Hidden Markov Models

Hongxin Zhang
zhx@cad.zju.edu.cn

State Key Lab of CAD&CG, ZJU
2010-03-25




Outline

e Background
e Markov Chains
e Hidden Markov Models




Example: Video Textures :

e Problem statement

video clip video texture

SIGGRAPH 2000. Schoedl et. al.



The approach

P

How do we find good transitions?



Finding good transitions

Compute L, distance D; ; between all frames
> frame |

frame |

"
Similar frames make good transitions



Demo: Fish Tank




Mathematic model of eoe?

Video Texture .

A sequence of random variables A sequence of random variables
{ADEABEDADBCAD} {BDACBDCACDBCADCBADCA}

Markov Model

The future is independent of the
past and given by the present.



Markov Property

e Formal definition

Let X={X,},_, ybe a sequence of random

variables taking values s, eN if and only if
P(Xm:Sml)(O:SO, '"’Xm-lzsm-l) = I:)(Xm:Sml Xm-lzsm-l)

then the X fulfills Markov property

e Informal definition XO_X’O_X'O_X'O_‘

The future is independent of the past given the
present.



History of MC

e Markov chain theory developed around 1900.

e Hidden Markov Models developed in late 1960’s. |
e Used extensively in speech recognition in 1960-70.
e Introduced to computer science in 1989. /

Andrel Andreyevich Markov

Applications

» Bioinformatics.
» Signal Processing
» Data analysis and Pattern recognition



Markov Chain

e A Markov chain is specified by

e A state space S={S4S,..,S, }

e An initial distribution a,

e Atransition matrix A ?—5“ A %

Where A(n);= a; = P(q,;=sj|0;,=5)) |C>/ N /A\
L Sk S
N d i /\*—’/

e Graphical Representation

as a directed graph where
o Vertices represent states
o Edges represent transitions with positive probability



Probability Axioms

e Marginal Probability — sum the joint
probability

P(x=a)= > P(x=3;,Y)
yeh,
e Conditional Probability
P(x:ai,y:bj)
P(y =bj)

P(x=g; |y=Db;)= It P(y=b;)=0.



Calculating with Markov chains

e Probabillity of an observation seguence:

o Let X={x}--, be an observation sequence from
the Markov chain {S, a,, A}

P(x)=P(x,,....x.x,)
= P(x; | x; ... X )P(X, X aaeenss X, ) - Px,)
=P, [ x, )P, [ x;5) - Plxg)

L
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Example

Assume we are modeling a time series of high and low pressures
during the Danish autumn.

Let S =1H.L} I]_T_{i i} and ;1:{
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Example

Comparing likelihoods

We want to know the likelihood of one week of high pressure in
Denmark (DK) versus California (Cal).

x=HHHHHHH

DNy

P(x| DK)
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Motivation of 3T
Hidden Markov Models :

e Hidden states

e The state of the entity we want to model is often not
observable:

The state is then said to be hidden.

e Observables

e Sometimes we can instead observe the state of entities
Influenced by the hidden state.

e A system can be modeled by an HMM if:
e The sequence of hidden states is Markov

e The sequence of observations are independent (or Markov)
given the hidden




Hidden Markov Model

e Definition M={S,V,A,B, T}
e Set of states S={s, Sy, ---, Sp}
e Observation symbols V={v,V,, ..., vy}
e Transition probabilities

A between any two states a, = P(q=s)|q..=s)
e Emission probabilities

B within each state b(0) =P(0=v| g, =s)
e Start probabilities 7T = {ag}

Use A = (A, B, T) to indicate the parameter set of the model.

666,



Generating a sequence by the
model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state g, according to prob a,,

2. Emit letter o, according to prob e (0,)

3. Go to state g, according to prob a,;,

4. ... until emitting o,




Example

Model of high and low pressures
Assume we can not measure high and low pressures.
The state of the weather is influenced by the air pressure.

We make an HMM with hidden states representing high and low
pressure and observations representing the weather:

Hiddenstates: LLLLHHL
Observations: s « ¥ « © ¥
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Calculating with Hidden Markov
Model

Consider one such fixed state sequence

Q=000 -Gy

The observation sequence O for the Q Is

P(OIQ,1)=HP(Ot | Gs A)
= bq1 (Ol) ' qu (Oz) e qu (OT)

666,




Calculating with Hidden Markov
Model (cont.)

The probability of such a state sequence Q
P(Q ‘ 2’) — aocha(hCIz . an% o aqT—qu

The probability that O and Q occur simultaneously,
IS simply the product of the above two terms, i.e.,

P(O,Q[4)=P(O|Q,1)P(Q] 1)

P(O’ Q | 2’) — aOQl b% (Ol)a(th sz (OZ)aCbCIs . CIT ~1Gr b (O )




Example

P(x,m)
Z(Hw_ﬂ‘f_[i'?}}{u” !{R}){u” ¢, }( 1€ ;{R}}{um H[%)){HHH (S Na,, e, (R))
L1110 A 1010 010 A T010 01010
=0.0006278
0.2 0.7
e 0.8 il
f:-"‘— — _%x'x\ }—2__
/ a /N
Hiddenstatess LLLLHHL | || H | L)
Observations: weee « @ ¢ ¢« ¥ NN ) NS
< 0.8 v 0.2
= 0.2 = 0.8




. . 0000
The three main questions on | 22
o0

HMMs .
1. Evaluation

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND P[O|M]
2.  Decoding

GIVEN a HMM M=(S, V, A, B, n), and a sequence O,

FIND the sequence Q of states that maximizes P(O, Q | 4)
3. Learning

GIVEN a HMM M=(S, V, A, B, n), with unspecified

transition/emission probabilities and a sequence Q,
FIND parameters 0= (e(.), ;) that maximize P[x| ]



Evaluation

»  Find the likelihood a sequence is generated by the model

> A straightforward way (75%57%)
»  The probability of O is obtained by summing all possible state
sequences g giving

P(O[4)=2.P(O|Q,)PQ[A)

allQ
Zﬂ qlbql (Ol)aqlq d; (O, )a R qu (Or)
01.92,--.0r @ @ @
FTOVR I
Complexity is O(NT) 0 © ®
Calculations is unfeasible d) v ¥ \
b,(d;)



The Forward Algorithm

e A more elaborate algorithm
e The Forward Algorithm

PO12) =Y et (i)

@M =3 & 0)a,h 0,

P00, 1) =Y ,(i)




The Forward Algorithm

The Forward variable
2, (1)=P(O0,---0,,q, =5;[ 1)

We can compute af(i) for all N, i,

Initialization:
a,(1) = agby(0O,) i=1..N
lteration: .
at+1(i) = [Zat (i)aij ]bj (Ot+1) t — 1 . T T
i=1

Termination:

PO12)= e (i)

1




The Backward Algorithm

The backward variable

yil ()= P(Ot+1ot+2 O | 0 =S, A)
Similar, we can compute backward variable for all N, I,

Initialization:
Gr()=11=1..,N
lteration: N
ﬂt (I) = leaijbj (Ot+1)ﬂt+1(j) t=T —e:]].1,1T —-2,--11<i<N
=

Termination:

P(O14) = a0 (0) ()




Consider o (i) =P(00,...0;,q; =S| 1)

ThusP (g, = Si‘O) _ P(O,0; =S) o (iT)

P(0) ) Z(ZT (iT )

AlsoP(g, =S;|0) = PO.4.=5)
P (O)
_ P(00,---0,,q, = Sit 01,10, ---0r)
P (O)
_ P(O0, --0,,q =S)P(0..0,--0; |00,---0,,q =)
Forward, o,(1) P (0) Backward, /(i)

_ P (0102"'Ot’qt — Si)P(Ot+1Ot+2"'OT |0 =S))
P (0)




Decoding

GIVEN a HMM, and a sequence O.

Suppose that we know the parameters of the Hidden
Markov Model and the observed sequence of observations
O, 0, ..., O

FIND the sequence Q of states that maximizes
P(Q[O,4)
Determining the sequence of States q,, 9,, ... , gy, Which

Is optimal in some meaningful sense. (i.e. best “explain”
the observations)



000
0000
o000
. ::.
Decoding :
Consider P(Q|O, ) = P(0.Q[4)
P(O[A)
To maximize the above probability is maximizing
P(O,Q[4)
= &; bllol i, bi202 aizigbigog oA i Mo @
@ /@
A best path finding problem N N N
max P (O,Q| 1) S S \
O Oy O On

=max In(P (O,Q| 1))
= max( In( I101)+ |n(a.12b.202) .+ |ﬂ(61.T LirBio, )



Viterbi Algorithm

[Dynamic programming]

Initialization:
0,(i) =ayb(0,), i=1...N
g, (1) = 0.
Recursion:
3,(j) = max; [8,4(i) a;]b,(O)
W,()) = argmax; [6.,(1) ay]
Termination:
P* = max; 0(i)
gr* = argmax; [0+(i) ]
Traceback:
O = W (0*1 ) t=T-1,T-2,...,1.




The Viterbi Algorithm 2
State 1
2 70
K

Similar to “aligning” a set of states to a sequence

Time: O(KZ?N)
Space: O(KN)




Learning

e Estimation of Parameters of a Hidden Markov Model

1. Both the sequence of observations O and the
sequence of states Q is observed

learning A = (A, B, 1)

2. Only the sequence of observations O are
observed

learning Q and 4 = (A, B, 7)



Maximal Likelihood Estimation

e Given O and Q, the Likelihood is given by:

L(AB,7)=ab,a, b, a,b, b

110, “hlp 1505 ol 303 'T 4k ThOr



Maximal Likelihood Estimation

e the log-Likelihood is:
I(AB,z)=InL(A,B,7z)=In(a )+In(b,, )+In(a, )

+Ina i2i3)+|n(bi303) +In(a a; i )+|”(biToT)

:i foIn(a )+i:%: f, In(a, )+ ;;In .

where f;, = the number of times state i occurs in the first state
fij = the number of times state I changes to state J.

By = T(y|6) (orp(y|é) inthe discrete case)

ZD: the sum of all observations o, where g, = S;
o(i)



Maximal Likelihood Estimation

In such case these parameters computed by
Maximum Likelihood Estimation are:
f fij

A . i0 A .
a, —T' a; =———and

2.,
J=1

b. = the MLE of b; computed from the
observations o, where g, = S;.




Maximal Likelihood Estimation

e Only the sequence of observations O are observed

L(A,B,7)= Za,lb a. b a.b_..a .b

1101 iy 1505 Tal3 303 'T 4k ThOp
Iyl ..

It is difficult to find the Maximum Likelihood Estimates
directly from the Likelihood function.
The Techniques that are used are

1. The Segmental K-means Algorith
2. The Baum-Welch (E-M) Algorithm



The Baum-Welch Algorithm

e The E-M algorithm was designed originally to handle
“Missing observations”.

e In this case the missing observations are the states
{d,, Az, -, O}

e Assuming a model, the states are estimated by
finding their expected values under this model. (The
E part of the E-M algorithm).



The Baum-Welch Algorithm

e With these values the model Is estimated

Yy

Maximum Likelihood Estimation (The M part

of the E-M algorithm).

e The process is repeated until the estimated

model converges.



The Baum-Welch Algorithm :

Initialization:
Pick the best-guess for model parameters (or arbitrary)

lteration:

Forward

Backward

Calculate A, E,(b)

Calculate new model parameters a,;, e, (b)

Calculate new log-likelihood P(x | 6)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x | 6) does not change much




The Baum-Welch Algorithm

Let £(0,Q4)=L(0,Q,4) denote the joint distribution of
Q,0. Consider the function:

Q(ﬂ,, ﬂ“’) = Ex (In L(O’ Q, AXQ’ ﬂ*’)

Starting with an initial estimate of A (ﬁ(l)) .

A sequence of estimates {ﬂ(m)} are formed
by finding 2 =A™ to maximize Q(/i,i(m))
with respectto 4 .



The Baum-Welch Algorithm

The sequence of estimates  {1™}
converge to a local maximum of the likelihood

L(Q.2)= f(Q)2)




Speech Recognition

e On-line documents of Java™ Speech API

e On-line documents of Free TTS
http://freetts.sourceforge.net/docs/

e On-line documents of Sphinx-ll
http://www.speech.cs.cmu.edu/sphinx/



http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/
http://java.sun.com/products/java-media/speech/

Brief History of CMU Sphinx

e Sphinx-I (1987)
The first user independent, high performance ASR of the world.
Written in C by Kai-Fu Lee (Z5i{Ef#H 1 - FR{EGooglegl|24%K).

e Sphinx-II (1992)
Written by Xuedong Huang in C. (=25 {1 - I sMicrosoft Speech.NETH]
[REEN)
5-state HMM / N-gram LM.

e Sphinx-IIl (1996)
Built by Eric Thayer and Mosur Ravishankar.
Slower than Sphinx-1l but the design is more flexible.

e Sphinx-4 (Originally Sphinx 3j)
Refactored from Sphinx 3.
Fully implemented in Java. (Not finished yet ...)



Y
X
3
Components of CMU Sphinx
D
Application
_é_ ____.XE______Application
%: Recognizer
A

Features Feedback ™)
K nowledge
Front End Decoder Base |
dA=g
Input L _...I* Tedoo & v
y Knowledge
Control




Knowledge Base

e The data that drives the decoder.

e Three sets of data
Acoustic Model.
Language Model.
Lexicon (Dictionary).




Speech Recognition Architecture

« Observations : O =o0,,0,,05, 0,

@ Word Sequences : W =w,w,,wy, -, w

m

&= Probabilistic implementation can be expressed :

W = argmax P(W | O)

WelL
% Then we can use Bayes' rule to break it down :

! (O |WYP(W

W =argmax P(W |O) = arg max PO | \PV)
Wel Wel P ( () )

( \
v PV 0) = PWO) i P(O|W) = PITO)

P(O) P(W)

. P(W|0)-P(0)= PWO)=P(O|W)-P(W) |




Speech Recognition Architecture

& For each potential sentence we are still
examining the same observations (), which

must have the same probability 2O).

W = arg max P(W ‘ ()) _ —¥ Posterior probability
Wel

) _
= arg max POW)PI) =argmax P(O |W)P(W)

el P(O) 7 /

Observation likelihood Prior probability
Acoustic model Language model




Speech Recognition Architecture

| Figure 7.2 Schematic architecture for a speech
recognition

e AMWWMWWWWWWMMWWWMWWWW i

Feature Extraction | J I]

(Sional Procesaing T ;
e HHHHHHHHHHHHHHH
R

Phone Likelihood
Estimation (Gaussians l l l
or Neural Networks)

Phone ay 0.70 ay 0.80 ay 0.80 n 0.50
N—gram Gramm ar ax 0.22 aa 0.12 aa 0.12 en 0.20
Likelihoods ax 0.04 ax 0.04 ax 0.04 m 0.12
" 01 = \ P(Ol(]) eh 0.03 eh 0.03 eh 0.03 em0.11
a| 03 01
Decodmg (Viterbi l l l l l l l
HMM Lexicon —wor Stack Decoder)
(3 (} L J L J L |
QLSAS
(3 .
g g & Words i need a



Acoustic Model

e /model/hmm/6k
e Database of statistical model.
e Each statistical model represents a phoneme.

e Acoustic Models are trained by analyzing
large amount of speech data.



HMM in Acoustic Model

e HMM represent each unit of speech in the
Acoustic Model.

e Typical HMM use 3-5 states to model a
phoneme.

e Each state of HMM is represented by a set of
Gaussian mixture density functions.

e Sphinx2


http://www.try.idv.tw/try/talks/phoneset_s2.html

Mixture of Gaussians

e Represent each state in HMM.,

e Each set of Gaussian Mixtures are called
“senones’.

e HMM can share “senones”.

&~ -y

AQ\ SO AQN

Gaussian Mixtures




Mixture of Gaussians

1

Nix, p,2)=
S e

172 EXP[_ %(-": — Y I (x— ;U)J

T

Flo)- £

4
C, >0 H 2'5;::1
P

(Gaussian mixtures with enough mixture components can

approximate any distribution.
G‘IIO Q2 (-\’I
O N OESO

AN\ SO AL

Gaussian Mixtures

o, N (X 44,2, ) Horh




Language Model

e Describes what is likely to be spoken in a
particular context

e \WWord transitions are defined in terms of
transition probabilities

e Helps to constrain the search space

/P\/\/\
vvv

hood



N-gram Language Model

e Probability of word N dependent on word N-1, N-2, ...

e Bigrams and trigrams most commonly used

e Used for large vocabulary applications such as dictation
e Typically trained by very large (millions of words) corpus

[Unigram Pipack) ]

N
[Bigrarn _ /(ﬁchkumm })sba\ckww@s) j

[ Trigram P(back |don't, look) Cﬁbacklsun, strikes) B P{back] empire, stﬁkesﬂ




Markov Random field

e See webpage

e http://www.nlpr.ia.ac.cn/users/szli/MRF_Book
IMRF_Book.html




Belief Network (Propagation) |:

Y. Weiss and W. T. Freeman
Correctness of Belief Propagation in Gaussian Graphical Models of
Arbitrary Topology. in: Advances in Neural Information Processing
Systems 12, edited by S. A. Solla, T. K. Leen, and K-R Muller, 2000.

MERL-TR99-38. @ @



http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/
http://www.merl.com/papers/TR99-38/

Homework

e Read the motion texture siggraph paper.




