Clustering

Hongxin Zhang zhx@cad.zju.edu.cn

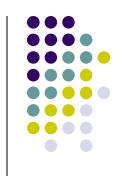
State Key Lab of CAD&CG, ZJU 2010-03-18



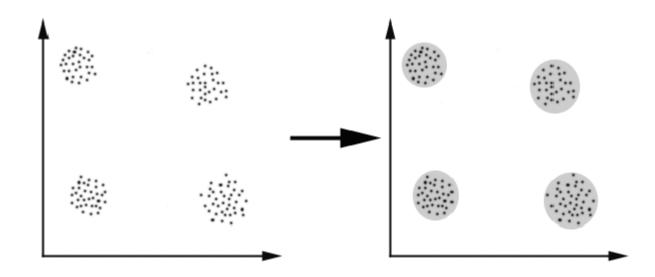
Outline

- Flat clustering
 - Mixture of Gaussians
 - K-means
- Hierarchical clustering
 - bottom-up
- Spectral based clustering
- Applications

Clustering



- Given set of data points, group them
- Unsupervised learning
- Learn the similarity. Which patient are similar?
 (or customers, faces, earthquakes, ...)



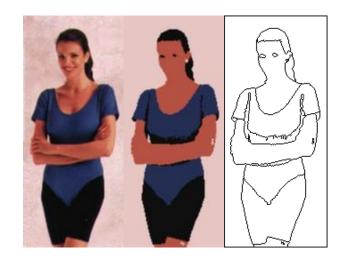
Clustering

- Instance: $\{\mathbf{x}_i\}_{i=1}^N$
- Learn: $\langle \mathbf{x}_i, t_i \rangle$ and/or mapping from \mathbf{x} to $t(\mathbf{x})$

Classification/Regression

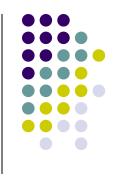
- Instance: $\langle \mathbf{x}_i, t_i \rangle$
- Learn: mapping from x to t(x)

Clustering: image segmentation



Mean-shift segmentation

Mixtures of Gaussians



- Mixture distribution:
 - Assume P(x) is a mixture of K different Gaussians
 - Assume each data point, x is generated by 2-step process
 - Choose one of the K Gaussians as label z
 - Generate x according to the Gaussian $N(\mu_z, \Sigma_z)$

$$P(\mathbf{x}) = \sum_{z=1}^{K} P(Z = z \mid \pi) N(\mathbf{x} \mid \mu_z, \Sigma_z)$$

- What object function shall we optimize?
 - Maximize data likelihood

Mixtures of Gaussians (cont.)

Multivariate Gaussian model

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\}$$

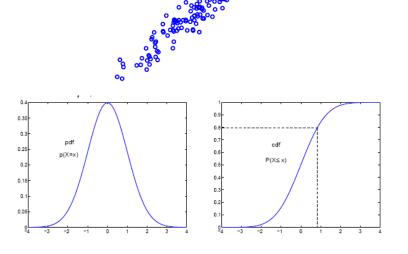
How to generate it?

$$F_{\mu,\sigma^2}(x) = \int_{-\infty}^x p(z|\mu,\sigma^2)dz$$

$$u \sim \mathsf{Uniform}(0,1) \Rightarrow x = F_{\mu,\sigma^2}^{-1}(u) \sim p(x|\mu,\sigma^2)$$

$$z_i \sim p(z_i|\mu=0,\sigma^2=1), \ \mathbf{z} = [z_1,\dots,z_d]^T$$

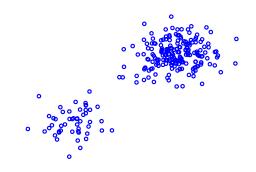
$$\mathbf{x} = \Sigma^{1/2}\mathbf{z} + \mu$$



A mixture of Gaussians model

$$p(\mathbf{x}|\theta) = \sum_{i=1}^{k} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

where $\theta = \{p_1, \dots, p_k, \mu_1, \dots, \mu_k, \Sigma_1, \dots, \Sigma_k\}$ contains all the parameters of the mixture model. $\{p_j\}$ are known as mixing proportions or coefficients.



Mixtures of Gaussians: Wishart distribution

A mixture of Gaussian Model:

$$p(\mathbf{x}|\theta) = \sum_{i=1}^k p_j \, p(\mathbf{x}|\mu_j, \Sigma_j) \qquad \begin{array}{l} \text{High dimensional} \\ \text{parameters} \end{array}$$

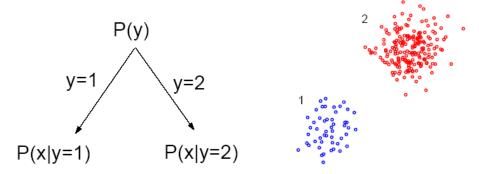
$$\theta = \{p_1, \dots, p_k, \mu_1, \dots, \mu_k, \underline{\Sigma_1, \dots, \Sigma_k}\}$$

Wishart prior

$$\begin{split} P(\Sigma|S,n') &\propto \frac{1}{|\Sigma|^{n'/2}} \exp\left(-\frac{n'}{2} \mathrm{Trace}(\Sigma^{-1}S)\right) \\ S &= \text{ "prior" covariance matrix} \\ n' &= \text{ equivalent sample size} \end{split}$$

Mixture density

Data generation process:



$$p(\mathbf{x}|\theta) = \sum_{j=1,2} P(y=j) \cdot p(\mathbf{x}|y=j) \quad \text{(generic mixture)}$$

$$= \sum_{j=1,2} p_j \cdot p(\mathbf{x}|\mu_j, \Sigma_j) \quad \text{(mixture of Gaussians)}$$

ullet Any data point ${f x}$ could have been generated in two ways

Mixture density

ullet If we are given just ${f x}$ we don't know which mixture component this example came from

$$p(\mathbf{x}|\theta) = \sum_{j=1,2} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

 We can evaluate the posterior probability that an observed x was generated from the first mixture component

$$P(y = 1|\mathbf{x}, \theta) = \frac{P(y = 1) \cdot p(\mathbf{x}|y = 1)}{\sum_{j=1,2} P(y = j) \cdot p(\mathbf{x}|y = j)}$$
$$= \frac{p_1 p(\mathbf{x}|\mu_1, \Sigma_1)}{\sum_{j=1,2} p_j p(\mathbf{x}|\mu_j, \Sigma_j)}$$

This solves a credit assignment problem

Mixture density: posterior sampling

• Consider sampling x from the mixture density, then y from the posterior over the components given x, and finally x' from the component density indicated by y:

$$\mathbf{x} \sim p(\mathbf{x}|\theta)$$
 $y \sim P(y|\mathbf{x},\theta)$
 $\mathbf{x}' \sim p(\mathbf{x}'|y,\theta)$

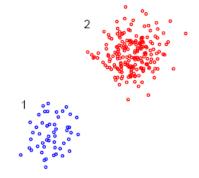
Is y a fair sample from the prior distribution P(y)? Is \mathbf{x}' a fair sample from the mixture density $p(\mathbf{x}'|\theta)$?

Mixture density estimation

 Suppose we want to estimate a two component mixture of Gaussians model.

$$p(\mathbf{x}|\theta) = p_1 p(\mathbf{x}|\mu_1, \Sigma_1) + p_2 p(\mathbf{x}|\mu_2, \Sigma_2)$$

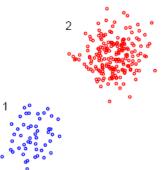
• If each example \mathbf{x}_i in the training set were labeled $y_i = 1,2$ according to which mixture component (1 or 2) had generated it, then the estimation would be easy.



Labeled examples ⇒ no credit assignment problem

Mixture density estimation

When examples are already assigned to mixture components (labeled), we can estimate each Gaussian independently



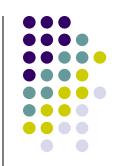
• If \hat{n}_j is the number of examples labeled j, then for each j=1,2 we set

$$\hat{p}_j \leftarrow \frac{\hat{n}_j}{n}$$

$$\hat{\mu}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} \mathbf{x}_i$$

$$\hat{\Sigma}_j \leftarrow \frac{1}{\hat{n}_j} \sum_{i:y_i=j} (\mathbf{x}_i - \hat{\mu}_j)(\mathbf{x}_i - \hat{\mu}_j)^T$$

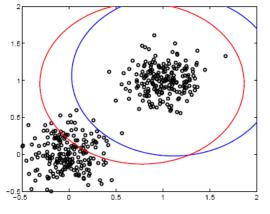
Mixture density estimation: credit assignment



- Of course we don't have such labels ... but we can guess what the labels might be based on our current mixture distribution
- We get soft labels or posterior probabilities of which Gaussian generated which example:

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta)$$

where $\sum_{j=1,2} \hat{p}(j|i) = 1$ for all $i = 1, \dots, n$.



• When the Gaussians are almost identical (as in the figure), $\hat{p}(1|i) \approx \hat{p}(2|i)$ for almost any available point \mathbf{x}_i .

Even slight differences can help us determine how we should modify the Gaussians.

The Expectation-Maximization algorithm

E-step: softly assign examples to mixture components

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta), \text{ for all } j = 1, 2 \text{ and } i = 1, \dots, n$$

M-step: re-estimate the parameters (separately for the two Gaussians) based on the soft assignments.

$$\hat{n}_{j} \leftarrow \sum_{i=1}^{n} \hat{p}(j|i) = \text{Soft } \# \text{ of examples labeled } j$$

$$\hat{p}_{j} \leftarrow \frac{\hat{n}_{j}}{n}$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) \mathbf{x}_{i}$$

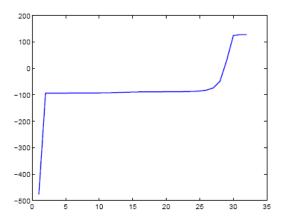
$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) (\mathbf{x}_{i} - \hat{\mu}_{j}) (\mathbf{x}_{i} - \hat{\mu}_{j})^{T}$$

The EM-algorithm

• Each iteration of the EM-algorithm monotonically increases the (log-)likelihood of the n training examples $\mathbf{x}_1, \dots, \mathbf{x}_n$:

$$\log p(\operatorname{data}|\theta) = \sum_{i=1}^{n} \log \left(\underbrace{p_1 \, p(\mathbf{x}_i | \mu_1, \Sigma_1) + p_2 \, p(\mathbf{x}_i | \mu_2, \Sigma_2)}_{p_1 \, p(\mathbf{x}_i | \mu_1, \Sigma_1) + p_2 \, p(\mathbf{x}_i | \mu_2, \Sigma_2)} \right)$$

where $\theta = \{p_1, p_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ contains all the parameters of the mixture model.



The EM algorithm

• The EM-algorithm finds a local maximum of $l(\theta; D)$ E-step: evaluate the expected complete log-likelihood

$$J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|\mathbf{x}_i, \theta^{(t)})} \log \left(p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right)$$
$$= \sum_{i=1}^{n} \sum_{j=1,2} P(j|\mathbf{x}_i, \theta^{(t)}) \log \left(p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right)$$

M-step: find the new parameters by maximizing the expected complete log-likelhood

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} J(\theta; \theta^{(t)})$$

Regularized EM algorithm

To maximize a penalized (regularized) log-likelihood

$$l'(\theta; D) = \sum_{i=1}^{n} \log p(\mathbf{x}_i | \theta) + \log p(\theta)$$

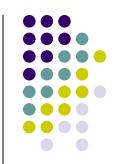
we only need to modify the M-step of the EM-algorithm.

Specifically, in the M-step, we find find θ that maximize a penalized expected complete log-likelihood:

$$J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|\mathbf{x}_i, \theta^{(t)})} \log \left(p_j p(\mathbf{x}_i | \mu_j, \Sigma_j) \right) + \log p(p_1, p_2) + \log p(\Sigma_1) + \log p(\Sigma_1)$$

where, for example, $p(p_1, p_2)$ could be a *Dirichlet* and each $p(\Sigma_i)$ a *Wishart* prior.

Selecting the number of components

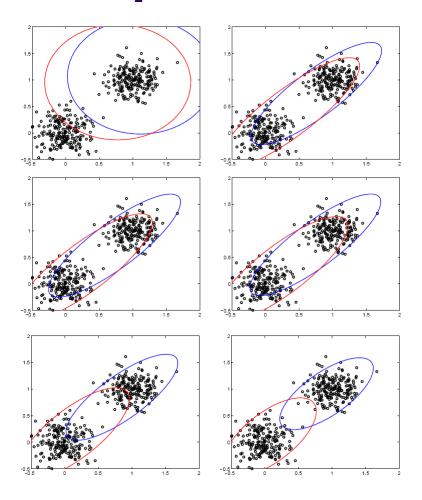


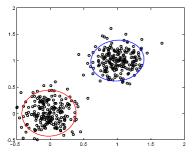
• As a simple strategy for selecting the appropriate number of mixture components, we can find k that minimize the following asymptotic approximation to the description length:

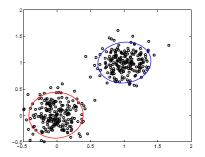
$$\mathsf{DL} pprox -\log p(\mathsf{data}|\hat{\theta}_k) + \frac{d_k}{2}\log(n)$$

where n is the number of training points, $\hat{\theta}_k$ is the maximum likelihood parameter estimate for the k-component mixture, and d_k is the (effective) number of parameters in the k-mixture.

Mixture density estimation: example







Given data $\langle x_1 ... x_n \rangle$, and K, assign each x_i to one of K clusters, $C_1 ... C_K$, minimizing $I = \sum_{i=1}^{K} \sum_{||x_i| = |\mu_i||^2}$

$$C_1 \dots C_K$$
, minimizing $J = \sum_{j=1}^K \sum_{x_i \in C_j} ||x_i - \mu_j||^2$

Where μ_j is mean over all points in cluster C_j

K-Means Algorithm:

Initialize $\mu_1 \dots \mu_K$ randomly

Repeat until convergence:

- 1. Assign each point x_i to the cluster with the closest mean μ_i
- 2. Calculate the new mean for each cluster

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x_i \in C_j} x_i$$

K-Means vs. Mixture of Gaussians

 Both are iterative algorithms to assign points to clusters

 $J = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \mu_j||^2$

- Objective function
 - K Means: minimize
 - MoG: maximize likelihood P(X|θ)

• Equivalent to K Means when $\Sigma_k = \sigma I$, and $\sigma \rightarrow 0$

Hierarchical (bottom-up) clustering

- Hierarchical agglomerative clustering: we sequentially merge the pair of "closest" points/clusters
- The procedure
 - Find two closest points (clusters) and merge them
 - Proceed until we have a single cluster (all the points)
- Two prerequisites:
 - distance measure d(xi, xj) between two points
 - distance measure between clusters (cluster linkage)

Hierarchical (bottom-up) clustering

- A *linkage* method: we have to be able to measure distances between clusters of examples C_k and C_l
 - a) Single linkage:

$$d_{kl} = \min_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

b) Average linkage:

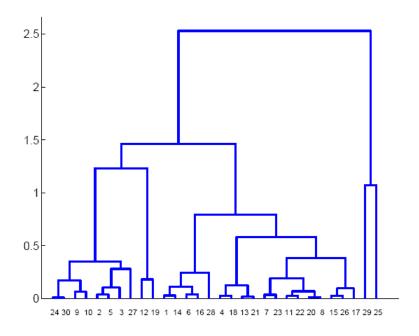
$$d_{kl} = \frac{1}{|C_l| |C_k|} \sum_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

c) Centroid linkage:

$$d_{kl} = d(\bar{\mathbf{x}}_k, \bar{\mathbf{x}}_l), \quad \bar{\mathbf{x}}_l = \frac{1}{|C_l|} \sum_{i \in C_l} \mathbf{x}_i$$

Hierarchical (bottom-up) clustering

A dendrogram representation of hierarchical clustering



The height of each pair represents the distance between the merged clusters; the specific linear ordering of points is chosen for clarity

Spectral clustering

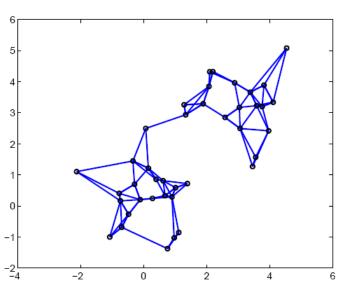
- The spectral clustering method we define relies on a random walk representation over the points. We construct this in three steps
 - 1. a nearest neighbor graph
 - 2. similarity weights on the edges:

$$W_{ij} = \exp\{-\beta \|\mathbf{x}_i - \mathbf{x}_j\|\}$$

where $W_{ii} = 1$ and the weight is zero for non-edges.

3. transition probability matrix

$$P_{ij} = W_{ij} / \sum_{j'} W_{ij'}$$



Properties of the random walk

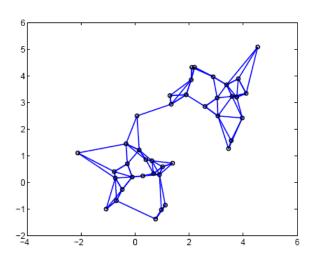
• If we start from i_0 , the distribution of points i_t that we end up in after t steps is given by

$$\begin{split} i_1 \sim P_{i_0 \, i_1}, & P_{ij} = \frac{W_{ij}}{W_i}, \text{ where } W_i = \sum_j W_{ij} \\ i_2 \sim \sum_{i_1} P_{i_0, i_1} P_{i_1 \, i_2} = [P^2]_{i_0 \, i_2}, \\ i_3 \sim \sum_{i_1} \sum_{i_2} P_{i_0, i_1} P_{i_1 \, i_2} P_{i_2 \, i_3} = [P^3]_{i_0 \, i_3}, & \\ \vdots \\ i_t \sim [P^t]_{i_0 \, i_t} & & \\ \end{split}$$

where $P^t = PP \dots P$ (t matrix products) and $[\cdot]_{ij}$ denotes the i, j component of the matrix.

The distributions of points we end up in after t steps converge
as t increases. If the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities $[P^t]_{ij}$ have a slightly higher probability of transitioning within "clusters" than across; we want to recover this effect from eigenvalues/vectors



Eigenvalues/vectors and spectral clustering

• Let W be the matrix with components W_{ij} and D a diagonal matrix such that $D_{ii} = \sum_j W_{ij}$. Then

$$P = D^{-1}W$$

• To find out how P^t behaves for large t it is useful to examine the eigen-decomposition of the following symmetric matrix

$$D^{-\frac{1}{2}}WD^{-\frac{1}{2}} = \lambda_1 \mathbf{z}_1 \mathbf{z}_1^T + \lambda_2 \mathbf{z}_2 \mathbf{z}_2^T + \dots + \lambda_n \mathbf{z}_n \mathbf{z}_n^T$$

where the ordering is such that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$.

Eigenvalues/vectors cont'd

ullet The symmetric matrix is related to P^t since

$$(D^{-\frac{1}{2}}WD^{-\frac{1}{2}})\cdots(D^{-\frac{1}{2}}WD^{-\frac{1}{2}}) = D^{\frac{1}{2}}(P\cdots P)D^{-\frac{1}{2}}$$

This allows us to write the t step transition probability matrix in terms of the eigenvalues/vectors of the symmetric matrix

$$P^{t} = D^{-\frac{1}{2}} \left(D^{-\frac{1}{2}} W D^{-\frac{1}{2}} \right)^{t} D^{\frac{1}{2}}$$

$$= D^{-\frac{1}{2}} \left(\lambda_{1}^{t} \mathbf{z}_{1} \mathbf{z}_{1}^{T} + \lambda_{2}^{t} \mathbf{z}_{2} \mathbf{z}_{2}^{T} + \dots + \lambda_{n}^{t} \mathbf{z}_{n} \mathbf{z}_{n}^{T} \right) D^{\frac{1}{2}}$$

where $\lambda_1 = 1$ and

$$P^{\infty} = D^{-\frac{1}{2}} \left(\mathbf{z}_1 \mathbf{z}_1^T \right) D^{\frac{1}{2}}$$

Eigenvalues/vectors and spectral clustering

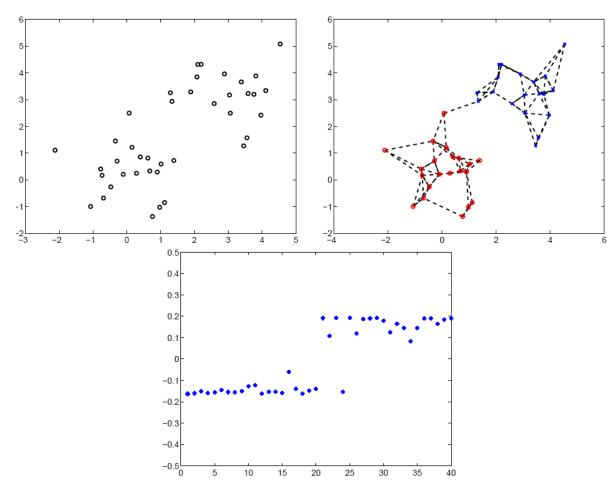
 We are interested in the largest correction to the asymptotic limit

$$P^{t} \approx P^{\infty} + D^{-\frac{1}{2}} \left(\lambda_{2}^{t} \mathbf{z}_{2} \mathbf{z}_{2}^{T} \right) D^{\frac{1}{2}}$$

Note: $[\mathbf{z}_2\mathbf{z}_2^T]_{ij} = z_{2i}z_{2j}$ and thus the largest correction term increases the probability of transitions between points that share the same sign of z_{2i} and decreases transitions across points with different signs

• Binary spectral clustering: we divide the points into clusters based on the sign of the elements of \mathbf{z}_2

$$z_{2j} > 0 \Rightarrow$$
 cluster 1, otherwise cluster 0



Components of the eigenvector corresponding to the second largest eigenvalue

Reference papers of SC

- A. Y. Ng, M. I. Jordan, and Y. Weiss, *On spectral clustering:* Analysis and an algorithm, NIPS, (2001)
- Y. Weiss, Segmentation using eigenvectors: a unifying view. ICCV, (1999)
- J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE TPAMI, 22 (2000)
- And more about image segmentations ...
 - Graph cut
 - Mean-shift

An example: ISO/BLE-charts

- ISO-Charts:
 - ISOMAP + Spectral Clustering + Stretch Minimization
- BLE-Charts:

Statistical Embedding + Spectral Clustering + Stretch Minimization

