is generated by the model 

 

 A straightforward way （穷举法） 

 The probability of O is obtained by summing all possible state 

sequences q giving 
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Complexity is O(NT) 

Calculations is unfeasible 
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The Forward Algorithm 

 A more elaborate algorithm 

 The Forward Algorithm 
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The Forward Algorithm 
The Forward variable  

 

 

We can compute α(i) for all N, i,  

Initialization:  

 α1(i) = a0ib0i(O1)     i = 1…N 

Iteration: 

 

  

Termination: 
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The Backward Algorithm 
The backward variable  
 
 
Similar, we can compute backward variable for all N, i,  
 
Initialization:  
 
  
Iteration: 
 
  
 
Termination: 
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Forward, αk(i)  Backward, βk(i)  



Decoding 

GIVEN a HMM, and a sequence O. 
  Suppose that we know the parameters of the Hidden 

Markov Model and the observed sequence of observations 
O1, O2, ... , OT. 

FIND the sequence Q of states that maximizes 

P(Q|O,) 

  Determining the sequence of States q1, q2, ... , qT, which 

is optimal in some meaningful sense. (i.e. best “explain” 

the observations) 



Decoding 

Consider 

 

To maximize the above probability is equivalent to maximizing 
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A best path finding problem 



Viterbi Algorithm 

[Dynamic programming] 
 
Initialization: 

 δ1(i)  = a0ibi(O1) ,     i = 1…N 

 ψ1(i) = 0. 

Recursion: 

  δt(j)  = maxi [δt-1(i) aij]bj(Ot) t=2…T j=1…N 

  ψ1(j) = argmaxi [δt-1(i) aij]  t=2…T j=1…N 

Termination: 

 P*  = maxi δT(i)  

 qT* = argmaxi [δT(i) ]  

Traceback: 

  qt* = ψ1(q*t+1 )   t=T-1,T-2,…,1. 
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The Viterbi Algorithm 

Similar to “aligning” a set of states to a sequence 

 

Time:  O(K2N) 

Space: O(KN) 

x1   x2   x3 ………………………………………..xN 

State 1 

2 

K 

Vj(i) 



Learning 

 Estimation of Parameters of a Hidden Markov Model 

1. Both the sequence of observations O and the 

sequence of states Q is observed  

 learning  = (A, B, )  

2. Only the sequence of observations O are 

observed  

 learning Q and  = (A, B, ) 

  



Maximal Likelihood Estimation  

 Given O and Q, the Likelihood is given by: 

 

 
TTTT

oiiioiiioiiioii
babababaBAL

133322221111

,,


 



Maximal Likelihood Estimation  

 the log-Likelihood is:  
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In such case these parameters computed by 

Maximum Likelihood Estimation are:  
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Maximal Likelihood Estimation 

= the MLE of bi computed from the 

observations ot where qt = Si. 

 



Maximal Likelihood Estimation 

 Only the sequence of observations O are observed 

 

 

 

 It is difficult to find the Maximum Likelihood Estimates 

directly from the Likelihood function.  

 The Techniques that are used are 

  1. The Segmental K-means Algorith 

  2. The Baum-Welch (E-M) Algorithm 
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The Baum-Welch Algorithm 

 The E-M algorithm was designed originally to handle 

“Missing observations”.  

 

 In this case the missing observations are the states 

{q1, q2, ... , qT}.  

 

 Assuming a model, the states are estimated by 

finding their expected values under this model. (The 

E part of the E-M algorithm).  



The Baum-Welch Algorithm 

 With these values the model is estimated by 

Maximum Likelihood Estimation (The M part 

of the E-M algorithm).  

 

 The process is repeated until the estimated 

model converges. 

 



The Baum-Welch Algorithm 

Initialization: 

 Pick the best-guess for model parameters (or arbitrary) 

 

Iteration: 

 Forward 

 Backward 

 Calculate Akl, Ek(b) 

 Calculate new model parameters akl, ek(b) 

 Calculate new log-likelihood P(x | ) 

  GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION 

Until P(x | ) does not change much 



The Baum-Welch Algorithm 

Let                                     denote the joint distribution of 

Q,O.  Consider the function:  

 

Starting with an initial estimate of                .  

 

A sequence of estimates           are formed  

by finding                  to maximize        

with respect to     . 
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The Baum-Welch Algorithm 

The sequence of estimates   

converge to a local maximum of the likelihood  

                          .  

 )( m
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Speech Recognition 

 On-line documents of Java™ Speech API  

 http://java.sun.com/products/java-media/speech/ 

 On-line documents of Free TTS 

 http://freetts.sourceforge.net/docs/ 

 On-line documents of Sphinx-II 

 http://www.speech.cs.cmu.edu/sphinx/ 

http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/


Brief History of CMU Sphinx 

 Sphinx-I (1987) 
 The first user independent, high performance ASR of the world. 

 Written in C by Kai-Fu Lee (李開復博士，現任Google副總裁). 

 

 Sphinx-II (1992) 
 Written by Xuedong Huang in C. (黃學東博士，現為Microsoft Speech.NET團

隊領導人) 

 5-state HMM / N-gram LM. 

 

 Sphinx-III (1996) 
 Built by Eric Thayer and Mosur Ravishankar. 

 Slower than Sphinx-II but the design is more flexible. 

 

 Sphinx-4 (Originally Sphinx 3j) 
 Refactored from Sphinx 3. 

 Fully implemented in Java. (Not finished yet …) 



Components of CMU Sphinx 



Knowledge Base 

 The data that drives the decoder. 

 Three sets of data 

 Acoustic Model. 

 Language Model. 

 Lexicon (Dictionary). 

 









Acoustic Model 

 /model/hmm/6k 

 Database of statistical model. 

 Each statistical model represents a phoneme. 

 Acoustic Models are trained by analyzing 

large amount of speech data. 



HMM in Acoustic Model 

 HMM represent each unit of speech in the 
Acoustic Model. 

 Typical HMM use 3-5 states to model a 
phoneme. 

 Each state of HMM is represented by a set of 
Gaussian mixture density functions. 

 Sphinx2 default phone set. 

http://www.try.idv.tw/try/talks/phoneset_s2.html


Mixture of Gaussians 

 Represent each state in HMM. 

 Each set of Gaussian Mixtures are called 
“senones”. 

 HMM can share “senones”. 



Mixture of Gaussians 



Language Model 

 Describes what is likely to be spoken in a 

particular context 

 Word transitions are defined in terms of 

transition probabilities 

 Helps to constrain the search space 



N-gram Language Model 

 Probability of word N dependent on word N-1, N-2, ... 

 Bigrams and trigrams most commonly used 

 Used for large vocabulary applications such as dictation 

 Typically trained by very large (millions of words) corpus 



Markov Random field 

 See webpage 

 http://www.nlpr.ia.ac.cn/users/szli/MRF_Book

/MRF_Book.html 



Belief Network (Propagation) 

Y. Weiss and W. T. Freeman  
Correctness of Belief Propagation in Gaussian Graphical Models of 
Arbitrary Topology. in: Advances in Neural Information Processing 
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000. 
MERL-TR99-38.  

http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/

