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What you need to know
 Point estimation: (点估计)
 Maximal Likelihood Estimation (MLE)
 Bayesian learning
 Maximize A Posterior (MAP)

 Gaussian estimation
 Regression （回归）
 Basis function = features
 Optimizing sum squared error
 Relationship between regression and Gaussians

 Bias-Variance trade-off



Your first consulting job
 An IT billionaire from Beijing asks you a 

question:
 B: I have thumbtack, if I flip it, what’s the 

probability it will fall with the nail up?
 Y: Please flip it a few times …

 Y: The probability is 3/5
 B: Why???
 Y: Because…



Binomial Distribution

 P(Heads) = θ, P(Tails) = 1-θ

 Flips are i.i.d. (Independent Identically distributed)
 Independent events
 Identically distributed according to Binomial 

distribution
 Sequence D of αH Heads and αT Tails
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Maximum Likelihood Estimation

 Data: Observed set D of αH Heads and αT Tails
 Hypothesis: Binomial distribution
 Learning θ is an optimization problem
 What’s the objective function?

 MLE: Choose θ that maximizes the probability of 
observed data:
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Maximum Likelihood 
Estimation (cont.)

 Set derivative to zero:
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How many flips do I need?

 B: I flipped 2 heads and 3 tails.
 Y: θ = 3/5, I can prove it!
 B: What if I flipped 20 heads and 30 tails?
 Y: Same answer, I can prove it!
 B: What’s better?
 Y: Humm… The more the merrier???
 B: Is this why I am paying you the big bucks???
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Simple bound
(based on Höffding’s inequality)

 For                          and     

 Let θ* be the true parameter, for any ε>0:

THN αα +=
TH

T

αα
αθ
+

=ˆ

22* 2)ˆ( εεθθ NeP −≤≥− δ≤

]ln2[ln
2
1

2 δ
ε

−≥N

)01.0,1.0(;270 ==≥ δεN

http://omega.albany.edu:8008/machine-learning-dir/notes-dir/vc1/vc-l.html



PAC Learning

 PAC: Probably Approximate Correct
 B: I want to know the thumbtack parameter θ, 

within ε = 0.1, with probability at least 1-δ = 
0.99. How many flips?

 Y: 270, 



Prior: 
knowledge before experiments
 B: Wait, I know that the thumbtack is “close” to 50-50. What can 

you …?
 Y: I can learn it the Bayesian way…

 Rather than estimating a single θ, we obtain a distribution over 
possible values of θ
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Bayesian Learning

 Bayes rule:

 Or equivalently:
)(

)|()()|(
DP
DPPDP θθθ =

)|()()|( θθθ DPPDP ∝

Posterior

Prior Likelihood

Data distribution

(Normalization constant)



Probability Theory

Sum Rule

Product Rule



Probability concepts

 Random variables: x
 Probability (function): P(X ≤x), P(x)
 Density (function): f(x), 
 Independency: P(x, y)=P(x)P(y)
 Feature quantities:
 Mean, expectation E(x) = ∫ x f(x) dx
 Covariance
 cov(x,y)=0, uncorrelatedness / irrelevant (统计无关)

 Higher order moments



The Rules of Probability

 Sum Rule

 Product Rule



Bayes’ Theorem

posterior ∝ likelihood × prior



Bayesian Learning in our case
 Likelihood function is simply Binomial:

 What about prior?
 Represent expert knowledge
 Simple posterior form

 Conjugate priors: （共轭先验）
 Closed-form representation of posterior
 For Binomial, conjugate prior is Beta distribution
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Beta prior distribution – P(θ)

 Prior: Beta distribution

 Likelihood: Binomial distribution

 Posterior:
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Using Bayesian posterior

 Posterior distribution:

 Bayesian inference:
 No longer single parameter:

 Integral, 
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Expectation

 Random variable: θ
 Random function: f(θ)
 Expectation:
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MAP: 
Maximum a posteriori approximation

 MAP: use most likely parameter
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MAP for Beta distribution

 MAP: use most likely parameter

 Beta prior equivalent to extra thumbtack flips
 As                       , prior is “forgotten”
 But, for small sample size, prior is important!

),(~)|( TTHHBetaDP βαβαθ ++

2
1)|(maxarg

−+++
−+

==
TTHH

TTDP
βαβα

βαθθ
θ



∞→+= HTN αα



More … 

 B: Can we handle more complex cases?
 Y: Yes, :-D

 Prior: a mixture of beta distribution
 ( ) ~ 0.4 (20,1) 0.4 (1,20) 0.2 (2,2)P Beta Beta Betaθ + +



Multinomial distribution

 B: Now if I give you a dice (骰子), then …
 Y: I can solve this problem in a similar way.
 Likelihood:
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Multinomial distribution

 Conjugate prior (Dirichlet distribution):

 Solution:

 Important fact:
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Gaussian distribution
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MLE for Gaussian

 Prob. of i.i.d. samples },,,{ 21 NxxxD =
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 The magic of log (to log-likelihood)
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MLE for mean of a Gaussian
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MLE for variance of a Gaussian
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Gaussian parameters learning

 MLE

 Bayesian learning: prior?
 Conjugate priors:
 Mean: Gaussian priors
 Variance: Wishart Distribution
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Prediction of continuous 
variable 
 B: Wait, that’s not what I meant!
 Y: Chill out, dude.
 B: I want to predict a continuous variable for 

continuous inputs: I want to predict salaries from 
GPA.

 Y: I can regress that…

GPA

Salary



The regression problem

 Instances: 
 Learn: mapping from     to      .
 Hypothesis space:
 Given, basis functions
 Find coefficients

 Problem formulation:

>< ii t,x

x )(xt

},...,{ 1 kww=w
},...,{ 1 khhH =

∑
=

=≈
k

i
iihwxft

1
)(ˆ)(x

∑ ∑
=

−=
j

k

i
iij xhwt 2

1

* ])()([minarg xw
w



But, why sum squared error?

 Model:

 Learn w using MLE 

2

2

2

])([

2
1),,|( σ

πσ
σ

∑
=

−−
i ii xhwt

etP wx



Maximizing log-likelihood
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Bias-Variance Tradeoff

 Choice of hypothesis basis introduce learning 
bias:
 More complex basis:
 Less bias
 More variance (over-fitting)

演示者
演示文稿备注
Draw figures



Example
Handwritten Digit Recognition



Polynomial Curve Fitting



Sum-of-Squares Error 
Function



0th Order Polynomial



1st Order Polynomial



3rd Order Polynomial



9th Order Polynomial



Over-fitting

Root-Mean-Square (RMS) Error:



Polynomial Coefficients   



Data Set Size: 
9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Regularization

 Penalize large coefficient values



Regularization: 



Regularization: 



Regularization:           vs. 



What you need to know
 Point estimation:
 Maximal Likelihood Estimation
 Bayesian learning
 Maximal a Posterior

 Gaussian estimation
 Regression
 Basis function = features
 Optimizing sum squared error
 Relationship between regression and Gaussians

 Bias-Variance trade-off



Homework

 Python programming
 1-D regression 

 Finish the “Gaussian parameters learning”
 Please use google, ^_*
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