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Outline

e Flat clustering
Mixture of Gaussians
K-means

e Hierarchical clustering
bottom-up

e Spectral based clustering
e Applications




Clustering

e Given set of data points, group them
o learning

e Learn the similarity. Which patient are similar?
(or customers, faces, earthquakes, ...)
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Clustering vs. Classification

e Clustering
o Instance: {x},
o Learn: <x,t >and/or mapping from x to t(x)

e Classification/Regression
e Instance: <x,,t >
e Learn: mapping from x to t(x)



Clustering:
Image segmentation

—

Mean-shift segmentation



Mixtures of Gaussians

e Mixture distribution:
Assume P(x) is a mixture of K different Gaussians
Assume each data point, x is generated by 2-step process

Choose one of the K Gaussians as label z
Generate x according to the Gaussian N(g,,X,)

ID(X)=ZF’(Z =Z| )N(X] 1, Z,)

e What object function shall we optimize?
Maximize data likelihood



Mixtures of Gaussians (cont.) | ::
e Multivariate Gaussian model
Pl 2) = e el —g(x— )5 =) ) |

e How to generate it? B
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Multi-variate density estimation

e A mixture of Gaussians model

where 0 = {p1,... . Prs 1y [y 21, .- ., 2k} contains all
the parameters of the mixture model. {p;} are known as
mixing proportions or coefficients.




Mixtures of Gaussians:
Wishart distribution

o A mixture of Gaussian Model:

High dimensional
p(x|0) = Z pj p(X|pj, 2 parameters

e Wishart prior

1 n'
Q) _ . —1 ¢
P(X|S,n") x S exp ( B Trace(X 5))
S = ‘prior'" covariance matrix

n' = equivalent sample size




Mixture density

e Data generation process:
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p(x|) = Y P(y=j) -pxly=j) (generic mixture)
i=1.2

= Z pi-p(x|p;,X;)  (mixture of Gaussians)
i=1,2

e Any data point x could have been generated in two ways



Mixture density

e If we are given just x we don't know which mixture
component this example came from

p(xl0) = > pip(x|p;. ;)
7=1,2

e We can evaluate the posterior probability that an observed
x was generated from the first mixture component

Ply=1) p(xly=1)
Zj:Lg Ply=17) -p(X|y =7)
p1p(x|p1, 1)
D j—12Pi D(X|py, Xj)

Py = 1|x.0)

e [his solves a credit assignment problem



Mixture density:
posterior sampling

e Consider sampling x from the mixture density, then v from
the posterior over the components given x, and finally x/
from the component density indicated by :

X ~ p(x|6)
y ~ Py[x,0)
x' ~ p(x'y.0)

Is v a fair sample from the prior distribution P(y)?

Is x” a fair sample from the mixture density p(x’|6)?




Mixture density estimation

e Suppose we want to estimate a two component mixture of
Gaussians model.

p(x[0) = p1 p(x|p1. X1) + p2 p(x|p2. o)

e |[f each example x; in the training set were labeled vy, =
1,2 according to which mixture component (1 or 2) had
generated it, then the estimation would be easy.
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e Labeled examples = no credit assignment problem



Mixture density estimation
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Mixture density estimation: eecs
credit assignment

e Of course we don't have such labels ... but we can guess what
the labels might be based on our current mixture distribution

e We get soft labels or posterior
probabilities of which Gaussian ..
generated which example:

pili) = Ply: = jlxi.0)
where 3., ,p(j[i) =1 for all
1 =1,....n. agee

e When the Gaussians are almost identical (as in the figure),
p(1]i) = p(2|i) for almost any available point x;.

Even slight differences can help us determine how we should
modify the Gaussians.



The Expectation-Maximization
algorithm

E-step: softly assign examples to mixture components

p(jli) — P(y; = j|x;,6), forall j=1,2andi=1,...,n

M-step: re-estimate the parameters (separately for the two
Gaussians) based on the soft assignments.

n,; < Zﬁ(j\i) = Soft # of examples labeled j
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The EM-algorithm

e Each iteration of the EM-algorithm monotonically increases
the (log-)likelihood of the n training examples x1, ..., X,:

n p(x;|0)
log p(data |#) = Z log (EJl p(Xi| g1, 1) + pa p(xi] o, E;j)
i=1

where 6 = {py, po, 11, j12, X1, o } contains all the parameters
of the mixture model.
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The EM algorithm

e The EM-algorithm finds a local maximum of [(6: D)

E-step: evaluate the expected complete log-likelihood

J(6:0) = Z E pijix;.00) 108 (p_?-p(xfluy E?))

i=1
= Z > P(jlxi.61) log (p?p Xl -u?))
=1 7=1,2

M-step: find the new parameters by maximizing the
expected complete log-likelhood

ot AT IAX J(6;01)



Reqgularized EM algorithm

e To maximize a penalized (regularized) log-likelihood

I'(0:D) =) logp(x|0) + log p(#)
i=1

we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find # that maximize a
penalized expected complete log-likelihood:

J0:6) = > E,_piij.e) 102 (Pjp(xz'#-j-zj))
=1

+ log p(p1.p2) + log p(X1) + log p(21)

where, for example, p(p1, p2) could be a Dirichlet and each
p(2;) a Wishart prior.



Selecting the number of
components

e As a simple strategy for selecting the appropriate number
of mixture components, we can find & that minimize the
following asymptotic approximation to the description length:

- 1.
DL ~ — log p(datal|fy) + %log(n)

where n is the number of training points, 0 is the maximum
likelihood parameter estimate for the k-component mixture,
and dj, is the (effective) number of parameters in the k-
mixture.




Mixture density estimation:
example




K-means clustering

Given data <x, ... x>, and K, assign each x; to one of K clusters,
K

C,...Ck,minimizing ; _— v Vv°

Where #¢; Is mean over all points in cluster C,

K-Means Algorithm:

Initialize K1 - - - LK randomly

Repeat until convergence:

1. Assign each point x; to the cluster with the closest mean
2. Calculate the new mean for each cluster

s |O|Z”“""

z; €0




K-Means vs.
Mixture of Gaussians

e Both are iterative algorithms to assign points
to clusters

e ODbjective function
K Means: minimize
MoG: maximize likelihood (X|6\)

||Mw

2
E Hm — 1]
2,€C

e MoG the more general formulation
Equivalent to K Means when x,-+1, and 0—0



Hierarchical (bottom-up)
clustering

e Hierarchical agglomerative clustering: we sequentially merge
the pair of “closest” points/clusters

e The procedure
Find two closest points (clusters) and merge them
Proceed until we have a single cluster (all the points)
e Two prerequisites:
distance measure d(xi, Xj) between two points
distance measure between clusters (cluster linkage)



Hierarchical (bottom-up)
clustering

e A linkage method: we have to be able to measure distances

between clusters of examples (). and
a) Single linkage:

dipy = min  d(x;, %)
icC).,jeC) :

b) Average linkage:

1
dp) = ——— d(x;, X
"= e 2 dx)

icCl.jeC)

c) Centroid linkage:

1
di = d(Xp, %), X = & Z X,




Hierarchical (bottom-up)
clustering

e A dendrogram representation of hierarchical clustering
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The height of each pair represents the distance between
the merged clusters; the specific linear ordering of points is
chosen for clarity



Spectral clustering

e [he spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps
1. a nearest neighbor graph

2. similarity weights on the edges: .

Wij = exp{—3|x; — x|}

where WW,;; = 1 and the weight is
zero for non-edges.

3. transition probability matrix of

Py = Wi/ Y Wi 2
j/




Properties of the random walk

e |f we start from 17, the distribution of points 7; that we end
up in after ¢ steps is given by

I;[Tz - 4
i1~ Py, Pij = W, . where W, =) W

E 2
Lo ~ P 1,71 2122 P}Z()Zf}

3 10
23N E E PZ()ZIPZLZZPMQ: [P ]Z'.()'ig? NS i #

A D

by ~ [Pf} 20 it 0 w

where P* = PP ... P (t matrix products) and [-];; denotes
the 7,7 component of the matrix.




Random walk and clustering

e [hedistributions of points we end up in after ¢ steps converge
as t increases. |f the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities [P’];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues/vectors
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Eigenvalues/vectors and
spectral clustering

e Let IV be the matrix with components 1W;; and D a diagonal
matrix such that D;; = Zj Wi;. Then

P=D"'W

e To find out how P! behaves for large t it is useful to examine
the eigen-decomposition of the following symmetric matrix

T

T

1l 1
D 3WD™2 = \z12! + N\ozozi + ...+ N\ 2,2

where the ordering is such that [A{| > [Aa] > ... > |A,.].



Eigenvalues/vectors cont’d

e The symmetric matrix is related to P! since
(DZWD™2).-- (D 2WD 2)=Dz(P---P)D"2

This allows us to write the t step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

Pt = D2 (D%WD%> D?

1 : : : 1
= D72 ()\flzlz’{ + Ahzozd 4+ ..+ )\I;lzﬂ,,lzz;) D2

where Ay = 1 and



Eigenvalues/vectors and
spectral clustering e

e We are interested in the largest correction to the asymptotic
limit

P'~P*+ D2 (/\;:@zg) D?

Note: [zozd];; = 22:22; and thus the largest correction term

increases the probability of transitions between points that
share the same sign of 29, and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z»

z9j > 0 = cluster 1, otherwise cluster 0



Spectral clustering: example
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Reference papers of SC

e A.Y.Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:
Analysis and an algorithm, NIPS, (2001)

e Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV,
(1999)

e J. Shiand J. Malik, Normalized cuts and image segmentation, IEEE
TPAMI, 22 (2000)

e And more about image segmentations ...
e Graph cut
e Mean-shift




An example: ISO/BLE-charts

e |SO-Charts:

o ISOMAP + Spectral Clustering + Stretch Minimization

e BLE-Charts:

o Statistical Embedding + Spectral Clustering + Stretch Minimization




