
Distance and

similarity

Hongxin Zhang

zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU

2012-03-01

In the last lesson

 Data driven decomposition:

 Data driven curve fitting

 Singular value decomposition (the power of

orthogonal basis)

 A sort of spectral analysis

 PCA and its related techniques are very

useful

In the last lesson

 Mathematical concepts and techniques

 Least squares (LSQ)

 Curve fitting

 Norm (范数) and inner product (内积)

 Singular value decomposition

 Eigen vectors and eigen-values

 Low rank matrix approximation and

decomposition

 Clustering

 Given set of data points, group them, find the
overall structure

 Unsupervised learning

 Learn the similarity. Which patient are similar?
(or customers, faces, earthquakes, …)

Distance

 Given n-dimensional vector x, y

 Euclidian (L2 distance)

 L1 distance

 Lp distance (Minkowsky)

1 / 2

2

1

(, ; 2) ()

n

i i

i

d is t x y



 
  
 
x y

1

(, ;1)

n

i i

i

d is t x y



 x y

1 /

1

(, ;) ()

p
n

p

i i

i

d is t p x y



 
  
 
x y

(, ;) m a x
i i

i

d is t x y  x y 切比雪夫

Distance, Norm and

inner product

 Distance

 Norm

 Inner product

1 / 2

2

1

(, ; 2) ()

n

i i

i

d is t x y



 
  
 
x y

1 / 2

2

2

1

(; 2) :

n

i

i

n o r m x



 
   

 
x x

1

n

i i

i

x y



  x y

(; 2) (, ; 2)n o rm d is t x y x y  

 

1 / 2

1 / 2
2 2

2 2

(, ; 2) 2

2

d is t x y      

   

x x y y x y

x y x y

Dimensional aware distances

 Along dimension j:

 Normalized data:

,

1

1
N

j i j

i

x x
N 

 

, ,
m a x m in

j i j i j
ii

R x x 

1 / 2

2

,

1

1
()

1

N

j i j j

i

S x x
N 

 
  

 


,

,

i j j

i j

j

x x
x

S


 

,

,

i j j

i j

j

x x
x

R


 

M-distance

 Consider the dependency of different

dimensions

 M is the covariance matrix of data

 Transform invariance

1
(, ;) () ()d is t

 
  x y M x y M x y

More complex method for

distance computing

 PCA …

 structure aware

 Main idea:

 Find a suitable mapping

 Compute distance in mapped space

 Available techniques

 MDS + global geodesic distance: ISO-MAP

 Local distance approximation: LLE

 …

Classical

Multi-dimensional Scaling

 MDS: 多维标度法

 Main idea:

 Compute (match) distance between samples

 Use SVD to find similarity

Isomap: (Science 2001)

Isometric feature mapping

 Preserve the intrinsic geometry of the data.

 Use the geodesic distances on manifold between

all pairs.

Three steps algorithm

Isomap:

Construct Neighborhood Graph

 Determine which points are neighbors, based on the

distances d(i,j) .

• K nearest neighbors

• ε-radius

 Create a graph G, with edges between neighbors

and distance weights.

Isomap:

Compute Shortest Paths

 Estimate the geodesic distances.

 Compute all-pairs shortest paths in G.

 Can be done using Floyd’s algorithm, .

)},(),(),,(min{),(

N1,2,...,k

othewise),(

ji, gneighborin),(),(

jkdkidjidjid

for

jid

jidjid

GGGG

G

G









2
(ln)O N N

Isomap:

Construct d-dimensional Embedding

Classical MDS with dG(i,j),

minimize the cost function:

)()()(

),(),(

),(

12.1

2

1

NN

GG

jiY

IDID

and

jidjiD

yyjiDwhere









2
)()(

LYG
DDE  

 Solution: take top d

 eigenvectors of the

 matrix)(
G

D

Isomap:

Classical Multi-dimensional Scaling

M: Manifold distance matrix

1
'

2
 X X J E J

1

2
 B J M J

E: Euclidian distance matrix

Eigen-structure analysis, SVD again

Isomap:

Classical Multi-dimensional Scaling (2D)

Isomap: application

texture mapping

Isomap:

Examples

 N=2000 images

64x64 pixels K=6

Isomap:

More Results

Input: 698

images of 64x64

K=7, d=2

Outputs:

Isomap:

More Results

 Same inputs, but this time with d=3

698 images of 64x64 K=7

Locally Linear Embedding

(LLE)

 Recovers global nonlinear structure from locally

linear fits.

 Each data point and it’s neighbors is expected to

lie on or close to a locally linear patch.

 Each data point is constructed by it’s neighbors:

ijij

j

jiji

XXW

XWX





 ofneighbor anot is if 0

ˆ





LLE:

Getting the Reconstruction Weights

 We want to minimize

the error function:

 With the constrains:

 Solution (using Lagrange multipliers):













jk

jk

jk

kjk

k

kjkj

CXC

XCW

11

1

)(1

)(









2

) (   
i j

j ij i X W X W
 

e

 



j

ij

i X j X ij

W

W

1

 0 of neighbor a not is if
 

LLE:

Find Embedded Coordinates

 Choose d-dimensional

 coordinates, Y, to minimize:

 Under:

2

)( 

i j

jiji
YWYY




IYYY

i

T

i

i
 



N

1
 ,0

Quadratic form:

 where:


ij

ij
)(M)(

ji
YYY




)()(WIWIM
T



 Solution: compute bottom d+1 eigenvectors of M.

 (discard the last one)

LLE:

Summary

 Input: N data items

in D dimension (X).

 Output: d < D

dimensional

embedding

coordinates (Y) for

the input points.

LLE:

Algorithm Pseudocode (I)

Find neighbors in X space

For i=1:N

 compute the distance from Xi to every other point Xj

 find the K smallest distances

 assign the corresponding points to be neighbors of Xi

end

http://www.cs.toronto.edu/~roweis/lle/algorithm.html

LLE:

Algorithm Pseudocode (II)

Solve for reconstruction weights W.

for i=1:N

 create matrix Z consisting of all neighbors of Xi

subtract Xi from every column of Z

 compute the local covariance C=Z'*Z

 solve linear system C*w = 1 for w

 set Wij=0 if j is not a neighbor of I

 set the remaining elements in the ith row of W equal to

w/sum(w);

end

LLE:

Algorithm Pseudocode (III)

Compute embedding coordinates Y using weights W.

 create sparse matrix M = (I-W)'*(I-W)

 find bottom d+1 eigenvectors of M (corresponding to
the d+1 smallest eigenvalues)

 set the q-th ROW of Y to be the q+1 smallest
eigenvector (discard the bottom eigenvector [1,1,1,1...]
with eigenvalue zero)

LLE:

Example

 N=8588 (RGB) images

 of lips of size 108x84.

D=27216

 Num of neighbors K=16

Spectral clustering

Properties of the random walk

Random walk and clustering

Eigenvalues/vectors and

spectral clustering

Eigenvalues/vectors cont’d

Eigenvalues/vectors and

spectral clustering

Spectral clustering: example

Reference papers of SC

 A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:

Analysis and an algorithm, NIPS, (2001)

 Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV,

(1999)

 J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE

TPAMI, 22 (2000)

 And more about image segmentations …

 Graph cut

 Mean-shift

Classical methods on

cluster distance

Nearest neighbor

Hierarchical (bottom-up)

clustering

 Hierarchical agglomerative clustering: we sequentially merge

the pair of “closest” points/clusters

 The procedure

1. Find two closest points (clusters) and merge them

2. Proceed until we have a single cluster (all the points)

 Two prerequisites:

1. distance measure d(xi, xj) between two points

2. distance measure between clusters (cluster linkage)

Hierarchical (bottom-up)

clustering

Clustering and

image segmentation

Mean-shift segmentation

Regression revisit:

Polynomial Curve Fitting

()y x h w

1

2

n

y

y

y

 

 

 

 

 

 

y

0

1

()

()
()

()
M

h x

h x
x

h x

 

 

 
 

 

 

h

0

1

M

w

w

w

 

 

 
 

 

 

w

0 1 1 2 2

0

(,) () () . . . () ()

M

M M j j

j

y x w w h x w h x w h x w h x



      w

1
()

  
w H H H y

Normal equation

Basis

function

Regression revisit:

alternative approach






K

z

zz
NzZPP

1

),|()|()( xx

Mixtures of Gaussians

 Mixture distribution:

 Assume P(x) is a mixture of K different Gaussians

 Assume each data point, x is generated by 2-step process

 Choose one of the K Gaussians as label

 Generate x according to the Gaussian

 What object function shall we optimize?

 Maximize data likelihood

),(
zz

N 






K

z

zz
NzZPP

1

),|()|()( xx

z

Mixtures of Gaussians (cont.)

 Multivariate Gaussian model

 How to generate it?

Multi-variate density estimation

Mixtures of Gaussians:

Wishart distribution

 A mixture of Gaussian Model:

 Wishart prior

High dimensional

parameters

Mixture density

Mixture density

Mixture density:

posterior sampling

Mixture density estimation

Mixture density estimation

Mixture density estimation:

credit assignment

The Expectation-Maximization

algorithm

The EM-algorithm

The EM algorithm

Regularized EM algorithm

Selecting the number of

components

Mixture density estimation:

example

K-means clustering

K-Means vs.

Mixture of Gaussians

 Both are iterative algorithms to assign points
to clusters

 Objective function
 K Means: minimize

 MoG: maximize likelihood

 MoG the more general formulation
 Equivalent to K Means when , and σ→0

Disadvantage of

K-means and MOG

 The result is sensitive to the initial data

 How to determine the number of clusters

Mean shift

 First proposed by Fukunaga in 1970’s

 Wildly used since 1998

 In computer vision

 And other areas

 The following several slides is mainly from:

 http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf

http://www.cs.cornell.edu/courses/cs664/2005fa/Lectures/lecture3.pdf

Histogram-based estimates

 You can use a variety of fitting techniques to
produce a curve from a histogram
 Lines, polynomials, splines, etc.

 Also called regression/function approximation

 Normalize to make this a density

 If you know quite a bit about the underlying
density you can compute a good bin size
 But that’s rarely realistic in vision

 And defeats the whole purpose of the non-parametric
approach

Nearest-neighbor estimate

 To estimate the density, count the number of

nearby data points

 Like histogramming with sliding bins

 Avoid bin-placement artifacts

 We can fix ε and compute this quantity,

or we can fix the quantity and compute ε

{ | }
()

i i
x x x

p x
N

e 


Parzen estimation

 Each observed data increases our estimate of
the probability nearby
 Simplest case: raise the probability uniformly within a

fixed radius

 Place a fixed-height “box” at each data point, add them up
to get the density estimate

 This is nearest neighbor with fixed ε

 More generally, you can use some slowly
decreasing function (such as a Gaussian)
 Called Kernel function

Mean shift algorithm

 Non-parametric method to compute the

nearest mode of a distribution

 Density increases as we get near “center”

Kernel Density Estimation

 Multivariate kernel density estimation

 Kernels

 Gaussian

 Epanechnikov







n

i

i

d
h

xx
K

hnh
xf

1

)(
11

)(

)
2

1
exp()2(

22/
x

d

N
K 






 




otherwise0

1 if)1)(2(2/1
21

xxdc
K

d

E

Finding Mean-Shift Vector

 Gradient computation

 For symmetric kernel

 Always converges to the local maximum!

1

2

1

1

2
ˆ ()

n

i

i Nn

ii

N nd

i i

N

i

K
h

f K
nh h

K
h









   

  
   

    
    

  
  







x x
x

x x
x x

x x

The mean shift procedure

 Give a point x

1. Compute the mean shift vector

2. Translate density estimation window:

3. Iterate steps 1. and 2. until convergence

i.e.,

1

2

1

1

2
ˆ ()

n

i

i Nn

ii

N nd

i i

N

i

K
h

f K
nh h

K
h









   

  
   

    
    

  
  







x x
x

x x
x x

x x

(1) () ()ˆ ()
t t t

f

 x x x

ˆ () 0f x

Applications

 Pattern recognition
 Clustering

 Image processing
 Filtering

 Segmentation

 Density estimation
 Density approximation

 Particle filter

 Mid-level application
 Tracking

 Background subtraction

Summary

 The distance computing plays an important

role in data analysis to find out

 the suitable similarity measurement

 the intrinsic structure of data

 Further reading on metric learning

 In the next lesson, we will explore more

complex data with structure

