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 Flat clustering
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 K-means
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 bottom-up
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 Applications



Clustering

 Given set of data points, group them

 Unsupervised learning

 Learn the similarity. Which patient are similar? 

(or customers, faces, earthquakes, …)



Clustering vs. Classification

 Clustering

 Instance: 

 Learn: and/or mapping from     to       

 Classification/Regression

 Instance: 
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Clustering:

image segmentation

Mean-shift segmentation



Mixtures of Gaussians

 Mixture distribution:

 Assume P(x) is a mixture of K different Gaussians

 Assume each data point, x is generated by 2-step process

 Choose one of the K Gaussians as label

 Generate x according to the Gaussian 

 What object function shall we optimize?

 Maximize data likelihood
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Mixtures of Gaussians (cont.)

 Multivariate Gaussian model

 How to generate it?



Multi-variate density estimation



Mixtures of Gaussians: 

Wishart distribution

 A mixture of Gaussian Model:

 Wishart prior

High dimensional 

parameters



Mixture density



Mixture density



Mixture density: 

posterior sampling



Mixture density estimation



Mixture density estimation



Mixture density estimation: 

credit assignment



The Expectation-Maximization 

algorithm



The EM-algorithm



The EM algorithm



Regularized EM algorithm



Selecting the number of 

components



Mixture density estimation: 

example



K-means clustering



K-Means vs.

Mixture of Gaussians

 Both are iterative algorithms to assign points 
to clusters

 Objective function

 K Means: minimize

 MoG: maximize likelihood 

 MoG the more general formulation

 Equivalent to K Means when         , and σ→0



Hierarchical (bottom-up) 

clustering

 Hierarchical agglomerative clustering: we sequentially merge 

the pair of “closest” points/clusters

 The procedure

1. Find two closest points (clusters) and merge them

2. Proceed until we have a single cluster (all the points)

 Two prerequisites:

1. distance measure d(xi, xj) between two points

2. distance measure between clusters (cluster linkage)



Hierarchical (bottom-up) 

clustering



Hierarchical (bottom-up) 

clustering



Spectral clustering



Properties of the random walk



Random walk and clustering



Eigenvalues/vectors and 

spectral clustering



Eigenvalues/vectors cont’d



Eigenvalues/vectors and 

spectral clustering



Spectral clustering: example
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 And more about image segmentations …

 Graph cut

 Mean-shift



An example: ISO/BLE-charts

 ISO-Charts: 
 ISOMAP + Spectral Clustering + Stretch Minimization

 BLE-Charts:

 Statistical Embedding + Spectral Clustering + Stretch Minimization


