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What do you have to know in 
last lesson?

 Concepts
 Random variable: x
 (Bayesian) Probability: P(x)
 Condition ~, Joint ~, and Marginal Probability

 Density function f (x), Distribution, Gaussian 
(normal) distribution

 Expectation, Mean, Variance, Moments
 Likelihood, Prior, Posterior  



What do you have to know in 
last lesson?

 MLE, Bayesian reasoning, Bayes law, MAP
 Conjugate distribution, beta distribution, gamma 

function

 Regression
 Over fitting
 Regularization 



Regression revisit:
Polynomial Curve Fitting
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Regression revisit:
Polynomial Curve Fitting
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Regression revisit:
Polynomial Curve Fitting
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Fourier Transform
 A mathematical operation
 decomposes a signal (data sequence) into its constituent 

frequencies

 Related techniques:  Different basis functions
 (discrete) cosine transform, wavelet transform

 Image / Video compression: 
 JPEG/JPEG 2000, MPEG (1/2/4), H.263/264



Data compression = 
spectral transforms?

 Goal: choosing suitable transforms, so as to 
obtain high “information packing”.
 Raw data => Meaningful features.
 Unsupervised/Automatic methods.

 To exploit and remove information 
redundancies via transform. 



Feature extraction
 Data independent
 DFT, DWT, DCT

 A single piece of signal

 Spectral analysis
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Feature extraction
 Data independent
 DFT, DWT, DCT

 A single piece of signal

 Data dependent
 PCA, K-PCA, R-PCA, Factor Analysis, LDA, MDS, …

 A set of signals (images, motion data, shapes,…)

 Key: define desirable transforms
 Data driven
 Raw data => Feature space



Digit data

130 threes, a subset of 638 such threes and part of the 
handwritten digit dataset. Each “three” is a 16 × 16 grayscale 
image, and the variables xj, j = 1, . . . , 256 are the grayscale 
values for each pixel.

0,0 1,0 2,0 1,0

0,1 1,1 2,1 1,1

0, 1 1, 1 2, 1 1, 1

N

N

p p p N p N p

x x x x
x x x x

x x x x

−

−

− − − − − ×

 
 
 =  
  
 

X





    





Digit:
rank-2 model for threes

w and X
are both 
unknown 
Challenge!
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Apply to data set

 d: data dimension
 p: feature dimension
 N: number of data examples
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Data driven problem

 Given data Y
 find transform x as well as feature w

 Straightforward  solution:
 Fix w, solve X by LSQ; then fix X, solve w LSQ …
 Not good!
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Solution:
Singular Value Decomposition
Let       be the centered data matrix (assume           ).

is the SVD of      , where 
 U is d×d orthogonal, the left singular vectors.
 V is N×N orthogonal, the right singular vectors.
 S is d×N diagonal, with s1 ≥ s2 ≥ . . . ≥ sd ≥ 0, the singular values. 

 The SVD always exists, and is unique up to signs. 
 The columns of V are the principal components
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Solution:
Singular Value Decomposition
Let       be the centered data matrix (assume           ).d N×Ŷ N d>
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Simple example:
Singular Value Decomposition

 From wiki
 http://en.wikipedia.org/wiki/Singular_value_decom

position



Why SVD works?

Let      be    with all but the first     diagonal 
elements set to zero. Then               solves
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Why SVD works? (cont.)

 Low-rank matrix approximation
 Find ,                      s.t.
 Quick proof: 
 Equivalent to
 Matrix                                              must be diagonal.

 It follows that                           ,  
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Why it works? (cont.)

 Matrix decomposition (the inductive method)
 When p=1

 In general:
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How to compute
 Matrix decomposition:
 Mainly used in matlab, clapack:

 Relation to eigenvalue decomposition:

 The columns of V (right singular vectors) are 
eigenvectors of Z

2: Τ Τ Τ Τ= = =Z Y Y VSU USV VS V

2=ZV S V



Compute eigen~
(vectors and values)

 Eigen problem
 Characteristic polynomial

 Iterative method (when matrix is very huge)
 Simplest method: v(n+1) = Z v(n)

 Mostly used method: Lanczos method
 http://en.wikipedia.org/wiki/Lanczos_algorithm

λ=ZV V

det( ) 0λ− =Z I



Principle component analysis

 Given data Y
 find transform X as well as feature W

 Given a new data ynew we fix transform X, then:
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PCA: An Intuitive Approach
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Let us say we have xi, i=1…N data points in d dimensions (d is large)

If we want to represent the data set by a single point x0, then

Can we justify this choice mathematically?
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PCA: An Intuitive Approach…

w= +x m e

Representing the data set xi, i=1…N by its mean is quite uninformative

So let’s try to represent the data by a straight line of the form:

This is equation of a straight line that says that it passes through m

e is a unit vector along the straight line

And the signed distance of a point x from m is w

The training points projected on this straight line would be 

, 1...i iw i N= + =x m e



PCA: An Intuitive Approach…
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Let’s now determine wi’s 

Partially differentiating with respect to wi we get:

Plugging in this expression for wi in J1 we get: 
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So minimizing J1 is equivalent to maximizing:

PCA: An Intuitive Approach…

ee ST
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Subject to the constraint that e is a unit vector:

Use Lagrange multiplier method to form the objective function:

Differentiate to obtain the equation:

eSe0ee λλ ==− orS 22
Solution is that e is the eigenvector of S corresponding to the largest eigenvalue



PCA: An Intuitive Approach…
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The preceding analysis can be extended in the following way.

Instead of projecting the data points on to a straight line, we may

now want to project them on a d-dimensional plane of the form:

d is much smaller than the original dimension p

In this case one can form the objective function:

It can also be shown that the vectors e1, e2, …, ep are p eigenvectors
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PCA: Visually

Data points are represented in a rotated orthogonal coordinate system: the origin 
is the mean of the data points and the axes are provided by the eigenvectors.



Computation of PCA
 In practice we compute PCA via SVD (singular value 

decomposition)
 Form the centered data matrix:

 Compute its SVD:

 U and V are orthogonal matrices, 
 D is a diagonal matrix

[ ]1( ) ( )d N N× = − −X x m x m

, , ,( )d d d d N d
Τ=X U D V



Computation of PCA…
 Note that the scatter matrix can be written as:

 So the eigenvectors of S are the columns of U and the 
eigenvalues are the diagonal elements of D2

 Take only a few significant eigenvalue-eigenvector 
pairs p<<d; The new reduced dimension 
representation becomes:

( )( )= − − =T 2 TS X m X m UD U

, ,( ) ( )i d p d p i
Τ= + −x m U U x m



Computation of PCA…
 Sometimes we are given only a few high dimensional data points, 

i.e.,  d >> N (mostly in image processing) 
 In such cases compute the SVD of XT:

 So that we get:

 Then, proceed as before, choose only p < N significant 
eigenvalues for data representation:
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N N N N p N=X V D U

, , ,( )T
p N N N N N=X U D V

, ,( ) ( )T
i p d p d i= + −x m U U x m



PCA: A Gaussian Viewpoint
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u’s and σ’s are respectively eigenvectors and eigenvalues of S.

If d is large, then we need a even larger number of data points to estimate the
covariance matrix. So, when a limited number of training data points is available
the estimation of the covariance matrix goes quite wrong. This is known as curse
of dimensionality in this context.
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PCA Examples
 Image compression example
 Novelty detection example
 Face recognition



PCA: example
Eigenfaces
 G. D. Finlayson, B. Schiele & J. Crowley.  Comprehensive colour 

image normalization. ECCV 98 pp. 475~490.

 Eigen-X, 



Far beyond PCA

 Human bodies in 3D
 Human body representation in image



PCA and 
dimensional reduction

 Space transform via SVD       
 Y→W

 Dimension: 
 d, N >> p

 Representation
 Errors …



Problems of PCA
 Only suitable for normal 

distributed data

 More consideration
 ICA: Independent 

components.
 K-PCA: Nonlinear
 …

1φ

2φ



Kernel PCA

 Assumption behind PCA is that the data points x are 
multivariate Gaussian

 Often this assumption does not hold

 However, it may still be possible that a transformation φ(x) is 
still Gaussian, then we can perform PCA in the space of φ(x)

 Kernel PCA performs this PCA; however, because of “kernel 
trick,” it never computes the mapping φ(x) explicitly!



KPCA: Basic Idea



Kernel PCA Formulation

 We need the following fact:

 Let v be a eigenvector of the scatter matrix: 

 Then v belongs to the linear space spanned by the data 
points xi (i=1, 2, …N).

 Proof: 
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Kernel PCA Formulation…

 Let C be the scatter matrix of the centered mapping φ(x):

 Let L be an eigenvector of C, then L can be written as a 
linear combination:

 Also, we have:

 Combining, we get:  
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Kernel PCA Formulation…
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Kernel PCA Formulation…

K λ=w wFrom the eigen equation

And the fact that the eigenvector  L is normalized to 1, we obtain:

2

1 1
|| || ( ( )) ( ( )) 1

1

N N
T T

i i i i
i i

T

w w Kϕ ϕ

λ

= =

= = = ⇒

=

∑ ∑L x x w w

w w



KPCA Algorithm
Step 1: Compute the Gram matrix: NjikK jiij ,,1,),,( == xx

Step 2: Compute (eigenvalue, eigenvector) pairs of K: ( , ), 1, ,l
l l Mλ =w 

Step 3: Normalize the eigenvectors:
l

l

lλ
←

ww

Thus, an eigenvector wl of C is now represented as:
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To project a test feature φ(x) onto Ll we need to compute:
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So, we never need φ explicitly



Feature Map Centering
So far we assumed that the feature map φ(x) is centered for thedata points x1,… xN

Actually, this centering can be done on the Gram matrix without ever 
explicitly computing the feature map φ(x).

)/11()/11(~ NIKNIK TT −−=

Scholkopf, Smola, Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Technical report #44, 
Max Plank Institute, 1996.
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A similar expression exist for projecting test features on the feature eigenspace



KPCA: USPS Digit Recognition

Scholkopf, Smola, Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Technical report #44, 
Max Plank Institute, 1996.

dTyxk )(),( yx=Kernel function:

(d)

Classier: Linear SVM with features as kernel principal components
N = 3000, p = 16-by-16 image

Linear PCA



Robust-
Principal Component Analysis
 reference

1. Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Rank-sparsity 
incoherence for matrix decomposition. preprint 2009.

2. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component 
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. 
In: NIPS 2009.

3. X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating 
direction methods. preprint, 2009.

4. Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method 
for exact recovery of a corrupted low-rank matrices. Mathematical Programming, 
submitted, 2009.

5. E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component 
Analysis? Submitted for publication, 2009.



research trends
 Appear in the latest 2008-2009
 Theories are guaranteed and still refining; 

numerical algorithms are practical for 
1000×1000 matrix (12 second) and still 
improving; applications not yet expand

 Research background: comes from
① matrix completion problem
② L1 norm and nuclear norm convex 

optimization



RPCA: outlines

 Part I: theory

 Part II: numerical algorithm

 Part III: applications



 Part I: theory



PCA

 Given a data matrix M, assume
L0 is a Low-rank matrix 
N0 is a small and i.i.d. Gaussian noise matrix

 Classical PCA seeks the best (in an L2 norm 
sense) rank-k estimate of L0 by solving

 It can be solved by SVD

2



PCA example

 When noise are small Gaussian, PCA does 
well



Defect of PCA

 When noise are not Gaussian, but appear 
like spike, i.e. data contains outliers, PCA 
fails



RPCA
 When noise are sparse spikes, another robust 

model (RPCA) should be built 
 Assume

L0 is a Low-rank matrix 
S0 is a Sparse spikes noise matrix

 Problem: we know M is composed by a low rank 
and a sparse matrix. Now, we are given M and 
asked to recover its original two components

It’s purely a matrix decomposition problem



ill-posed problem 
 We only observe M, it’s impossible to know 

which two matrices add up to be it. So without 
further assumptions, it can’t be solved:

1.                                                  , another valid 
sparse-plus-low-rank decomposition might be                          
Thus, the low-rank matrix should be assumed to be not too sparse

2.                                               , with v being the first 
column of       . A reasonable sparse-plus-low-rank decomposition 
in this case might be                       and           Thus, the sparse 
matrix should be assumed to not be low-rank



Assumptions about how L 
and S are generated

1. Low-rank matrix L: 

2. Sparse matrix S:



Under what conditions can M 
be correctly decomposed ?

1. Let the matrices with rank ≤ r(L) and with either the 
same row-space or column-space as L live in a matrix 
space denoted by T(L)

2. Let the matrices with the same support as S and 
number of nonzero entries ≤ those of S live in a matrix 
space denoted by O(S)

 Then, if T(L) ∩O(S)=null, M can be correctly 
decomposed. 



Detailed conditions

 Various work in 2009 proposed different 
detailed conditions. They improved on each 
other, being more and more relaxed.

 Under each of these conditions, they proved 
that matrix can be precisely or even exactly 
decomposed.



Conditions involving 
probability distributions

 for B with rank k smaller than n, exact 
recovery is possible with high probability 
even when m is super-linear in n



the latest condition developed
 The work of [1] and [2] are parallel, latest [5] 

improved on them and yields the ‘best’ 
condition



Brief remarks

 in [5], they prove even if:

1. the rank of L grows proportional to 
O(n/log2n) 

2. noise in S are of order O(n2)

exact decomposition is feasible



 Part II: numerical algorithm



Convex optimization
 In order to solve the original problem, it is 

reformulated into optimization problem. 
 A straightforward propose is 

but it’s not convex and intractable
 Recent advances in understanding of the 

nuclear norm heuristic for low-rank solutions and 
the L1 heuristic for sparse solutions suggest

which is convex, i.e. exists a unique minima



numerical algorithm
 During just two years, a series of algorithms have been 

proposed, [4] provides all comparisons, and most 
codes available at

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html

 They include:
1. Interior point method [1]
2. iterative thresholding algorithm
3. Accelerated Proximal Gradient (APG) [2]
4. A dual approach [4]
5. (latest & best) Augmented Lagrange Multiplier (ALM) 

[3,4]or Alternating Directions Method (ADM) [3,5]

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html�


ADM
 Problem
 The corresponding Augmented Lagrangian 

function is

 is the multiplier of the linear 
constraint. < > is trace inner product for 
matrix <X,Y>=trace(XTY)

 Then, the iterative scheme of ADM is



Two established facts
 To approach the optimization, two well known 

facts is needed
1.
2.

is the soft thresholding operator

USVT is SVD of W 



Optimization solution
 Sparse A with L1 norm

 Low-rank B with nuclear norm. Reformulate 
the objective so that previous fact can be 
used: 



Final algorithm of ADM



 Part III: application



Applications [5]

(1) background modeling from surveillance 
videos

① Airport video
② Lobby video with varying illumination

(2) removing shadows and specularities from 
face images



Airport video
 a video of 200 frames (resolution 

176×144=25344 pixels) has a static 
background, but significant foreground 
variations

 reshape each frame as a column vector 
(25344×1) and stack them into a matrix M 
(25344×200)

 Objective: recover the low-rank and sparse 
components of M 





Lobby video

 a video of 250 frames (resolution 
168×120=20160 pixels) with several drastic 
illumination changes

 reshape each frame as a column vector 
(20160×1) and stack them into a matrix M 
(20160×250)

 Objective: recover the low-rank and sparse 
components of M 
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