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research trends

• Appear in the latest 2008-2009

• Theories are guaranteed and still refining; 
numerical algorithms are practical for 
1000×1000 matrix (12 second) and still 
improving; applications not yet expand

• Research background: comes from

① matrix completion problem

② L1 norm and nuclear norm convex 
optimization
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• Part I: theory



PCA

• Given a data matrix M, assume

L0 is a Low-rank matrix 

N0 is a small and i.i.d. Gaussian noise matrix

• Classical PCA seeks the best (in an L2 

norm sense) rank-k estimate of L0 by 

solving

• It can be solved by SVD
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PCA example

• When noise are small Gaussian, PCA 

does well



Defect of PCA

• When noise are not Gaussian, but appear 

like spike, i.e. data contains outliers, PCA 

fails



RPCA

• When noise are sparse spikes, another robust 

model (RPCA) should be built 

• Assume

L0 is a Low-rank matrix 

S0 is a Sparse spikes noise matrix

• Problem: we know M is composed by a low rank 

and a sparse matrix. Now, we are given M and 

asked to recover its original two components

It’s purely a matrix decomposition problem



ill-posed problem 

• We only observe M, it’s impossible to know 
which two matrices add up to be it. So without 
further assumptions, it can’t be solved:

1.                                                  , another valid 

sparse-plus-low-rank decomposition might be                          
Thus, the low-rank matrix should be assumed to be not too sparse

2.                                               , with v being the 

first column of       . A reasonable sparse-plus-low-rank 
decomposition in this case might be                        and           
Thus, the sparse matrix should be assumed to not be low-rank



Assumptions about how L and S 

are generated

1. Low-rank matrix L: 

2. Sparse matrix S:



Under what conditions can M be 

correctly decomposed ?

1. Let the matrices with rank ≤ r(L) and with either the 

same row-space or column-space as L live in a matrix 

space denoted by T(L)

2. Let the matrices with the same support as S and 

number of nonzero entries ≤ those of S live in a matrix 

space denoted by O(S)

• Then, if T(L) ∩O(S)=null, M can be 

correctly decomposed. 



Detailed conditions

• Various work in 2009 proposed different 

detailed conditions. They improved on 

each other, being more and more relaxed.

• Under each of these conditions, they 

proved that matrix can be precisely or 

even exactly decomposed.



Conditions involving probability 

distributions

• for B with rank k smaller than n, exact 

recovery is possible with high probability 

even when m is super-linear in n



the latest condition developed
• The work of [1] and [2] are parallel, latest 

[5] improved on them and yields the ‘best’ 

condition



Brief remarks

• in [5], they prove even if:

1. the rank of L grows proportional to 

O(n/log2n) 

2. noise in S are of order O(n2)

exact decomposition is feasible



• Part II: numerical algorithm



Convex optimization

• In order to solve the original problem, it is 
reformulated into optimization problem. 

• A straightforward propose is 

but it’s not convex and intractable

• Recent advances in understanding of the 
nuclear norm heuristic for low-rank solutions and 
the L1 heuristic for sparse solutions suggest

which is convex, i.e. exists a unique minima



numerical algorithm

• During just two years, a series of algorithms have been 
proposed, [4] provides all comparisons, and most 
codes available at

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html

• They include:

1. Interior point method [1]

2. iterative thresholding algorithm

3. Accelerated Proximal Gradient (APG) [2]

4. A dual approach [4]

5. (latest & best) Augmented Lagrange Multiplier (ALM) 
[3,4]or Alternating Directions Method (ADM) [3,5]

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html


ADM
• Problem

• The corresponding Augmented 

Lagrangian function is

• is the multiplier of the linear 

constraint. < > is trace inner product for 

matrix <X,Y>=trace(XTY)

• Then, the iterative scheme of ADM is



Two established facts

• To approach the optimization, two well 
known facts is needed

1.

2.

is the soft thresholding operator

USVT is SVD of W 



Optimization solution

• Sparse A with L1 norm

• Low-rank B with nuclear norm. Reformulate 

the objective so that previous fact can be 

used: 



Final algorithm of ADM



• Part III: application



Applications [5]

(1) background modeling from surveillance 

videos

① Airport video

② Lobby video with varying illumination

(2) removing shadows and specularities 

from face images



Airport video

• a video of 200 frames (resolution 
176×144=25344 pixels) has a static 
background, but significant foreground 
variations

• reshape each frame as a column vector 
(25344×1) and stack them into a matrix M 
(25344×200)

• Objective: recover the low-rank and 
sparse components of M 





Lobby video

• a video of 250 frames (resolution 

168×120=20160 pixels) with several 

drastic illumination changes

• reshape each frame as a column vector 

(20160×1) and stack them into a matrix M 

(20160×250)

• Objective: recover the low-rank and 

sparse components of M 




