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What do you have to know in | ss2
last lesson?

e Concepts
Random variable: x
(Bayesian) Probability: P(x)
Condition ~, Joint ~, and Marginal Probability

Density function f (x), Distribution, Gaussian
(normal) distribution

Expectation, Mean, Variance, Moments
Likelihood, Prior, Posterior



What do you have to know in | ss
last lesson?

e MLE, Bayesian reasoning, Bayes law, MAP

Conjugate distribution, beta distribution, gamma
function

e Regression
Over fitting
Regularization



Regression revisit: HE

Polynomial Curve Fitting :
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Matrix form Least squares Normal equation




Regression revisit: eels
Polynomial Curve Fitting ¥
1t o° Q. - My (%) Wo Y1
! 0 , ,  o = Wg)\N:\% y = %
ol 7 o\ o) :
hy (X) Wy Y
0
~1} o ~— _ y =h(x)-w
w=(H"H)"H'y
6 . i Normal equation

M

y(X, W) =Wy + Wy (X) +Woh, (X) +. + Wy, hy (X) = ijhj (X)
j=0

Basis
function

M
< y(x, w) = wo +wix +wez® + ... +wyz™ = Zwﬂj
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Regression revisit: Y
Polynomial Curve Fitting :
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Fourier series

M
y (X, W) =Wy + Wby (X) +Woh, (X) +. 4wy hy, (X) = Z w;h; (X) (orthogonal
i=0 decomposition)

o () — cos(jx/2)  jiseven w=(H'H)"H'y=H"y
I Lsin((j+Dx/72)  jis odd Normal equation


http://en.wikipedia.org/wiki/File:Fourier_Series.svg�

Fourier Transform 2

e A mathematical operation
o decomposes a signal (data sequence) into its constituent

frequencies
- o0 m 20 . v
fo=[" f@era,  f@)=[ f©a

/

e Related technigues: Different basis functions
o (discrete) cosine transform, wavelet transform

e Image / Video compression:
o JPEG/JPEG 2000, MPEG (1/2/4), H.263/264



Data compression = o
spectral transforms?

e Goal: choosing suitable transforms, so as to
obtain high “information packing”.
Raw data => Meaningful features.
Unsupervised/Automatic methods.

e To exploit and remove information
redundancies via transform.
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Feature extraction :
e Data independent AR R
o DFT, DWT, DCT e %
A single piece of signal | i
e Spectral analysis RN
Two-component model has the form ,
fA) = T+ A+ Ay y
1
- 3P B @
constant Low High \ Yd Jdx1

frequency frequency
component component




Feature extraction :'
e Data independent IR RN, S
» DFT, DWT, DCT | i %
A single piece of signal | i

|||||||
-8 4 = a0z 4 8w B

e Data dependent
o PCA, K-PCA, R-PCA, Factor Analysis, LDA, MDS, ...
A set of signals (images, motion data, shapes,...)

e Key: define desirable transforms
e Data driven
e Raw data => Feature space



It dat .
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130 threes, a subset of 638 such threes and part of the
handwritten digit dataset. Each ° three” Isa 16 X 16 grayscale
iImage, and the variables x;, ] = ., 256 are the grayscale
values for each pixel.
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Digit: HE

rank-2 model for threes :

Two-component model has the form

Sannnd Prin pal Component

% FON) = T+ Mu+ Aovy
i = 3+A1-H+/\2-3.

Here we have displayed the first two principal

component directions, v; and vy, as images.

First Priscipal Compenant

Yo %o hy (Xg) 2 (Xg) w and X
_ Yl ~ )fl ‘|‘W1 hl(.xl) ‘|‘W2 h2 (.Xl) are both
‘ : unknown

VYd Jgq \Xd Jga ((Xg) )y (Xg) )y Challenge!

— - T
y = X+ W X + W, X, = X'w argmlnHy—X WH
X,w



Apply to data set

- T
arg(,rvr\,"n y=x WH Y=(Y1 Y2 " YN)gy Vi€E°
X,W
X =(% X X4 )pxd

e d: data dimension
e p: feature dimension d>p
e N: number of data examples



Data driven problem

e Givendata Y
find transform x as well as feature w

arg);( min HY ~- X'w HF

Straightforward solution:
Fix w, solve X by LSQ; then fix X, solve w LSQ ...
Not good!



Solution:
Singular Value Decomposition

Let Y be the centered dxN data matrix (assume N >d ).

Singular values

Yia | Y21 Y1 0 Yna

Yi2 | Y22 |Y32 0 Yn2
Syi=0  y=| R 022 (Je T N2 eyt

i . . . . .
) Yid | Yo.d [¥Y3d 0 YN Jgun \/

is the SVD of Y, where Y- Unitary Matrices
> U is d Xd orthogonal, the left singular vectors.
> V is NXN orthogonal, the right singular vectors.
> S is dXN diagonal, withs; 2s,2...2s,20, the singular values.
v The SVD always exists, and is unique up to signs.

v The columns of V are the principal components




Solution: HE

Singular Value Decomposition |:

Let Y be the centered dxN data matrix (assume N >d ).

Singular values

Yii | Yo1 | Y1 0 Yna
Zyi 0 v yl:,z Y2:,2 Y3;,2 yl\:|,2 _ UsyT
: : : : . :
Yid | Yo.d [Y3d 7 YN Jgun \/
Yo Unitary Matrices

arg min HY—XTWH X =UT W=5SV
X,W




Simple example:

Singular Value Decomposition |:

e From wiki

o http://en.wikipedia.org/wiki/Singular_value decom
position



Why SVD works? +
Yo | Y21 [Ya1 0 Yna Singular values

Y1.,2 YZ.,z Y3.,2 yN,z _usyT

Yid | Y2.d [Y3d 0 YN Jgun v

Y2 Unitary Matrices

Eckart—Young theorem

Let s, be s with all but the first p diagonal
elements set to zero. Then Y, =us,v' solves

min
rank (Y,)=p

\?—YqH



why SVD works? (cont.)

e Low-rank matrix approximation
Find Y, minHY—\?HF s.t. rank(Y)=p
Quick proof:
Equivalentto  min HS - UT\?VHF
Matrix T=U"YV =diag(t;,...t,) must be diagonal.

p d
min||S—T||2F =3 (s-)+ > st
=1 I=p+1

It follows that t =s;,i=1..,p , Y=USV'



Why it works? (cont.)

e Matrix decomposition (the inductive method)
When p=1
~ Uy

T_
Y =85 UVy =S, (V11 Vip o VN )

.
Ingeneral: Y = ZSiUiViT
i=1



How to compute

e Matrix decomposition:
Mainly used in matlab, clapack:

e Relation to eigenvalue decomposition:
Z=Y"'Y=VvsuTusvT =vs?Vv'’

ZV =5S°V

e The columns of V (right singular vectors) are
eigenvectors of Z



Compute eigen~

(vectors and values) :

e Eigen problem 2zv=aiv
e Characteristic polynomial
det(Z- A1) =0

e |terative method (when matrix is very huge)
e Simplest method: v = Z v

e Mostly used method: Lanczos method
http://en.wikipedia.org/wiki/Lanczos_algorithm



Principle component analysis |:

e Givendata Y
e find transform X as well as feature W

arg minHY-XTWHF X =UT W =5V
X,W

o Given a new data y,,, we fix transform X, then:

/Wl\ (ul'ynew\

U, u,,...,u
W5 Us Y new

p
are principle components

(rows of X)

new

Wp ) (Up Ynew )




PCA: An Intuitive Approach

Let us say we have x;, I=1...N data points in d dimensions (d is large)

If we want to represent the data set by a single point X,, then

1 N
Xo =M= szi <« Sample mean
i—1

Can we justify this choice mathematically?

N
Jo(Xg) = ZHXi _XOHZ
i1

It turns out that if you minimize J,, you get the above solution, viz., sample mean

Source: Chapter 3 of [DHS]



PCA: An Intuitive Approach...

Representing the data set x;, i=1...N by its mean is quite uninformative

So let’s try to represent the data by a straight line of the form:
X=m+we

This is equation of a straight line that says that it passes through m
e is a unit vector along the straight line
And the signed distance of a point x fromm is w

The training points projected on this straight line would be

X.=m+we, 1=1..N



PCA: An Intuitive Approach... |:

Let's now determine w;’s N
3, (We, Wy, Wy, €) = DM+ wie — x|

i=1

Z lell —ZZWE (X —m)+Z|IX -m|f

=z

—ZW ZZWE (X, m)+Z||x —m]f

Partially differentiating with respect to w; we get: W, = e! (Xi — m)

=z

Plugging in this expression for w; in J; we get:

N N N
3(e)==De" (x, ~m)(x, —m) e+ x, —m|P =—e"Se+ >[I x, —m|}
i=1 i=1 i=1

N
where S = Z(Xi —m)(x, —m)" is called the scatter matrix
i=1



PCA: An Intuitive Approach...

So minimizing J, is equivalent to maximizing: @' Se

: . : : T
Subject to the constraint that e is a unit vector: € € = 1

Use Lagrange multiplier method to form the objective function:
e'Se—A(e'e-1)

Differentiate to obtain the equation:

25e—2Je=0o0r Se= Ae

Solution is that e is the eigenvector of S corresponding to the largest eigenvalue



PCA: An Intuitive Approach...

The preceding analysis can be extended in the following way.
Instead of projecting the data points on to a straight line, we may
now want to project them on a d-dimensional plane of the form:

X=M+We +-+We,
d is much smaller than the original dimension p
N p
In this case one can form the objective function: J, = le (m+ Zwikek) = alk
i=1 k=1

It can also be shown that the vectors e, e,, ..., €, are p eigenvectors

N
corresponding to p largest eigen values of the scatter matrix S =) (x; —m)(x; —m)’

i=1



PCA: Visually 1T

Data points are represented in a rotated orthogonal coordinate system: the origin
IS the mean of the data points and the axes are provided by the eigenvectors.



Computation of PCA

e In practice we compute PCA via SVD (singular value
decomposition)

e Form the centered data matrix:

e Compute its SVD:
X = Ud,d Dd,d (VN,d )T

e U and V are orthogonal matrices,
e D is a diagonal matrix



Computation of PCA...

e Note that the scatter matrix can be written as:

S=(X-m)(X-m)' =uD’U’

e S0 the eigenvectors of S are the columns of U and the
eigenvalues are the diagonal elements of D?

e Take only a few significant eigenvalue-eigenvector
pairs p<<d; The new reduced dimension
representation becomes:

)~(i =m+ Ud,p(Ud,p)T(Xi _m)



Computation of PCA... :

Sometimes we are given only a few high dimensional data points,
l.e., d>>N (mostly in image processing)

In such cases compute the SVD of X:
X' = VN,N DN,N (U p,N )T

So that we get:
X=U p,N DN,N (VN,N )T

Then, proceed as before, choose only p < N significant
eigenvalues for data representation:

X :m+Up,d(Up,d)T(Xi —m)



PCA: A Gaussian Viewpoint e

e D

1
X g exp(-Z(x— )'Z( - )= exp(~
J@n)' |z HJ 7o,

where the covariance matrix Z is estimated from the scatter matrix as (1/N)S
u’s and c’s are respectively eigenvectors and eigenvalues of S.

If d is large, then we need a even larger number of data points to estimate the
covariance matrix. So, when a limited number of training data points is available
the estimation of the covariance matrix goes quite wrong. This is known as curse
of dimensionality in this context.

To combat curse of dimensionality, we discard smaller eigenvalues and
be content with:

x~ﬁ exp(— (U‘T(;(_ )’ ), where p <min(d, N)
| o




PCA Examples

e Image compression example
e Novelty detection example
e Face recognition



PCA: example
Eigenfaces

e G. D. Finlayson, B. Schiele & J. Crowley. Comprehensive colour
image normalization. ECCV 98 pp. 475~490.

| I “. - < g AP

e Eigen-X, ©




Far beyond PCA

e Human bodies in 3D
e Human body representation in image




PCA and
dimensional reduction

e Space transform via SVD
o YW

e Dimension:
e d,N>>p

e Representation
e Errors ...




Problems of PCA

y

e Only suitable for normal
distributed data

e More consideration

ICA: Independent
components.

K-PCA: Nonlinear



Kernel PCA .

Assumption behind PCA is that the data points x are
multivariate Gaussian

Often this assumption does not hold

However, it may still be possible that a transformation ¢(x) is
still Gaussian, then we can perform PCA in the space of ¢(x)

Kernel PCA performs this PCA; however, because of “kernel
trick,” it never computes the mapping ¢(x) explicitly!



KPCA: Basic ldea

linear PCA kernel PCA
- A :d I AR == L :‘x ‘

¥ - A i
X g

X X I% X

"f

kxy) = () A

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of
the standard dot product, we implicitly perform PCA in a possibly high—dimensional
space F which is nonlinearly related to input space. The dotted lines are contour lines
of constant feature value.



Kernel PCA Formulation

e \We need the following fact:

N
e Letv be a eigenvector of the scatter matrix: S => x,x{
i=1

e Then v belongs to the linear space spanned by the data

points x; (I=1, 2, ...N).

N N
e Proof: Sv:/lv:v:%in(xiTv):Zwixi
i=1 i=1



Kernel PCA Formulation... e

e Let C be the scatter matrix of the centered mapping #(x):

C=Yolx)olx)"  S=Xxx

e Let L be an eigenvector of C, then L can be written as a
linear combination:

N
L = Z W, @ (X, )
k=1

e Also, we have: CL =1L

e Combining, we get: (3 p()p(c) )X We(x,) = 13 wo(x,)



Kernel PCA Formulation... sose

(Z (X )o(X; )! )(Z W, @ (X, )) = )Z’Zwkgp(xk) —

™M=
B

o(x)p(x;) p(X )W, = /Izwkgﬁ(x )=

I
o
=~

I

i 1

M=z

(P(X|)T ¢(Xi)(P(Xi)T (X, )W, :iZWk(P(XJT o(x, ), 1=12,..., N =

x
I

1
K*w = AKw =

Kw = Aw, where K; = p(x;)" (X;).

Kernel or Gram matrix



Kernel PCA Formulation... -

From the eigen equation Kw = Aw

And the fact that the eigenvector L is normalized to 1, we obtain:

ILIP= (W) (O we(x)) =w'Kw =1=

W W=—



KPCA Algorithm sece

Step 1: Compute the Gram matrix: K; =k(x;,x;),i,j=1...,N

Step 2. Compute (eigenvalue, eigenvector) pairs of K: (W',/11),| =1,...,M

WI

Step 3: Normalize the eigenvectors: W« —

A

N
Thus, an eigenvector w' of C is now represented as: L' =) wp(x,)
k=1

To project a test feature @#x) onto L' we need to compute:
N N
P(X)'L =) (2, Wp(X,)) = D Wk (X, X)
k=1 k=1

So, we never need ¢ explicitly



Feature Map Centering °

So far we assumed that the feature map ¢(x) is centered for thedata points x, ... Xy

Actually, this centering can be done on the Gram matrix without ever
explicitly computing the feature map #x).

K=(-11" /N)K(1 -11" /N)

N
Is the kernel matrix for centered features, i.e., Z¢(Xi) =0
i=1

A similar expression exist for projecting test features on the feature eigenspace

Scholkopf, Smola, Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Technical report #44,
Max Plank Institute, 1996.



KPCA: USPS Digit Recognition

Test Error Rate for degree (d)
# of components || A | 2 3 ! D 6 7

32 /9.6 8.8 | 81|85 (91|93 108

64 || 88|73 686767 [7.2] 75

128 \ 8.6/ 58 5961|5860 6.8

5 [[\8.7/] 55 |53]|52[52]54]| 54

512 |[ na. |49 |46 (44|51 (46 ([ 4.9

1024 || n.a. |49 | 43| 44|46 | 48] 4.6

2048 (| na. | 4.9 |42 41 (40|43 | 44

Linear PCA
Kernel function: K(X,Yy) = (XT Y)d

Classier: Linear SVM with features as kernel principal components

N = 3000, p = 16-by-16 image

Scholkopf, Smola, Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Technical report #44,

Max Plank Institute, 1996.



Robust- eet
Principal Component Analysis

e reference

Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Rank-sparsity
incoherence for matrix decomposition. preprint 2009.

Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization.
In: NIPS 2009.

X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating
direction methods. preprint, 20009.

Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method
for exact recovery of a corrupted low-rank matrices. Mathematical Programming,
submitted, 2009.

E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust Principal Component
Analysis? Submitted for publication, 20009.



research trends

e Appear in the latest 2008-2009

e Theories are guaranteed and still refining;
numerical algorithms are practical for
1000 X 1000 matrix (12 second) and still
Improving; applications not yet expand

Research background: comes from
matrix completion problem

@ L1 norm and nuclear norm convex
optimization

©



RPCA: outlines

e Part |: theory

e Part |I: numerical algorithm

e Part lll: applications



e Part |: theory




PCA

e Given a data matrix M, assume M = Lo+ Ny

L, Is a Low-rank matrix
N, Is a small and i.i.d. Gaussian noise matrix

e Classical PCA seeks the best (in an L2 norm
sense) rank-k estimate of L, by solving

minimize | M — L||2
subject to  rank(L) < k

e |t can be solved by SVD



PCA example :

e \When noise are small Gaussian, PCA does
well

Samples (red) from a one-dimensional subspace (blue) corrupted by small Gaussian
noise. The output of classical PCA (green) is very close to the true subspace despite all
samples being noisy.



Defect of PCA e

e When noise are not Gaussian, but appear
like spike, I.e. data contains outliers, PCA
fails 3

"

Samples (red) from a one-dimensional subspace (blue) corrupted by sparse, large errors. The principal
component (green) is guite far from the true subspace even when over three-fourths of the samples are
uncorrupted.



RPCA

e \When noise are sparse spikes, another robust
model (RPCA) should be built

e Assume M = Lo+ S0

L, IS a Low-rank matrix
S, is a Sparse spikes noise matrix
e Problem: we know M Is composed by a low rank
and a sparse matrix. Now, we are given M and
asked to recover its original two components

It's purely a matrix decomposition problem



Ill-posed problem :

We only observe M, it's impossible to know
which two matrices add up to be it. So without
further assumptions, it can’t be solved:

let A* be any sparse matrix and let B* = e;e!  another valid
Y sp q

sparse-plus-low-rank decomposition might be A = A* + e;e! and B =0
Thus, the low-rank matrix should be assumed to be not too sparse

B* is any low-rank matrix and A* = —we! , With v being the first
column of B* . A reasonable sparse-plus-low-rank decomposition
in this case might be B = B* + A+ and A = 0 Thus, the sparse
matrix should be assumed to not be low-rank



Assumptions about how L sett

and S are generated :

1. Low-rank matrix L:
Random orthogonal model . A rank-k matrix B* € R"*" with SVD B* =
UXV' is constructed as follows: The singular vectors U, V € R™"** are drawn uniformly
at random from the collection of rank-k partial isometries in BR"**. The choices of

U and V need not be mutually independent. No restriction is placed on the singular
values.

2. Sparse matrix S:

Random sparsity model. The matrix A* 1s such that support{A4*} 1s chosen uni-
formly at random from the collection of all support sets of size m. There 15 no
assumption made about the values of A* at locations specified by support{A®).



Under what conditions can M | ss¢
be correctly decomposed ?

1.  Let the matrices with rank < r(L) and with either the
same row-space or column-space as L live in a matrix
space denoted by T(L)

2. Let the matrices with the same support as S and
number of nonzero entries < those of S live in a matrix
space denoted by O(S)

e Then,if T(L) NO(S)=null, M can be correctly
decomposed.



Detailed conditions

e Various work in 2009 proposed different
detailed conditions. They improved on each
other, being more and more relaxed.

e Under each of these conditions, they proved
that matrix can be precisely or even exactly
decomposed.



Conditions involving HE

probability distributions :

COROLLARY 4. Suppose that a rank-k matriz B* € E™" is drawn from the
random orthogonal model, and that A* € B™" s draun from the random sparsity
model with m non-zero entries. Given C' = A* + B™, there exists a range of values
for ~ (given by (4.8/) so thal (A, ff] = (A*. B*) is the unigue optimum of the SDP

{1.3) with high probability provided

1.5
n
m=

log ny/max(k, log n)

e for B with rank k smaller than n, exact
recovery Is possible with high probability
even when m Is super-linear in n



the latest condition developed | ::
e The work of [1] and [2] are parallel, latest [5]

Improved on them and yields the ‘best’

Cond|t|0n minimize |L|[« + Al|5])1
subject to L+5=M

max |[U*e;]|? < Ll max | V*g||? € il (1.2)
i T i a

UV*| o < 2. (1.3)

‘\, n1ns '

Theorem 1.1 Suppose Ly is n x n, obeys (1.2)—(1.3). and that the support set of Sy is uniformly
distributed among all sets of cardinality m. Then there is a numerical constant ¢ such that with

probability at least 1 —en™'V (over the choice of support of Sy). Principal Component Pursuit (1.1)
with A = 1/y/n is exact, i.e. L = Ly and S = Sy, provided that

rank(Lp) < ppnp”tlogn)™®  and m < psn’. (1.4)

Above, p. and ps are positive numerical constants. In the general rectangular case where Ly is



Brief remarks

In [5], they prove even If:
the rank of L grows proportional to
O(n/log?n)

noise in S are of order O(n?)

exact decomposition is feasible



e Part II: numerical algorithm




Convex optimization

e In order to solve the original problem, it is
reformulated into optimization problem.

e A straightforward propose is

I]1.]i.ft'] rank{A) + v||E|loc suby A4+ E =D

but it's not convex and intractable

e Recent advances in understanding of the
nuclear norm heuristic for low-rank solutions and
the L1 heuristic for sparse solutions suggest

nllilrl_L Alls + AllE]|r suby A+ E =0

which is convex, I.e. exists a unigue minima



numerical algorithm

a M 0D = e

During just two years, a series of algorithms have been
proposed, [4] provides all comparisons, and most
codes available at

They include:

Interior point method [1]

iterative thresholding algorithm
Accelerated Proximal Gradient (APG) [2]
A dual approach [4]

(latest & best) Augmented Lagrange Multiplier (ALM)
[3,4]or Alternating Directions Method (ADM) [3,5]


http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html�

000
000
o0
ADM | :
® Mla B VI Al + [ Bl
Problem st. A+B=C.

e The corresponding Augmented Lagrangian
function is

. 3 :
L(A.B.Z) = ~|| A, —|B|*—=:,Z.A—B—C_}—§|A—B—C|3

e z ¢ R™"|s the multiplier of the linear
constraint. < > s trace inner product for
matrix <X,Y>=trace(XTY)

e Then, the iterative scheme of ADM Is

AR+l ¢ argmin 4 o gmxniL(A. B*. ZF)1,
B**l ¢ argmingermxn{ L(AFL, B, Z%)},
ZFL = ZF — B(AF + BFL - O),



Two established facts -

e To approach the optimization, two well known

facts Is needed
1, SW]=argmine| X 1+% X WL

. LSE_S_L’T=£11‘5111%11£ X «t+ 3 X -W|%

s.1S the soft t‘hresholding operator

r—c ifx > e,
Szlz] = 4z, if x < —=,
0, otherwise,

USVT is SvU or w



Optimization solution :

e Sparse A with L1 norm

1 1
AT =28 = B+ C = Pyys| 52" - B* + C
Q".---"j — {}: c Rn::{n. | — A f.-fj E j{ij E A rif}

X

e Low-rank B with nuclear norm. Reformulate
the objective so that previous fact can be
used: ..

B = argming.p  {||B|«+ E”B — [C — AF T 4 ?ZE]HE}

TTL X TR

i _ + 1 i
BFtL = yktl dlag(ma}:{af L 3 0})(VEFHYT

1
C — AFt1 4 ?Zk = UL (VRAOT with £ = diag({oFT1} )



Final algorithm of ADM :

Algorithm: the ADNM for SLRMD problem:
Step 1. Generate A* 1.

1 1
AR — Ez‘f — B +C — Ps _Ez‘f — B + C].
Step 2 Generate BFT1.
1

BFTl =kt diag(ma}:{c:rf_l U_}»}(Vk_l}T-

- 3

where UF*1, VF+1 and {crf_l_}» are generated by the singular values decompo-
sition of C' — AF+1 %Zk, i.e..

C — AR 4 %Zk = UFHISFL(VENT D with £F T = diag({afT1 1 )).

Step 3. Update the multiplier:

Zkl = zF _ g(AFTL L BRI _O),




e Part Ill: application




Applications [5]

1) background modeling from surveillance
videos

Airport video
Lobby video with varying illumination

2) removing shadows and specularities from
face iImages



Alrport video

e a video of 200 frames (resolution
176X144=25344 pixels) has a static
background, but significant foreground
variations

e reshape each frame as a column vector
(25344 X 1) and stack them into a matrix M
(25344 X 200)

e ODbjective: recover the low-rank and sparse
components of M



e

(a) Original frames (b) Low-rank L (c) Sparse §



Lobby video

e a video of 250 frames (resolution
168 X120=20160 pixels) with several drastic
Illumination changes

e reshape each frame as a column vector
(20160 X 1) and stack them into a matrix M
(20160 X 250)

e ODbjective: recover the low-rank and sparse
components of M



A

(a) Original frames (b) Low-rank L (c) Sparse 5
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