Dimension Reduction

Hongxin Zhang
zhx@cad.zju.edu.cn

State Key Lab of CAD\&CG, ZJU 2010-03-18

Introduction

- Goal: choosing suitable transforms, so as to obtain high "information packing".
- Raw data -> Meaningful features.
- Unsupervised/Automatic methods.
- To exploit and remove information redundancies via transform.

Feature extraction

- Data independent
- DFT, DWT, DCT
- A single piece of signal
- Data dependent

- PCA, K-PCA, ICA, ISO-MAP, LLE ...
- A set of signals (images, motion data, shapes,...)
- Key: define desirable transforms
- Raw data -> Feature space

PCA: example Digit data

$$
\boldsymbol{X}=\left(\begin{array}{cc|c|cc}
x_{0,0} & x_{1,0} & x_{2,0} & \cdots & x_{N-1,0} \\
x_{0,1} & x_{1,1} & x_{2,1} & \cdots & x_{N-1,1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{0, p-1} & x_{1, p-1} & x_{2, p-1} & \cdots & x_{N-1, p-1}
\end{array}\right)_{N \times p}
$$

130 threes, a subset of 638 such threes and part of the handwritten digit dataset. Each three is a 16×16 greyscale image, and the variables $\mathrm{Xj}, \mathrm{j}=1, \ldots, 256$ are the greyscale values for each pixel.

Digit: rank-2 model for threes

Two-component model has the form

$$
\begin{aligned}
\hat{f}(\lambda) & =\bar{x}+\lambda_{1} v_{1}+\lambda_{2} v_{2} \\
& =3+\lambda_{1} \cdot 3+\lambda_{2} \cdot 3 .
\end{aligned}
$$

Here we have displayed the first two principal component directions, v_{1} and v_{2}, as images.

Principal Components

－Suppose we have N measurements on each of p variables X_{j} ， $j=1,2, \ldots, p$ ．There are several equivalent approaches to principal components：
－Produce a derived（and small）set of uncorrelated variables $Z_{k}=a_{k}^{T} X, k=1, \ldots, q<p$ that are linear combinations of the original variables，and that explain most of the variation in the original set．
－Approximate the original set of N points in \mathfrak{R}^{p} by a least－squares optimal linear manifold of co－dimension $q<p$ ．
－Approximate the $q<p$ data matrix \boldsymbol{X} by the best rank－q matrix $\hat{\boldsymbol{X}}(p)$ ． This is the usual motivation for the SVD．

> 数据的简化线性表示

数据的低维线性流形近似

矩阵逼近

Basis Vectors and Images

- Input samples

$$
\mathbf{X}^{T}=[X(1), X(2), \ldots, X(p)]
$$

- Unitary $p \times p$ matrix A and transformed Vector

$$
\mathbf{Z}=\mathbf{A X}
$$

- Basis vector representation

$$
\begin{aligned}
& \mathbf{x}=\mathbf{A} \mathbf{z}=\sum_{i=0}^{N-1} z(i) \mathbf{a}_{i} \\
&<\mathbf{a}_{j}, \mathbf{x}>=\mathbf{a}_{j}^{T} \mathbf{x}=\sum_{i=1}^{p} z(i)<\mathbf{a}_{j}, \mathbf{a}_{i}>=z(j)
\end{aligned}
$$

PCA:

Derived Variables

- $\boldsymbol{Z}_{1}=a_{1} \boldsymbol{X}$ is the projection of the data onto the longest direction, and has the largest variance amongst all such normalized projections.
- α_{1} is the largest eigenvalue of Σ, the sample covariance matrix of X. Z_{2} and α_{2} correspond to the second-largest eigenvector.

PCA:

Least Squares Approximation

Find the linear manifold

$$
f(\lambda)=\mu+V_{q} \lambda
$$

that best approximates the data in a least-squares sense:

$$
\min _{\mu,\left\{\lambda_{i}\right\}, V_{q}} \sum_{i=1}^{N}\left\|\boldsymbol{x}_{i}-\mu-\boldsymbol{V}_{q} \lambda_{i}\right\|^{2}
$$

Solution:

$$
\mu=\bar{x}, v_{k}=a_{k}, \lambda_{k}=Z_{k}
$$

PCA:
 Singular Value Decomposition

Let $\hat{\boldsymbol{X}}$ be the centered $N \times p$ data matrix (assume $N>p$).

$$
\begin{aligned}
& \boldsymbol{X}=\left(\begin{array}{ccccc}
x_{0,0} \\
x_{0,1} \\
\vdots \\
x_{1,1} \\
\vdots \\
x_{0, p-1} & x_{2,0} & \cdots & x_{N-1,0} \\
x_{2,1} & \cdots & x_{N-1,1} \\
\vdots & \ddots & \vdots \\
x_{2, p-1} & \cdots & x_{N-1, p-1}
\end{array}\right)_{N \times p}=\boldsymbol{U S V} \\
& x_{1} \\
& \hat{X}, \text { where }
\end{aligned}
$$

is the SVD of \hat{X}, where
Singular values
> $\quad U$ is $N \times p$ orthogonal, the left singular vectors.
$>\quad V$ is $p \times p$ orthogonal, the right singular vectors.
> $\quad S$ is diagonal, with $d_{1} \geq d_{2} \geq \ldots \geq d_{p} \geq 0$, the singular values.
$\checkmark \quad$ The SVD always exists, and is unique up to signs. The columns of V are the principal components, and $Z_{j}=\boldsymbol{U}_{j} \boldsymbol{d}_{j}{ }^{\text {j}}$

PCA:

Singular Value Decomposition

$$
\boldsymbol{X}=\left(\right)_{\substack{\text { Singular values } \\ x_{1}}}=\boldsymbol{U S V}
$$

Eckart-Young theorem
Let s_{q} be s with all but the first ${ }_{q}$ diagonal elements set to zero. Then $\hat{X}_{q}=U S_{q} V^{T}$ solves

$$
\min _{\operatorname{rank}\left(\hat{\boldsymbol{X}}_{q}\right)=q}\left\|\hat{\boldsymbol{X}}-\hat{\boldsymbol{X}}_{q}\right\|
$$

PCA: example Eigenfaces

- G. D. Finlayson, B. Schiele \& J. Crowley. Comprehensive colour image normalization. ECCV 98 pp. 475~490.

- Eigen-X, ©

PCA and dimensional reduction

- Space transform via SVD
- $X \rightarrow Y$
- Dimension:
- $p \gg q$
- Representation
- Errors ...

Problems of PCA

- Only suitable for normal distributed data
- More consideration
- ICA: Independent components.
- K-PCA: Nonlinear

Nonlinear dimension reduction algorithms:

- Locally Linear Embedding (LLE), Science Sam T. Roweis and Lawrence K. Saul
- A Global Geometric Framework for Nonlinear Dimensionality Reduction (Isomap), Science Joshua B. Tenenbaum, Vin de Silva, John C. Langford
- BoostMap: A Method for Efficient Approximate Similarity Rankings, CVPR 2004 Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios

Locally Linear Embedding (LLE)

- Recovers global nonlinear structure from locally linear fits.
- Each data point and it's neighbors is expected to lie on or close to a locally linear patch.
- Each data point is constructed by it's neighbors:

$$
\overrightarrow{\hat{X}}_{i}=\sum_{j} W_{i j} \vec{X}_{j}
$$

$W_{i j}=0$ if $\quad \vec{X}_{j}$ is not a neighbor of \vec{X}_{i}

LLE:
 Getting the Reconstruction Weights

- We want to minimize the error function:

$$
\varepsilon(W)=\sum_{i}\left|\vec{X}_{i}-\sum_{j} W_{i j} \vec{X}_{j}\right|^{2}
$$

- With the constrains:

$$
W_{i j}=0 \text { if } \vec{X}_{j} \text { is not a neighbor of } \vec{X}_{i}
$$

$$
\sum_{j} W_{i j}=1
$$

- Solution (using Lagrange multipliers):

$$
\begin{aligned}
& W_{j}=\sum_{k} C_{j k}^{-1}\left(\vec{X} \vec{\eta}_{k}+\lambda\right) \\
& \lambda=1-\sum_{j k} C_{j k}^{-1}\left(\vec{X} \vec{\eta}_{k}\right) / \sum_{j k} C_{j k}^{-1}
\end{aligned}
$$

LLE:

Find Embedded Coordinates

- Choose d-dimensional coordinates, Y, to minimize: $\phi(Y)=\sum_{i}\left|\vec{Y}_{i}-\sum_{j} W_{i j} \vec{F}_{j}\right|^{2}$

Under: $\sum_{i} \vec{Y}_{i}=\overrightarrow{0}, \frac{1}{\mathrm{~N}} \sum_{i} \vec{Y} \vec{Y}^{T}=I$
Quadratic form:
where:

- Solution: compute bottom d+1 eigenvectors of M. (discard the last one)

LLE:
 Summary

- Input: N data items in D dimension (X).
- Output: d < D dimensional embedding coordinates (Y) for the input points.

Algorithm Pseudocode (I)

Find neighbors in X space
For $\mathrm{i}=1: \mathrm{N}$
compute the distance from Xi to every other point Xj find the K smallest distances assign the corresponding points to be neighbors of Xi end

Algorithm Pseudocode (II)

Solve for reconstruction weights W.
for $\mathrm{i}=1 \mathrm{~N}$
create matrix Z consisting of all neighbors of Xi subtract Xi from every column of Z
compute the local covariance $\mathrm{C}=\mathrm{Z}^{\prime *} \mathrm{Z}$
solve linear system $\mathrm{C}^{*} \mathrm{w}=1$ for w
set $\mathrm{Wij}=0$ if j is not a neighbor of I
set the remaining elements in the ith row of W equal to w/sum(w);
end

Compute embedding coordinates Y using weights W .
create sparse matrix $\mathrm{M}=(\mathrm{I}-\mathrm{W})^{\prime *}(\mathrm{I}-\mathrm{W})$
find bottom $d+1$ eigenvectors of M (corresponding to the $d+1$ smallest eigenvalues)
set the q-th ROW of Y to be the $q+1$ smallest eigenvector (discard the bottom eigenvector [1,1,1,1...] with eigenvalue zero)

LLE: Example

- $\mathrm{N}=8588$ (RGB) images of lips of size 108×84. D=27216
- Num of neighbors $\mathrm{K}=16$

3333333333333333333333

Isomap: (Science 2001) Isometric feature mapping

- Preserve the intrinsic geometry of the data.
- Use the geodesic manifold distances between all pairs.

Three steps algorithm

Isomap:
 Construct Neighborhood Graph

- Determine which points are neighbors, based on the distances d(i,j) .
- K nearest neighbors
- ε-radius

- Create a graph G, with edges between neighbors and distance weights.

Isomap: Compute Shortest Paths

- Estimate the geodesic distances.
- Compute all-pairs shortest paths in G.
- Can be done using Floyd's algorithm, $O\left(N^{2} \ln N\right)$.

$$
\begin{array}{ll}
d_{G}(i, j)=d(i, j) & \text { neighborin } \mathrm{g} \mathrm{i}, \mathrm{j} \\
d_{G}(i, j)=\infty & \text { othewise } \\
\text { for } \mathrm{k}=1,2, \ldots, \mathrm{~N}
\end{array}
$$

$$
d_{G}(i, j)=\min \left\{d_{G}(i, j), d_{G}(i, k)+d_{G}(k, j)\right\}
$$

Isomap:
 Construct d-dimensional Embedding

Classical MDS with $\mathrm{d}_{\mathrm{G}}(\mathrm{i}, \mathrm{j})$, minimize the cost function:

$$
E=\left\|\tau\left(D_{G}\right)-\tau\left(D_{Y}\right)\right\|_{L^{2}}
$$

$$
\text { where } D_{Y}(i, j)=\left\|y_{i}-y_{j}\right\|
$$

$$
D_{G}(i, j)=d_{G}(i, j)
$$

and

$$
\tau(D)=\frac{-1}{2}\left(I-\frac{1}{N}\right) D^{.2}\left(I-\frac{1}{N}\right)
$$

Solution: take top d eigenvectors of the matrix $\tau\left(D_{G}\right)$

Isomap:
 Classical Multi-dimensional Scaling

$$
\begin{aligned}
\mathbf{X}^{\prime} \mathbf{X} & =-\frac{1}{2} \mathbf{J E} \mathbf{J} \quad \text { E: Euclidian distance matrix } \\
\mathbf{B} & =-\frac{1}{2} \mathbf{J M J} \quad \text { M: Manifold distance matrix } \\
L(\hat{\mathbf{X}}) & =\left\|-\frac{1}{2} \mathbf{J}(\mathbf{E}-\mathbf{M}) \mathbf{J}\right\| \\
& =\left\|\hat{\mathbf{X}} \hat{\mathbf{X}}^{\prime}-\mathbf{B}\right\| \\
\mathbf{B} & =\mathbf{Q} \Lambda \mathbf{Q}^{\prime} \quad \hat{\mathbf{X}}=\mathbf{Q}_{+} \mathbf{\Lambda}_{+}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
c_{i} & =\sum_{a=1}^{m} x_{i a}^{2} \\
d_{i j}^{2} & =\sum_{a=1}^{m}\left(x_{i a}-x_{j a}\right)^{2} \\
\mathbf{E} & =\mathbf{c} \mathbf{1}^{\prime}+1 \mathbf{c}^{\prime}-2 \mathbf{X X}^{\prime} \\
\mathbf{J} & =\mathbf{I}-\frac{1}{n} \mathbf{1 1 ^ { \prime }} \\
\mathbf{B} & =-\frac{1}{2} \mathbf{J}\left(\mathbf{c} \mathbf{1}^{\prime}+1 \mathbf{c}^{\prime}-2 \mathbf{X X}^{\prime}\right) \mathbf{J} \\
& =-\frac{1}{2} \mathbf{J c o} 0^{\prime}-\frac{1}{2} \mathbf{0 \mathbf { c } ^ { \prime } \mathbf { J } + \mathbf { J X X } \mathbf { J }} \\
& =\mathbf{X X}^{\prime} .
\end{aligned}
$$

Eigen-structure analysis, SVD again

Isomap:
 Classical Multi-dimensional Scaling (2D)

$$
\begin{aligned}
\mathbf{J} & =\operatorname{eye}(n)-\operatorname{ones}(n) \cdot / n ; \\
\mathbf{B} & =-0.5 * \mathbf{J} * \mathbf{M} * \mathbf{J} ; \\
& \% \text { Find largest eigenvalues }+ \text { their eigenvectors: } \\
{[\mathbf{Q}, \mathbf{L}] } & =\operatorname{eigs}\left(\mathbf{B}, 2,,^{\prime} \mathrm{LM}^{\prime}\right) ; \\
& \% \operatorname{Extract} \text { the coordinates: } \\
\text { newy } & =\operatorname{sqrt}(\mathbf{L}(1,1)) \cdot * \mathbf{Q}(:, 1) ; \\
\text { newx } & =\operatorname{sqrt}(\mathbf{L}(2,2)) \cdot * \mathbf{Q}(:, 2) ;
\end{aligned}
$$

Fig. 3. An example of a face flattening. (a) A 3D reconstruction of a face. (b) The flattened texture image of the face.

Isomap: Examples

- $N=2000$ images 64×64 pixels $\mathrm{K}=6$

Isomap: More Results

Input: 698
images of 64×64

$$
\mathrm{K}=7, \mathrm{~d}=2
$$

Outputs:

Two-dimensional Isomap embedding (with neighborhood graph).

Isomap: More Results

- Same inputs, but this time with $\mathrm{d}=3$

698 images of $64 \times 64 \mathrm{~K}=7$

BoostMap:
 A different perspective of embedding

- Goal - Significantly reduce retrieval time in image database systems.
- Embedding is formulated as a machine learning task.
- AdaBoost is used to combine many simple 1D embeddings into a d-dimensional embedding.
- Obtain ranking of all DB objects in order of similarity to a query object.

BoostMap: main idea

Data Set S, Distance function $D: S \times S \rightarrow \mathbf{R}^{1}$

Main Points:
D may be expensive to compute.
D may not satisfy triangle inequality.

BoostMap: Problem Definition

- Embeddings are seen as classifiers.
- Estimate for a, b, c if a is closer to b or c.
- X - set of objects
- D_{x} - distance measure.

$$
P_{X}\left(q, x_{1}, x_{2}\right)=\left\{\begin{array}{l}
1 \text { if } \mathrm{D}_{\mathrm{X}}\left(q, x_{1}\right)<\mathrm{D}_{\mathrm{X}}\left(q, x_{2}\right) \\
0 \text { if } \mathrm{D}_{\mathrm{x}}\left(q, x_{1}\right)=\mathrm{D}_{\mathrm{x}}\left(q, x_{2}\right) \\
-1 \text { if } \mathrm{D}_{\mathrm{x}}\left(q, x_{1}\right)>\mathrm{D}_{\mathrm{x}}\left(q, x_{2}\right)
\end{array}\right.
$$

- Find an Embedding F: X $\rightarrow \mathrm{R}^{\mathrm{d}}$ and a measure $\boldsymbol{D}_{\boldsymbol{R}^{d}}$ that is used for evaluating any triplet.

$$
\tilde{F}\left(q, x_{1}, x_{2}\right)=D_{R^{d}}\left(F(q), F\left(x_{2}\right)\right)-D_{R^{d}}\left(F(q), F\left(x_{1}\right)\right)
$$

- Data Set S, Distance function $D: S \times S \rightarrow \mathbf{R}^{1}$
- Proximity function $P(r ; x, y)=\operatorname{sgn}(D(y, r)-D(x, r))$

Example.

Some proximity function values for "Cities of North America"

BoostMap - Outputs

- The output is a classifier: $\quad H=\sum_{j=1}^{d} \alpha_{j} \tilde{F}_{j}$
- The final output is an embedding $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{R}^{\mathrm{d}}$ And a distance measure $D: R^{d} x R^{d} \rightarrow R^{d}$

$$
\begin{aligned}
& F(x)=\left(F_{1}(x), \ldots, F_{d}(x)\right) \\
& D_{R^{d}}\left(\left(u_{1}, \ldots, u_{d}\right),\left(v_{1}, \ldots, v_{d}\right)\right)=\sum_{j=1}^{d}\left(\alpha_{j}\left|u_{j}-v_{j}\right|\right)
\end{aligned}
$$

BoostMap - Results

Hand shapes used in the training set

Orientations used in the training set

Retrieval results

Summary: Nonlinear Dimensionality Reduction

- Isomap - Use the geodesic manifold distances between all pairs.
- sees more than just the Euclidean structure.
- polynomial time procedure.
- LLE - Recovers global nonlinear structure from locally linear fits.
- no need no estimate pair-wise distances.
- optimization do not involve local minima.
- BoostMap = looks at embeddings as classifiers, uses AdaBoost.
- main usage: similarity retrieval from database.
- main advantage: trained offline, applicable online.
- Manifold learning ...

流形学习法

- 关键问题
- 每个象素对应时间／年龄参数
- 风化程度（Weathering Degree）
- 每个风化程度对应的纹理值

难点：单幅图像 $->$ 时序关系

- 流形学习（Manifold Learning）
- \｛高维数据\} $\boldsymbol{\rightarrow}$ 结构信息非线性降维

流形学习法

流形学习法—合成结果

- 曲面上的合成方法等
- 存储，绘制等等

流形学习法一合成结果

原图
做新
做旧

Homework

- Algorithm implementations
- Eigenface
- ISOMAP
- Read the ISOMAP, LLE and BoostMap papers.
- Keep on thinking:
- How to use dimension reduction results

