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In the last lesson 

 Data driven decomposition: 

 Data driven curve fitting 

 Singular value decomposition (the power of 

orthogonal basis) 

 A sort of spectral analysis 

 PCA and its related techniques are very 

useful 



In the last lesson 

 Mathematical concepts and techniques 

 Least squares (LSQ) 

 Curve fitting 

 Norm (范数) and inner product (内积) 

 Singular value decomposition 

 Eigen vectors and eigen-values 

 Low rank matrix approximation and 

decomposition 



 Clustering 

 Given set of data points, group them, find the 
overall structure 

 Unsupervised learning 

 Learn the similarity. Which patient are similar? 
(or customers, faces, earthquakes, …) 



Distance 

 Given n-dimensional vector x, y 

 Euclidian (L2 distance) 

 

 

 L1 distance 

 

 Lp distance (Minkowsky) 
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Distance, Norm and  

inner product 

 Distance 

 

 Norm 

 

 Inner product 
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Dimensional aware distances 

 Along dimension j: 

 

 

 Normalized data: 
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M-distance 

 Consider the dependency of different 

dimensions  

 

 

 M is the covariance matrix of data 

 Transform invariance 
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More complex method for 

distance computing 

 PCA … 

 structure aware 

 Main idea:  

 Find a suitable mapping 

 Compute distance in mapped space 

 

 Available techniques 

 MDS + global geodesic distance: ISO-MAP 

 Local distance approximation: LLE 

 … 



Classical  

Multi-dimensional Scaling 

 MDS: 多维标度法 

 Main idea: 

 Compute (match) distance between samples 

 Use SVD to find similarity 

 



Isomap: (Science 2001)  

Isometric feature mapping 

 Preserve the intrinsic geometry of the data. 

 Use the geodesic distances on manifold between 

all pairs. 

Three steps algorithm 



Isomap: 

Construct Neighborhood Graph  

 Determine which points are neighbors, based on the 

distances d(i,j) . 

• K nearest neighbors  

• ε-radius  

 

 

 

 Create a graph G, with edges between neighbors 

and distance weights.  



Isomap: 

Compute Shortest Paths 

 Estimate the geodesic distances. 

 Compute all-pairs shortest paths in G. 

 Can be done using Floyd’s algorithm,              . 
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Isomap: 

Construct d-dimensional Embedding 

Classical MDS with dG(i,j),  

minimize the cost function: 
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Isomap: 

Classical Multi-dimensional Scaling 

M: Manifold distance matrix 
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E: Euclidian distance matrix 

Eigen-structure analysis, SVD again 



Isomap: 

Classical Multi-dimensional Scaling (2D) 



Isomap: application 

texture mapping 



Isomap: 

Examples 

 N=2000 images 

64x64 pixels K=6 



Isomap: 

More Results 

Input: 698 

images of 64x64 

K=7, d=2 

Outputs: 



Isomap: 

More Results 

 Same inputs, but this time with d=3 

698 images of 64x64 K=7 



Locally Linear Embedding 

(LLE) 

 Recovers global nonlinear structure from locally 

linear fits. 

 Each data point and it’s neighbors is expected to 

lie on or close to a locally linear patch. 

 Each data point is constructed by it’s neighbors:  
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LLE: 

Getting the Reconstruction Weights 

 We want to minimize 

the error function: 

 

 With the constrains: 

 Solution (using Lagrange multipliers): 
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LLE: 

Find Embedded Coordinates  

 Choose d-dimensional  

 coordinates, Y, to minimize: 

 

 Under:  
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 Solution: compute bottom d+1 eigenvectors of M. 

 (discard the last one) 



LLE: 

Summary 

 Input: N data items 

in D dimension (X). 

 

 Output: d < D 

dimensional 

embedding 

coordinates (Y) for 

the input points.  



LLE: 

Algorithm Pseudocode (I) 

Find neighbors in X space  

For i=1:N 

 compute the distance from Xi to every other point Xj 

 find the K smallest distances  

 assign the corresponding points to be neighbors of Xi 

end 

http://www.cs.toronto.edu/~roweis/lle/algorithm.html 



LLE: 

Algorithm Pseudocode (II) 

Solve for reconstruction weights W.  

for i=1:N 

 create matrix Z consisting of all neighbors of Xi 

subtract Xi from every column of Z 

 compute the local covariance C=Z'*Z 

 solve linear system C*w = 1 for w 

 set Wij=0 if j is not a neighbor of I 

 set the remaining elements in the ith row of W equal to 

w/sum(w); 

end  



LLE: 

Algorithm Pseudocode (III) 

Compute embedding coordinates Y using weights W.  

  

 create sparse matrix M = (I-W)'*(I-W) 

 

 find bottom d+1 eigenvectors of M (corresponding to 
the d+1 smallest eigenvalues)  

 

 set the q-th ROW of Y to be the q+1 smallest 
eigenvector (discard the bottom eigenvector [1,1,1,1...] 
with eigenvalue zero)  



LLE: 

Example 

 N=8588 (RGB) images 

 of lips of size 108x84. 

D=27216 

 Num of neighbors K=16 



Spectral clustering 



Properties of the random walk 



Random walk and clustering 



Eigenvalues/vectors and 

spectral clustering 



Eigenvalues/vectors cont’d 



Eigenvalues/vectors and 

spectral clustering 



Spectral clustering: example 



Reference papers of SC 

 A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: 

Analysis and an algorithm, NIPS, (2001) 

 Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV, 

(1999) 

 J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE 

TPAMI, 22 (2000) 

 

 And more about image segmentations … 

 Graph cut 

 Mean-shift 



Classical methods on  

cluster distance 

Nearest neighbor 



Hierarchical (bottom-up) 

clustering 

 Hierarchical agglomerative clustering: we sequentially merge 

the pair of “closest” points/clusters 

 

 The procedure 

1. Find two closest points (clusters) and merge them 

2. Proceed until we have a single cluster (all the points) 

 Two prerequisites: 

1. distance measure d(xi, xj) between two points 

2. distance measure between clusters (cluster linkage) 



Hierarchical (bottom-up) 

clustering 



Clustering and  

image segmentation 

 

 

 

 

Mean-shift segmentation 



Regression revisit: 

Polynomial Curve Fitting  
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Regression revisit: 

alternative approach 
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Mixtures of Gaussians 

 Mixture distribution: 

 Assume P(x) is a mixture of K different Gaussians 

 Assume each data point, x is generated by 2-step process 

 Choose one of the K Gaussians as label 

 Generate x according to the Gaussian  

 

 

 What object function shall we optimize? 

 Maximize data likelihood 
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Mixtures of Gaussians (cont.) 

 Multivariate Gaussian model 

 

 

 How to generate it? 



Multi-variate density estimation 



Mixtures of Gaussians: 

Wishart distribution 

 A mixture of Gaussian Model: 

 

 

 

 Wishart prior 

High dimensional 

parameters 



Mixture density 



Mixture density 



Mixture density:  

posterior sampling 



Mixture density estimation 



Mixture density estimation 



Mixture density estimation: 

credit assignment 



The Expectation-Maximization 

algorithm 



The EM-algorithm 



The EM algorithm 



Regularized EM algorithm 



Selecting the number of 

components 



Mixture density estimation: 

example 



K-means clustering 



K-Means vs. 

Mixture of Gaussians 

 Both are iterative algorithms to assign points 
to clusters 

 

 Objective function 
 K Means: minimize 

 MoG: maximize likelihood  

 

 MoG the more general formulation 
 Equivalent to K Means when         , and σ→0 



Disadvantage of  

K-means and MOG 

 The result is sensitive to the initial data 

 How to determine the number of clusters 



Mean shift 

 First proposed by Fukunaga in 1970’s 

 Wildly used since 1998 

 In computer vision 

 And other areas 

 

 

 
 The following several slides is mainly from: 

 http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf 

 

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf






 

Histogram-based estimates 

 You can use a variety of fitting techniques to 
produce a curve from a histogram 
 Lines, polynomials, splines, etc. 

 Also called regression/function approximation 

 Normalize to make this a density 

 

 If you know quite a bit about the underlying 
density you can compute a good bin size 
 But that’s rarely realistic in vision 

 And defeats the whole purpose of the non-parametric 
approach 

 



 

Nearest-neighbor estimate 

 To estimate the density, count the number of 

nearby data points 

 Like histogramming with sliding bins 

 Avoid bin-placement artifacts 

 

 

 We can fix ε and compute this quantity, 

or we can fix the quantity and compute ε 
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Parzen estimation 

 Each observed data increases our estimate of 
the probability nearby 
 Simplest case: raise the probability uniformly within a 

fixed radius 

 Place a fixed-height “box” at each data point, add them up 
to get the density estimate 

 This is nearest neighbor with fixed ε 

 

 More generally, you can use some slowly 
decreasing function (such as a Gaussian) 
 Called Kernel function 







 

Mean shift algorithm 

 Non-parametric method to compute the 

nearest mode of a distribution 

 Density increases as we get near “center” 







Kernel Density Estimation 

 Multivariate kernel density estimation 

 

 

 Kernels 

 Gaussian 
 

 Epanechnikov 
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Finding Mean-Shift Vector 

 Gradient computation 

 For symmetric kernel 

 

 

 

 

 

 Always converges to the local maximum! 
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The mean shift procedure 

 Give a point x 

1. Compute the mean shift vector 

 

 

 

2. Translate density estimation window: 

 

3. Iterate steps 1. and 2. until convergence 

i.e.,  
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Applications 

 Pattern recognition 
 Clustering 

 Image processing 
 Filtering 

 Segmentation 

 Density estimation 
 Density approximation 

 Particle filter 

 Mid-level application 
 Tracking 

 Background subtraction 



Summary 

 The distance computing plays an important 

role in data analysis to find out 

 the suitable similarity measurement 

 the intrinsic structure of data 

 

 Further reading on metric learning 

 In the next lesson, we will explore more 

complex data with structure  


