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What you need to know

e Point estimation: (Af&11)
Maximal Likelihood Estimation (MLE)
Bayesian learning
Maximize A Posterior (MAP)

e (Gaussian estimation
e Regression ([A]]F)
Basis function = features

Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off




Your first consulting job :

e An IT billionaire from Beljing asks you a
guestion:

e B: | have thumbtack, if | flip it, what’s the
probabillity it will fall with the nail up?

o Y: Please flip it a few times ...

b PPDD
e Y: The probability is 3/5
e B: Why?7??
e Y: Because...



Binomial Distribution

e P(Heads) = 6, P(Tails) =1-60 D={T,H,H,T,T}

P(D|0) = (1- 6)00(1— 0)(1—6)
e Flips are 1.1.d. (Independent Identically distributed)

Independent events

|dentically distributed according to Binomial
distribution

e Sequence D of a, Heads and a; Talls
P(D|8)=6""(1-6)"



Maximum Likelihood Estimation

e Data: Observed set D of a, Heads and a; Tails
e Hypothesis: Binomial distribution

e Learning 0 is an optimization problem
What's the objective function?
D={T,H,H,T,T}
e MLE: Choose 6 that maximizes the probability of
observed data:

N\

6 = argmaxP(D]|8)
0
= argmaxIinP(D|0) =...
0



Maximum Likelithood
Estimation (cont.)

H = argmax P(D | 0)
0

= argmaxIn(@“" (1-6)"")
0

= argmax(a, In0+ a; In(1-6))

6
e Set derivative to zero:

ilnP(Dm):o 0 =
do




How many flips do | need?
T

o, + o

e B: | flipped 2 heads and 3 talls.

e Y:0=23/5, | can prove it!

e B: What if | flipped 20 heads and 30 tails?

e Y: Same answer, | can prove it!

e B: What's better?

e Y: Humm... The more the merrier???

e B: Is this why | am paying you the big bucks???



Simple bound 434
(based on Hoffding’s inequality)

A 04
e For N=o,+a; and 9= T

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vcl/vc-l.html

e Let B* be the true parameter, for any £>0:

N\

P(O-0"|>e) <262V | <6
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252[ ]

N > 270: (& =0.1,6 = 0.01)




PAC Learning

e PAC: Probably Approximate Correct

e B: | want to know the thumbtack parameter 0,
within € = 0.1, with probabillity at least 1-0 =
0.99. How many flips?

o Y: 270, ©



Prior: 3

knowledge before experiments | :

e B: Wait, | know that the thumbtack is “close” to 50-50. What can
you ...?

e Y:I|can learn it the Bayesian way...

e Rather than estimating a single 6, we obtain a distribution over
possible values of 6
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Bayesian Learning

Prior Likelihood

| |
P(O)P(D | 0)
P ( D) «— Data distribution

(Normalization constant)

e Bayes rule:

Posterior — P(@‘ D) —

e Or equivalently:

P(@|D)x P(@)P(D|8)



Probability Theory

C;
~

Product Rule

i
eSuM Rule
cZ 1 L
pX =) = 5 = 7 Yoo
L -
— Zp( —QT@,Y yj)
j=1

g4 T4 Cq
= p(Y = y;|X = a;)p(X = x3)



Probability concepts

e Random variables: x
e Probability (function): P(X <x), P(x)
e Density (function): f(x),
e Independency: P(x, y)=P(X)P(y)
e Feature guantities:
Mean, expectation E(x) = | x f(x) dx

Covariance
cov(x,y)=0, uncorrelatedness / irrelevant (4t 11 Jcx)

Higher order moments




The Rules of Probability

e Sum Rule

e Product Rule

p(X,Y) =p(Y|X)p(X)




Bayes’ Theorem

p(X|Y)p(Y)

p(Y|X) = (X

p(X) =) p(X|Y)p(Y)

posterior o likelihood X prior




Bayesian Learning in our case

e Likelihood function is simply Binomial:
P(D|8)=0""(1-6)"

e What about prior?
Represent expert knowledge
Simple posterior form
e Conjugate priors: (FLHEZEE)
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution




Beta prior distribution — P(0)

e Prior: Beta distribution I(x+1) = XO(x),[(1) =1

ot T g s
S R T TR 7

P(6)

e Likelihood: Binomial distribution

P(D|6) =6 (1-6)"
e Posterior:
P(@|D) « P(O)P(D]|6)
c ™ @1-0)" 0 (1-0)""
~ Beta(ay, + By, 07 + ;)



Using Bayesian posterior

e Posterior distribution:
P(@|D) ~ Beta(ay, + 5,2 + ;)

e Bayesian inference:
No longer single parameter:

E[f ()] ~ jol f(0)P(0|D)do

Integral, ®




Expectation

e Random variable: 6
e Random function: f(6)
e EXxpectation:

E[f(0)] ~ jol f(9)P(0|D)do



MAP: °sec

Maximum a posteriori approximation :

P(0|D) ~ Beta(ay, + By, a7 + ;)

approximation

E[f(6)] = (6)P(6]D)do-

e MAP: use most likely parameter

6 =argmaxP(0|D) E[f(0)]~ f(8)—



MAP for Beta distribution -

P(0|D) ~ Beta(ay, + By, a7 + ;)

e MAP: use most likely parameter

0 =argmax P(0| D) = o+ fr —1
0 o, + [, +o + 3 -2

e Beta prior equivalent to extra thumbtack flips
e AS N=a,; +a, - o, prior is “forgotten”
e But, for small sample size, prior is important!



More ...

e B: Can we handle more complex cases?
e Y: Yes, :-D

e Prior: a mixture of beta distribution
P(6) ~ 0.4Beta(20,1) + 0.4Beta(l, 20) + 0.2Beta(2, 2)



-_— S

Multinomial distribution » 30

e B: Now if | give you a dice (%), then ...
e Y: | can solve this problem in a similar way.
e Likelihood:

P(X=x"|0)=6,, k=12,..,r,

0={4,...60.}, 6+..+6 =1

D={X,=X,.... Xy =X }t=>{N,,...,.N,}

P(DI6)=] 0"




Multinomial distribution

e Conjugate prior (Dirichlet distribution):

) F(Ol) : a, -1 r
P(O9=Dir( |a,...a,)=— g ", a=) .o
szlr(ak) lk:! Z

e Solution:

P(Xy, =X |D)=[6,Dir(00a, +N,,...,a, +N,)d = a, +N,

a+ N

e Important fact:

_ I'(a) : F(ak+Nk)
P(D)_r(aﬂ\l)g (e, )




Gaussian distribution

Continuous random variable:

1 (X 1)

oN2x

variance Normalize item

TiE

P(x| o)~

Consider the difference between continuous and discrete variables?



MLE for Gaussian

e Prob. of i.I.d. samples D={x,%,,...,X,}

N N —(x-w)?
j He 207
e The magic of log (to log-likelihood)

N N —(-p)°
j He 20°
= —NlIn(ov2r)- Z(X ~4)°

likelihood P(D|u,o)= (

InP(D|u,0) = (




MLE for mean of a Gaussian

N N —(xi—u)°
i|nP(D|,u,G) = iIn( 1 j He 20°
Qu 8,11 o271 i=1

_ ﬂ_ C (Xi_ﬂ)2
o) 70— 20°

_ N(Xi_ﬂ)
— IZ:; — ~0

ﬂ:%ZXi



MLE for variance of a Gaussian

a a NN _(Xi_zﬂ)z
%In P(D|uy,o) = —In(arj H 20
_ a_[_Nmm/ﬂ]—i g [(Xi‘é‘) ]




Gaussian parameters learning

e VILE
~ 1
A=y X

6 = )

e Bayesian learning: prior?

e Conjugate priors:
Mean: Gaussian priors
Variance: Wishart Distribution



Prediction of continuous

variable

e B: Walit, that’'s not what | meant!

e Y: Chill out, dude.

e B: | want to predict a continuous variable for
continuous inputs: | want to predict salaries from

GPA.
e Y: | can regress that...

Salary

GPA




The regression problem

e |[nstances: <xt>

e Learn: mapping from x to t(x).

e Hypothesis space: t(x)zf(x):zk:wihi
Given, basis functions H ={h,,..., Fi}
Find coefficients w={w,,...,w, }

e Problem formulation: k
w =argmin ) [t(x;) - > wh (x)]°
w j i=1




But, why sum squared error?

e Model:
P(t|x,w,o)=

e Learn w using MLE

[t=> " wih; ()T’

o2

267



Maximizing log-likelihood

InP(D\w,a):InH(G\/lEe

J

p— minz
j

[t wihy (x;)]°

—[t;-Ziwih; (X;)]°

202

2072

)



Bias-Variance Tradeoff -

e Choice of hypothesis basis introduce learning
bias:
e More complex basis:

Less bias
More variance (over-fitting)



演示者
演示文稿备注
Draw figures





Polynomial Curve Fitting

0 |/ 4

0 1

M
y(xr,w) = wo + w1 x +wox? + ... +wyaM = ij:cj
=0



Sum-of-Squares Error

Function

4
t




Ot Order Polynomial




15t Order Polynomial




3'd Order Polynomial




oth Order Polynomial




Over-fitting :

—©— Training
—O— Test

Root-Mean-Square (RMS) Error: Erus = /2E(w*)/N



Polynomial Coefficients

M=0 M=1 M=3 M=09
wg | 019 082  0.31 0.35
w} 1.27  7.99 232.37
w} -25.43 -5321.83
w 17.37  48568.31
w -231639.30
wi 640042.26
wy -1061800.52
w? 1042400.18
wi -557682.99
wy 125201.43




Data Set Size: N =15

9th Order Polynomial




Data Set Size: N =100

9th Order Polynomial




Regularization

e Penalize large coefficient values

N)Ir—L

3% e

w) —tn} + 5 !!W!!2




Regularization: Ini = —18




Regularization: InA =0

1t Q ~0 ln A =0




Regularization: Erms VS. In

1

Training
Test
12!
Z 05 _
o3 #"/’//////
0 / L L L
-35 -30 25 —20

In A




What you need to know

e Point estimation:
Maximal Likelihood Estimation
Bayesian learning
Maximal a Posterior

e Gaussian estimation

e Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians

e Bias-Variance trade-off



Homework

e Python programming
1-D regression

e Finish the “Gaussian parameters learning”
Please use google, M *
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