Probabilistic
Graphical Models

Hongxin Zhang
zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU
2011-03-17




Probabilistic Graphical Models

e Modeling many real-world problems =>
a large number of random variables

Dependences among variables may be used to
reduce the size to encode the model (PCA ?), or

They may be the goal by themselves, that is, the idea
IS to understand the correlations among variables.



Modeling the domain :

e Discrete random variables
e Take 5 random binary variables (A, B, C, D, E)
e I.1.d. data from a multinomial distribution




Goals <

e (Parameter) Learning: using training data, estimate the joint
distribution

e Which are the values p(A, B, C, D, E),?

e ... and if there were one hundred binary variables? (Size of
model certainly greater than number of atoms on Earth!)

e [nference: Given the distribution p(A, B, C, D, E),
e Belief updating: compute the probability of an event
e What is the probability of A=a given E=e ?

e Maximum a posterior: compute the states of variables that
maximize their probability.

e Which state of A maximizes p(A|E=e) ? Isitaor~a?



The unstructured approach :

e To specify the joint distribution, there is an exponential number of values:

p(a,b,c.d,e), p(a, b, c,d,—e),p(a, b,c,—d, e),
p(a, b, c,—d,—e),p(a, b,—c,d,e), p(a, b,—c,d, —e),
p(a, b, —c,—d.e), p(a, b, ~c,—d,—e),...

e We can compute the probability of events by:

p(a) = Z p(a.B,C,D,E)
B,C.D,E
p(a.d,~e)  Ygcp(aB.C.d—e)

p(d,=e) ~ Y ap.cP(A B, C.d e
e There are exponentially many terms in the summations...

plald,—e) =



Bayesian Networks 2
e An arbitrary joint distribution p(a, b, c) over
three variables a, b, and ¢ 0
o the product rule of probability: b

p(a, b, c) =p(c|a, b)p(a, b)
=p(c|a, b)p]|a)p(a)

e General case: p(Xy, Xy, ..., Xg)

p(ri.....2x) =plek|ry, ... ,2x—1) ... pxa|z1)p(x])
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An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variables a, b, and c, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namely a, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.


Not fully connected graph :

e Joint distribution: p(X;, X,, ..., X7)

plx)p(xe)p(xs)p(axy|xy, xo, x3)p(xs|xy, 23)p(xe|cs)p(r7|24, X5)
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So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applicable
to any choice of distribution. As we shall see shortly, it is the absence of links
in the graph that conveys interesting information about the properties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2. This
is not a fully connected graph because, for instance, there is no link from x1 to x2 or
from x3 to x7


General form

e For a graph with K nodes, the joint distribution is
given by:

K
p(x) = | | p(akpay,)
k=1

e where pa, denotes the set of parents of x,, and
X={Xy, ..., X¢}



Definitions

e A set of variables associated with nodes of a Directed Acyclic
Graph (DAG).

Markov condition (w.r.t. the DAG): each variable is independent of its
non-descendants given its parents.
For each variable (node), local probability distributions:

P(A), P(B|A=a), P(B|A=a), P(C|A=a), P(C|A=~a), P(D|b, c), P(D|~b, c), P(D|~b,c);
P(D|~b,~c), P(E|c), P(E|~c),

All these values are precise.



Regression revisit:

Polynomial Curve Fitting
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t(x,w) = wy +wh (X) +w,h, (X) +. 4wy hy (x):iwjhj (X)
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Example:

Polynomial regression :

0 1

t(x,w) =wy +wyhy (X) + W, h, (X) +. 4wy hy (X) = iwjhj (X)

j=0
= p Hp (T W



Example:

Polynomial regression :
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t(x,w) = wy +wh (X) +w,h, (X) +. 4wy hy (x):iwjhj (X)
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Example:

Polynomial regression :
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t(x,w) =wy +wyhy (X) + W, h, (X) +. 4wy hy (X) = ijhj (X)
j=0
N the noise variance 02, and

p(t.w|Xx,a,0?) = p(w|a) Hp(fn_ W, I, 02) thehyperparameter a
representing the precision of

n=1 the Gaussian prior over w



Linear-Gaussian models

e Consider an arbitrary DAG over D variables in which
node I represents a single continuous random variable x;
having a Gaussian distribution

e The mean of this distribution is taken to be a linear
combination of the states of its parent nodes pa; of node

p(zilpa;) =N (‘rf

j':_—p&z'

E Wiy + 1’.'1'3' . E‘;)
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Here we show how a multivariate Gaussian can be expressed as a
directed graph corresponding to a linear-Gaussian model over the component variables.
This allows us to impose interesting structure on the distribution, with the
general Gaussian and the diagonal covariance Gaussian representing opposite extremes.
Several widely used techniques are examples of linear-Gaussian models,
such as probabilistic principal component analysis, factor analysis, and linear dynamical
systems (Roweis and Ghahramani, 1999).


Linear-Gaussian models

p(;'ff i |pa_i) — ,.-'I\."r €I Z wj j I j —|— bi .Uy
JEpa;

D
np(x) = Z In p(z;|pa;)
i=1

2
(Jf!«,; — E WiiTj — bl) + const

JEpa;

D
i=1

1
2'1,-‘1'
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Linear-Gaussian models


Linear-Gaussian models s

plailpag) = N | @i | Y wigay + bi,v;

JjEpa;

T = Z W;jTj + b; + \/17*351 E[;‘I:i] — Z "U-’ijE[Ij] + b,

Jjepa; JjEpa;

c:oa-'[;r:.i. ;r_'-j] = E [(Ii — E[I’i])(iﬁj - E[i’j])]

p— '\ —

— E [(z: —E[z]) Y wir(er — Elz]) + u5¢5

kepa;

s

— Z WjECOV [z, k] + Lijv;

kepa;
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Linear-Gaussian models


Linear-Gaussian models s
Z Wij T +5i-1'5)

JjEpa;

e Case l:nolinksinthe graph  p(u(pa,) =N (1
e The joint distribution:

2D parameters and represents
D independent univariate Gaussian distributions.

e Case 2: fully connected graph
e D(D-1)/2+D independent parameters

e Case 3: Orl .Oh O

T
= (b1, bo + wa1by, by + w3sbs + waswa1by)

5] Wa11q W3aWa1 V1
i ] ER 3 i \2 79 ¢ 1 9 # 12 R
2 = Waq Uy Vg + w3 Vy waa(vg + w3 v1)
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Conditional independence :

e Three random variables: a, b and c
e ais conditionally independent of b given c iff
e P(a|b,c)=P(alc) ail- b|C

e This can be re-written in following way

e P(a,blc)=P(alb,c)P(b]c)
=P(alc)P(bfc)

The joint distribution of a and b factorizes into the product of the

marginal distribution of a and ~b.



Simple example (1) OP\O i
a b

e Joint distribution:
e P(a,b,c)=P(alc)P(b|c)P(c)

e Condition on c:
e P(a,b|c)=P(a,b,c)/ P(c)=P(alc)P(b]|c)
o => ad bjc
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Simple example (2) :
a b

e Joint distribution:
o P(a,b,c)=P(a)P(cla)P(bjc) |ad b]c
e Factorization:
P(a,b)=> P(a,b,c)=P(a)) P(cla)P(b|c)

=P(a)P(b|a)

e Condition on c:

P(a,b,c) [P(a)P(c|a)
PC) | Pl

=P(alc)P(b|c)

P(a,b|c) = P(b|c)

—> Bayesian Theorem



Simple example (3)

a b
e Joint distribution:

o P(a, b,c):P(a)P(b)P(C|a’b)W

e Factorization:
P(a,b) =Y P(a,b,c) =P(a)P(b)> P(c|a,b)
= P(a)P(b)
e Condition on c:
P(a,b,c) _ P(a)P(b)P(c|a,b)

P(c) P(c)
= P(a|c)P(b|c)

P(a,b|c) =




Conditional independence

C
e Tall-to-Tall: yes

e Head-to-Tall: yes

¢ Head-to-Head: no




Markov condition

e We say that node y is a descendant of node x if there is a path from

X to y in which each step of the path follows the directions of the
arrows.

e If each variable is independent of its non-descendants given its
parents, then:

B1L(C.E)A.
D_LL(A, E)|(B,C),
F1L(A, B.D)|C.



D-separation

e All possible paths from any node in A to any node in B. Any
such path is said to be blocked if it includes a node such
that either

the arrows on the path meet either head-to-tail or tail-to-tail
at the node, and the node is in the set C, or

the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in the set C

e If all paths are blocked, then A is said to be d-separated from
B by C.



D-separation

n graph (a), t
oy node f anc
n graph (b), t
node fand e

® allb]|f

ne path from a to b is not blocked
e

ne path from a to b is blocked by
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In graph (a), the path
from a to b is not blocked by node f because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by node e because, although the latter is a
head-to-head node, it has a descendant c because is in the conditioning set.


D-separation :

e A particular directed graph represents a specific

decomposition of a joint probability distribution into a
product of conditional probabilities

e A directed graph is a filter




Markov blanket .

e Joint distribution p(x1, . .., Xp) represented by a directed

graph having D nodes

p(Xilxgjz1) = |
L

e The set of nodes comprising the parents, the children

and the co-parents is called the Markov blanket
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We now observe that any factor p(xk|pak) that does not have any functional dependence
on xi can be taken outside the integral over xi, and will therefore cancel between
numerator and denominator. The only factors that remain will be the conditional
distribution p(xi|pai) for node xi itself, together with the conditional distributions
for any nodes xk such that node xi is in the conditioning set of p(xk|pak), in other
words for which xi is a parent of xk. The conditional p(xi|pai) will depend on the
parents of node xi, whereas the conditionals p(xk|pak) will depend on the children


Markov Random Fields °

e Also known as a Markov network or an
undirected graphical model

e Conditional independence properties:

Conditional dependence exists |f
there exists a path that connects
any node in A to any node in B.

If there are no such paths, then
the conditional independence
property must hold. Nt

- -y
- - -




Clique

e A subset of the nodes in a graph such that there exists a link
between all pairs of nhodes in the subset

In other words, the set of nodes in a clique is fully connected

Maximal clique ...

A four-node undirected graph showing a clique (outlined in green)

and a maximal clique (outlined in blue)



Potential function

e X :the set of variables in that clique C

e The joint distribution is written as a product of potential functions @.(X)

over the maximal cliques of the graph

1
p(x) = - H't.ff’c(xc)
=

e The quantity Z, called the partition function, is a normalization constant

7 =S [ vetxe
x C

e Potential functions y-(x) are strictly positive. Possible choice

Vo(xo) =exp{—E(xc)}



Image de-noising
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Relation to directed graphs :
1 T2 TN_1 TN
(@) O O _ O O
I o TN N1
e Joint distribution:
e Directed:
p(x) = p(z1)p(x2|z1)p(as|as) - - - plen|rN-1)
e Undirected:
i |
p(x) = S o(21, 29) o 3(20, 23) - YN _1 N(TN_1,ZN)

Z



Relation to directed graphs :

o o I N_1 N
T I9 N N1
> O—C0O0— - (O——0
Uro(r1,22) = plar)p(ralr)
VYo3(72,73) = plas|aa)

Un_iN(ZN_1.2N) = plen|TN_1)



Relation to directed graphs

I s Iy I3

I9

Irq

(@)

p(x) = p(x1)p(xe)p(xs)p(24|21, 29, 73)

e this process of ‘marrying the parents’ has become known
as moralization, and the resulting undirected graph, after
dropping the arrows, is called the moral graph.



Inference in Graphical Models

(a) (b) (c)

plx,y) = p(x)p(y|x)

prly) =

p(y|z)p(x)

p(y)



Inference on a chain e

1 T2 TN_1 TN
T 1 3_','2 T N .r N-—=1
(b) ( ) ( ) _ ( ) ( )
1 f ' f
P(x) = — U121, 22)¥23(22,23) - - UN-1,N (TN-1. W)

plan) =2 2 2 2 b

ILp—1 Tt



Inference on a chain e

1 T2 TN_1 TN
(a) % T M
T 1 3_','2 T N .r N-—=1
(b) ( ) ( ) _ ( ) ( )
1
plan) = VA
[Z Un—1,n(Tn_1,2n) [Z V23(72,73) [Z U1,2(21, :rg)” . -‘
[xn_l Iz I J
Ha(2n)
[Z Yn 1 (Tny Tpg1) - [Z Un_1,N(ZN_1, il‘N)] - -‘ : (8.52)
[$n+l N J

g

#ﬁ(xn)



Inference on a chain e

Passing of local messages around on the graph

1
p(ﬂ-n\‘ — ?
{Z Un—1n(Tp_1,2n) - {Z V9 3(x2, 23) [Z Un,2(xy, :I?QJ]] . }
fta(Tn)
[Z '?.—"Il’n_._n—l—l (;Tna il‘-n-l-l) Tt [Z 'I;'f?;\,r_lglr\,r(;l?;\,r_l. .I‘N)] . -‘ . (852)
I"Ln+1 Iy J
s (I'ﬂ)

1
p(rﬂ) — ?;u'f:r (Tp )ru',-'ﬂ (In)



Inference on a chain e

Passing of local messages around on the graph

,-ua:(ir-n—lj ,-uaf(irn) .-u;':?(?rn) ﬁilﬁ(In—Fl)
Iy In-1 I'n Inil LN
fo(Tn) = Z Un—1n(Tn_1,7n) Z
Ty—1 _3371—2 ]
1 ,.
p(x,) = E,uﬂ(:rn)y.g(mn) = Z Un—1,n(Tn—1,Tn)fa(Tn_1).
Tn—1

pa(e2) = 3 v ala, 22
|



Inference on a chain e

Passing of local messages around on the graph

ﬁﬁ(mﬂ) — ZE:'ﬁh%dﬂitrn+lfIn) ZE: T

Tn41 Tn42

p(i"n) — E;u'a (ir'n )ru.i ('In) = Z 'II;'"I--‘n_|_1__ﬂ (LI‘-H_H, :1?n),u.5 (il‘-n_|_1) .

Tn41



Inference on a chain e

Passing of local messages around on the graph

#af(irn—lj Ha(Tn) ;u;'_"f(?r?l) ﬁ£|8(17n+1)

1

E,U-a (T'n—l J?ﬁjn—l:n (T'n—l s L ),U-,-'B (#Tn)

p(Tn—1,2n) =



Tree

(@)
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Examples of treestructured
graphs, showing (a) an
undirected tree, (b) a directed tree,
and (c) a directed polytree


Factor graph

e the joint distribution over a set of variables In
the form of a product of factors

Hi‘ Xs)

e Where x, denotes a subset of the variables



Factor graph :

P(X) — fa.(iflj il?z)fb(ilfl-; il?z)fc(il‘m -T-S)fd(frﬁ)

fa o fe fd



Factor graph

e an undirected graph => a factor graph
create variable nodes corresponding to the
nodes in the original undirected graph

create additional factor nodes corresponding to
the maximal cliques x.

Multiple choices of fg.



Factor graph :

I7 X9 T €Ir9 T Iro

Io
L3 r3 s

(@) (b) (c)

@ An undirected graph with a single cligue potential w(x1, x2, x3).
() A factor graph with factor f(x1, x2, x3) = @(x1, x2, x3)
representing the same distribution as the undirected graph.

c) A different factor graph representing the same distribution,

whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = w(x1, x2, x3).



The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

p(x) = ZP(X) p(xX) = H Fy(x, Xy)

x\x scne(x)

[f.—z(T)
_b :
s T .

Fy(z, X,)




The sum-product algorithm :

e The problem of finding the marginal p(x) for
particular variable node x

plr) = H ZFS(:E.XS)
sene(z) L Xs
— H xu'fh—*r(l)
sene(x)




The sum-product algorithm

e The problem of finding the marginal p(x) for
particular variable node x

> Fulz, Xy

J“'fg_::ﬂ (‘r)




The sum-product algorithm

e The problem of finding the marginal p(x) for
particular variable node x

Fy(x,Xs) = folz,21,...,20m)Gr (21, Xs1) ... G (2, Xsmr)

> Fulz, Xy

J“'fg_:“:ﬂ (‘r)




The sum-product algorithm

e The problem of finding the marginal p(x) for
particular variable node x

fpaa(z) = Z AR || [Zczm(:rm.xm)]

TM mene(fa)\z LXzm
- Z Z fq 1 L1, :Eﬂ'lf) H ru'.'rm—hfg(ll?m) (8()6)
Ty mene(fs)\

qum—fS m Z (Tm Loy

Xsm




Junction tree algorithm

e deal with graphs having loops

e Algorithm:
directed graph => undirected graph (moralization)
The graph is triangulated
join tree
Junction tree

a two-stage message passing algorithm,
essentially equivalent to the sum-product
algorithm



Example: Video Textures :

e Problem statement

video clip video texture

SIGGRAPH 2000. Schoedl et. al.



The approach

M

How do we find good transitions?



Finding good transitions

Compute L, distance D; ; between all frames
> frame |

frame |

"
Similar frames make good transitions



Demo: Fish Tank




Mathematic model of eoe?

Video Texture .

A sequence of random variables A sequence of random variables
{ADEABEDADBCAD} {BDACBDCACDBCADCBADCA}

Markov Model

The future is independent of the
past and given by the present.



Markov Property

e Formal definition

Let X={X,},—, n D€ a sequence of random

variables taking values s, eN if and only if
I:)(Xm:Smp(O:SO """ Xm-lzsm-l) = I:)(Xm:Sml Xm-lzsm-l)

then the X fulfills Markov property

e Informal definition "1: X?C XSC X4O

The future iIs independent of the past given the
present.



History of MC

e Markov chain theory developed around 1900.

e Hidden Markov Models developed in late 1960's. |
e Used extensively in speech recognition in 1960-70. | g
e Introduced to computer science in 1989. /

Andrel Andreyevich Markov

Applications

» Bioinformatics.
» Signal Processing
» Data analysis and Pattern recognition
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Markov Chain
e A Markov chain is specified by
e A state space S=9{S4S,.,S, }
e An initial distribution &,
e Atransition matrix A ?—5“ A %
Where A(n);= a;; = P(q,=5;|0.1=S;) 'CD/ N |/ ;\)
\X d i /\*—’/

e Graphical Representation

as a directed graph where
e Vertices represent states
o Edges represent transitions with positive probability



Probability Axioms

e Marginal Probability — sum the joint
probabillity

P(x=g) = Z P(x=4,Y)
yehA

e Conditional Probability
P(X:al,y:bj)
P(y =b;)

P(x=a|y=Db;)= It P(y=b;)#0.



Calculating with Markov chains

e Probability of an observation sequence:
o Let X={x}"-, be an observation sequence from

the Markov chain {S, a,, A}

P(x)=P(x,.....
= P(x;
= P(x,

=b

X

!

L
=]

X[ qaeenn X )P(X, X aaeenss Xy )

X, )P, X 5)

ol

X, X,)

XX

P(x;)




Example

Assume we are modeling a time series of high and low pressures
during the Danish autumn.

Let S =1H.L} I]_T_{i i} and ;1:{

0.2 0.8
1111

03 0.7/

Graphical representation of A

02 07
O

NN
N /\ 03/\/




Example

Comparing likelihoods

We want to know the likelihood of one week of high pressure in
Denmark (DK) versus California (Cal).

x=HHHHHHH
0.2 08 0.7 0.8 02 0.5
@, e @, @ . @
— / \ —— — / \ -
(e W (D W
S N T, e T, BE e e
P(x| DK) P(x|Cal)

=Dy A Oy Oy

6
31 ~ 0.0017%
1105

= b HaHH aHH aHHaHH aHHaHHaHH

6
E(ij ~ 0.19%
7\ 5




Motivation of T
Hidden Markov Models

e Hidden states

e The state of the entity we want to model is often not
observable:

The state is then said to be hidden.
e Observables

e Sometimes we can instead observe the state of entities
Influenced by the hidden state.

e A system can be modeled by an HMM if:
e The sequence of hidden states is Markov

e The sequence of observations are independent (or Markov)
given the hidden




Hidden Markov Model os

e Definition M={S,V,A,B, 7}
e Set of states S={sy, Sy ..., S\}
e Observation symbols V={vy,V,, ..., Vyy}
e Transition probabilities

A between any two states a, = P(q=s)q..=s)
e Emission probabilities

B within each state b0)=P(0zv| g =s)
e Start probabilities 7T = {ap}

Use A = (A, B, T) to indicate the parameter set of the model.

PPl



Generating a sequence by the | gs:-
model 2

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state g, according to prob a,;

2. Emit letter o, according to prob e, (0,)

3. Go to state g, according to prob a,

4. ... until emitting o,
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Example :
Model of high and low pressures
Assume we can not measure high and low pressures.
The state of the weather is influenced by the air pressure.
We make an HMM with hidden states representing high and low
pressure and observations representing the weather:
0.2 0.7
|’F) _{lB O
"t T e S
'l /7 T\
Hiddenstatess LLLLHHL | || H | L )
Observations: wres ¢ o © % N \“a 0. P NS
w 0.8 v 0.2
@ 0.2 0.8




Calculating with Hidden Markov soss

Model °

Consider one such fixed state sequence

Q=000

The observation sequence O forthe Q is

P(O[Q,4)= HP(Olqt,/l)
—b (G))-b,, (O)---b, (O;)

PPl



Calculating with Hidden Markov :
Model (cont.)

The probability of such a state sequence Q

P(QIA) = 89,84, "8y, " 84 g

The probability that O and Q occur simultaneously,
IS simply the product of the above two terms, i.e.,

P(O,Q[4)=P(O]Q,4)P(Q[A)

P(O’ Q | Z’) aoch G (O )aQ1Q2 sz (Oz)a%% . QT 107 bCIT (O )



Example

P(x,m)
:(.:.rw_r;;,_u?}}{u” !{R}){u” ¢, }( 1€ ;{R}}{um H[%)){HHH (S Na,, e, (R))
L1110 A 1010 010 A T010 01010
=0.0006278
0.2 0.7
o 0.8 il
f:-"‘— — _%x'x\ }—2__
/ a /N
Hiddenstatess LLLLHHL | || H | L)
Observations: weee c @ ¢ ¢ @ NN o NS
< 0.8 v 0.2
= 0.2 = 0.8




. . 0000
The three main questions on | g2
| X J

HMMSs .
1. Evaluation

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND P[O|M]
2.  Decoding

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND the sequence Q of states that maximizes P(O, Q | A)
3. Learning

GIVEN a HMM M=(S, V, A, B, ), with unspecified

transition/emission probabilities and a sequence Q,
FIND parameters 6= (g(.), ;) that maximize P[x|{]



Evaluation .

»  Find the likelihood a sequence is generated by the model

> A straightforward way (55287%)

»  The probability of O is obtained by summing all possible state
sequences q giving

P(O[4) =2 P(O|Q,)PQ[A)

all Q
- Z” 0P, (O1)a44,0,,(0;)a,, -8, 4 by (Or)
01,4207
D D D
FOY O,
Complexity is O(NT) 0 © ©
Calculations is unfeasible b(d) ¥ ¥ \



The Forward Algorithm

e A more elaborate algorithm
o The Forward Algorithm

P(O14)=) ar ()

a,(1) = [Z a,(1)a;,]b,(O,)

P(0,0,14) =Y. (i)




The Forward Algorithm

The Forward variable
(i) =P(0,0,---0,,¢, =S| 2)

We can compute «f(i) for all N, i,

Initialization:
ay(1) = agibg(0,)  1=1...N
lteration: .
o, () =D a()ay1b;(0,,)  t=1.T-1
i=1

Termination:

PO14) =Y (i)




The Backward Algorithm

The backward variable

ﬁt(l) = P(C)t+1C)t+2 OT | qt — Si ’ﬂ“)
Similar, we can compute backward variable for all N, |,

Initialization:

B-()=1 i=1..,N

lteration: N
B.(D) =2 ab;(0u)B.(i) t=T ~LT-2--11<i<N
j=1

Termination:

P(O[4)= Zanb1(01),B1(j)




o000
i
Consider (i) =P(0,0,...0;,q; =S,| A) o
P(O,q; =S;) ! (iT)
Thus P (g, =S,|0) = == :
=S| P(O) > o (ir)
P(0.q,=S5)
Also P(g, =S;|0) = t '
so P(q, =S;|0) P (O)
_ P(0,0,---0,,q, = Sit 0,10, --Or)
P (O)
_ P(O0,---0,,q, =5)P(0.,0,,--0; |00,---0,,q, =)
Forward, «,(i) P (O)

Backward, (i)
— P (Oloz "'Ot’qt — Si)P(Ot+1Ot+2 "'OT | 0, = Si)

P (O)




Decoding

GIVEN a HMM, and a sequence O.

Suppose that we know the parameters of the Hidden
Markov Model and the observed sequence of observations
O, 0, ..., 05

FIND the sequence Q of states that maximizes
P(Q[O,4)
Determining the sequence of States q,, 9,, ... , gy, Which

IS optimal in some meaningful sense. (i.e. best “explain”
the observations)



0000
0000
| 4
Decoding :
Consider P(Q‘o,g) _P©O.Q[4)
P(O[4)
To maximize the above probability is maximizing
P(0,Q4)
=a,b,a,.b a.b

it Tt 1 Pt PYo Pty P P FY0 P

A best path finding problem
max P (O,Q| 1)
=max In(P (O,Q | 1))

— maX( In( |101)+ In(alll bl 0, ) -t In( |T 1Tb|ToT))




Viterbi Algorithm

[Dynamic programming]

Initialization:
0,() =agh(0,), 1=1...N
y,(1) = 0.
Recursion:
O(J) = max; [0,4(1) ;]b,(Oy
W,(J) = argmax; [0,(I) &
Termination:
P* = max; 0(i)
ar* = argmax; [5+(i) ]
Traceback:
0 = Wa(0*w1 ) t=T-1,T-2,...,1.




The Viterbi Algorithm

D O XN

State 1

2 \% &

K

Similar to “aligning” a set of states to a sequence

Time: O(K?N)
Space.: O(KN)




Learning

e Estimation of Parameters of a Hidden Markov Model

1. Both the sequence of observations O and the
sequence of states Q Is observed

learning A = (A, B, 1)

2. Only the sequence of observations O are
observed

learning Q and 4 = (A, B, 7)



Maximal Likelihood Estimation

e Given O and Q, the Likelihood is given by:

L(A,B,7)=ab_ a.b_a.b_..a b

1710 Ty 105 Tply 303 T T Ty gy T Op



Maximal Likelihood Estimation

e the log-Likelihood is:
I(AB,z)=InL(AB,7)=In(a, )+ In(o,, )+In(a, }

+Infa, )+ (o, )...+ In(a, , J+Ino,,, )

=ifiol( )+ij§;fu In(a ,J)+21:;|n )

where f,, = the number of times state i occurs in the first state

fij = the number of times state I changes to state J.

By, = f(y]6) (or p(y|6;) in the discrete case)

Z - = the sum of all observations o, where g, = S;
oi)



Maximal Likelihood Estimation |

In such case these parameters computed by
Maximum Likelihood Estimation are:

| f.
él.:h a. =—'—, and

I 1 1) M
2.
J=1

b. = the MLE of b; computed from the
observations o, where g, = S;.

>



Maximal Likelihood Estimation

e Only the sequence of observations O are observed

L(A,B,z)= > ab,a;.b a. b, .. b

110, "y 150, Tl 303 'T b T Or
i, 0p .y

It is difficult to find the Maximum Likelihood Estimates
directly from the Likelihood function.
The Techniques that are used are

1. The Segmental K-means Algorith
2. The Baum-Welch (E-M) Algorithm



The Baum-Welch Algorithm

e The E-M algorithm was designed originally to handle
“Missing observations”.

e In this case the missing observations are the states
{01, 9, -, Ol

e Assuming a model, the states are estimated by
finding their expected values under this model. (The
E part of the E-M algorithm).



The Baum-Welch Algorithm

e With these values the model Is estimated

Oy

Maximum Likelihood Estimation (The M part

of the E-M algorithm).

e The process Is repeated until the estimated

model converges.



The Baum-Welch Algorithm :

Initialization:
Pick the best-guess for model parameters (or arbitrary)

lteration:

Forward

Backward

Calculate A, E,(b)

Calculate new model parameters a, e,(b)

Calculate new log-likelihood P(x | 6)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much




The Baum-Welch Algorithm :

Let £(0,Q4)=L(0,Q,2) denote the joint distribution of
Q,0. Consider the function:
Q(4,4)=E,(InL(0,Q,2)Q,4)

Starting with an initial estimate of A (/1(1)) .

A sequence of estimates {A™ | are formed
by finding 1 =A™ to maximize Q(/L/I(m))
with respectto 4 .



The Baum-Welch Algorithm

The sequence of estimates {A™ |

converge to a local maximum of the likelihood

L(Q.2)=1(Q4)




Speech Recognition

e On-line documents of Java™ Speech API

e On-line documents of Free TTS
http://freetts.sourceforge.net/docs/

e On-line documents of Sphinx-ll
http://www.speech.cs.cmu.edu/sphinx/


http://java.sun.com/products/java-media/speech/�

Brief History of CMU Sphinx :

e Sphinx-1 (1987)
e The first user independent, high performance ASR of the world.
o Written in C by Kai-Fu Lee (ZFi1E1# 1+ » ¥1{FGoogleg|443).

e Sphinx-Il (1992)
e Written by Xuedong Huang in C. (&=225 {#1f: - I{ FMicrosoft Speech.NET[EH]
[ZEEN)
e 5-state HMM / N-gram LM.

e Sphinx-IIl (1996)
e Built by Eric Thayer and Mosur Ravishankar.
e Slower than Sphinx-II but the design is more flexible.

e Sphinx-4 (Originally Sphinx 3))
e Refactored from Sphinx 3.
e Fully implemented in Java. (Not finished yet ...)


演示者
演示文稿备注
可以推測，CMU Sphinx的核心技術對Microsoft Speech SDK影響很大。


X
X
3
Components of CMU Sphinx
D
Application
_é_ ____.XE______Application
%: Recognizer
A

Features Feedback ™)
K nowledge
Front End Decoder Base |
dA=g
Input L _...I* Tedoo & v
y Knowledge
Control



演示者
演示文稿备注
整個語音辨識系統由四個部份構成
Sphinx主要構成下面三個部份，我們寫的AP構成上面一個部份
Front End及Deocder各提供了許多API供AP操作
下面我們會仔細對每個部份做介紹


Knowledge Base

e The data that drives the decoder.

e Three sets of data
Acoustic Model.
Language Model.
Lexicon (Dictionary).




Speech Recognition Architecture

« Observations : O =o0,,0,,05, 0,

@ Word Sequences : W =w,w,,wy, -, w

m

&= Probabilistic implementation can be expressed :

W = argmax P(W | O)

WelL
% Then we can use Bayes' rule to break it down :

! (O | WHYP(W

W =argmax P(W |O) = arg max PO )\ PV)
WelL Wel P ( () )

( \
PV ]0) = PWVO) i P(O|W) = PIVo)

P(O) P(W)

. P(W |0)-P(0)= PWO) = P(O|W)-P(W) |




Speech Recognition Architecture

& For each potential sentence we are still
examining the same observations (), which

must have the same probability 2O).

W = arg max P(W ‘ ()) _ —¥ Posterior probability
Wel

) _
= arg max POW)PI) =argmax P(O |W)P(W)

el P(O) 7 /

Observation likelihood Prior probability
Acoustic model Language model




Speech Recognition Architecture

| Figure 7.2 Schematic architecture for a speech
recognition

e AMWWMWWWWWWWMWWWMWWWW i

Feature Extraction | J I]

(Sional Procesaing T ;
e HHHHHHHHHHHHHHH
R

Phone Likelihood
Estimation (Gaussians l l l
or Neural Networks)

Phone ay 0.70 ay 0.80 ay 0.80 n 0.50
N—gram Gramm ar ax 0.22 aa 0.12 aa 0.12 en 0.20
Likelihoods ax 0.04 ax 0.04 ax 0.04 m 0.12
" 01 = \ P(Ol(]) eh 0.03 eh 0.03 eh 0.03 em0.11
a | 03 01
Decodmg (Viterbi l l l l l l l
HMM Lexicon —wor Stack Decoder)
(3 (} L J L J L |
QLSAS
(3 .
g g & Words i need a



Acoustic Model

e /model/hmm/6k
e Database of statistical model.
e Each statistical model represents a phoneme.

e Acoustic Models are trained by analyzing
large amount of speech data.



HMM in Acoustic Model

e HMM represent each unit of speech in the
Acoustic Model.

e Typical HMM use 3-5 states to model a
phoneme.

e Each state of HMM Is represented by a set of
Gaussian mixture density functions.

e Sphinx2


http://www.try.idv.tw/try/talks/phoneset_s2.html�

Mixture of Gaussians

e Represent each state in HMM.

e Each set of Gaussian Mixtures are called
“senones’.

e HMM can share “senones’.

&~ -y

AQ\ SO AQN

Gaussian Mixtures




Mixture of Gaussians .

1

Nix, 1, X)) =
S Gy

173 EXP[_ %(I — YT (x #]}

K
F)= N (T e

%
C, >0 A zﬂszzl
P

(Gaussian mixtures with enough mixture components can
approximate any distribution.

w() a) W
& e 8%@‘

A\ SO AQN

Gaussian Mixtures




Language Model

e Describes what is likely to be spoken in a
particular context

e \Word transitions are defined in terms of
transition probabilities

e Helps to constrain the search space

/P\./\/\
vvv

hood



N-gram Language Model

e Probability of word N dependent on word N-1, N-2, ...

e Bigrams and trigrams most commonly used

e Used for large vocabulary applications such as dictation
e Typically trained by very large (millions of words) corpus

[Unigram Pipack) ]

N
[Bigrarn _ /(ﬁchkumm })sba\ckww@s) j

[ Trigram P(back |don't, look) Cﬁbacklsun, strikes) B P{back] empire, stﬁkesﬂ




Markov Random field :

e See webpage

e http://www.nlpr.ia.ac.cn/users/szli/MRF_Book
IMRF_Book.nhtml
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Belief Network (Propagation) |:

Y. Weiss and W. T. Freeman
Correctness of Belief Propagation in Gaussian Graphical Models of
Arbitrary Topology. in: Advances in Neural Information Processing
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000.

MERL-TR99-38. @ @



http://www.merl.com/papers/TR99-38/�
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