Robust Principal Component Analysis (RPCA)

\& Matrix decomposition: into low-rank and sparse components

Zhenfang Hu

reference

- [1] Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Ranksparsity incoherence for matrix decomposition. preprint 2009.
- [2] Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In: NIPS 2009.
- [3] X. Yuan and J. Yang. Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 2009.
- [4] Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method for exact recovery of a corrupted low-rank matrices. Mathematical Programming, submitted, 2009.
- [5] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component Analysis? Submitted for publication, 2009.

research trends

- Appear in the latest 2008-2009
- Theories are guaranteed and still refining; numerical algorithms are practical for 1000×1000 matrix (12 second) and still improving; applications not yet expand
- Research background: comes from
(1) matrix completion problem
(2) L1 norm and nuclear norm convex optimization

outlines

- Part I: theory
- Part II: numerical algorithm
- Part III: applications
- Part I: theory

PCA

- Given a data matrix M, assume $M=L_{0}+N_{0}$
L_{0} is a Low-rank matrix
N_{0} is a small and i.i.d. Gaussian noise matrix
- Classical PCA seeks the best (in an L2 norm sense) rank-k estimate of L_{0} by solving minimize $\|M-L\|_{2}$
subject to $\quad \operatorname{rank}(L) \leq k$
- It can be solved by SVD

PCA example

- When noise are small Gaussian, PCA does well

Samples (red) from a one-dimensional subspace (blue) corrupted by small Gaussian noise. The output of classical PCA (green) is very close to the true subspace despite all samples being noisy.

Defect of PCA

- When noise are not Gaussian, but appear like spike, i.e. data contains outliers, PCA fails

Samples (red) from a one-dimensional subspace (blue) corrupted by sparse, large errors. The principal component (green) is quite far from the true subspace even when over three-fourths of the samples are uncorrupted.

RPCA

- When noise are sparse spikes, another robust model (RPCA) should be built
- Assume $M=L_{0}+S_{0}$
L_{0} is a Low-rank matrix
S_{0} is a Sparse spikes noise matrix
- Problem: we know M is composed by a low rank and a sparse matrix. Now, we are given M and asked to recover its original two components

It's purely a matrix decomposition problem

ill-posed problem

- We only observe M, it's impossible to know which two matrices add up to be it. So without further assumptions, it can't be solved:

1. let A^{\star} be any sparse matrix and let $B^{\star}=e_{i} e_{j}^{T}$, another valid sparse-plus-low-rank decomposition might be $\hat{A}=A^{\star}+e_{i} e_{j}^{T}$ and $\hat{B}=0$ Thus, the low-rank matrix should be assumed to be not too sparse
2. B^{\star} is any low-rank matrix and $A^{\star}=-v e_{1}^{T}$, with v being the first column of B^{\star}. A reasonable sparse-plus-low-rank decomposition in this case might be $\hat{B}=B^{\star}+A^{\star}$ and $\hat{A}=0$ Thus, the sparse matrix should be assumed to not be low-rank

Assumptions about how L and S are generated

1. Low-rank matrix L:

Random orthogonal model . A rank- k matrix $B^{\star} \in \mathbb{R}^{n \times n}$ with SVD $B^{\star}=$ $U \Sigma V^{\prime}$ is constructed as follows: The singular vectors $U, V \in \mathbb{R}^{n \times k}$ are drawn uniformly at random from the collection of rank-k partial isometries in $\mathbb{R}^{n \times k}$. The choices of U and V need not be mutually independent. No restriction is placed on the singular values.

2. Sparse matrix S:

Random sparsity model. The matrix A^{\star} is such that support $\left(A^{\star}\right)$ is chosen uniformly at random from the collection of all support sets of size m. There is no assumption made about the values of A^{\star} at locations specified by support $\left(A^{\star}\right)$.

Under what conditions can M be correctly decomposed ?

1. Let the matrices with rank $\leq r(L)$ and with either the same row-space or column-space as L live in a matrix space denoted by $\mathrm{T}(\mathrm{L})$
2. Let the matrices with the same support as S and number of nonzero entries \leq those of S live in a matrix space denoted by $\mathrm{O}(\mathrm{S})$

- Then, if $\mathrm{T}(\mathrm{L}) \cap \mathrm{O}(\mathrm{S})=n u l l, \mathrm{M}$ can be correctly decomposed.

Detailed conditions

- Various work in 2009 proposed different detailed conditions. They improved on each other, being more and more relaxed.
- Under each of these conditions, they proved that matrix can be precisely or even exactly decomposed.

Conditions involving probability distributions

Corollary 4. Suppose that a rank-k matrix $B^{\star} \in \mathbb{R}^{n \times n}$ is drawn from the random orthogonal model, and that $A^{\star} \in \mathbb{R}^{n \times n}$ is drawn from the random sparsity model with m non-zero entries. Given $C=A^{\star}+B^{\star}$, there exists a range of values for γ (given by (4.8)) so that $(\hat{A}, \hat{B})=\left(A^{\star}, B^{\star}\right)$ is the unique optimum of the SDP 1.3) with high probability provided

$$
m \lesssim \frac{n^{1.5}}{\log n \sqrt{\max (k, \log n)}}
$$

- for B with rank k smaller than n, exact recovery is possible with high probability even when m is super-linear in n

the latest condition developed

- The work of [1] and [2] are parallel, latest [5] improved on them and yields the 'best' condition minimize $\|L\|++\lambda\|S\|_{1}$ subject to $\quad L+S=M$

$$
\begin{gather*}
\max _{i}\left\|U^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n_{1}}, \quad \max _{i}\left\|V^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n_{2}} \tag{1.2}\\
\left\|U V^{*}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{n_{1} n_{2}}} \tag{1.3}
\end{gather*}
$$

Theorem 1.1 Suppose L_{0} is $n \times n$, obeys (1.2)-(1.3), and that the support set of S_{0} is uniformly distributed among all sets of cardinality m. Then there is a numerical constant c such that with probability at least $1-\mathrm{cn}^{-10}$ (over the choice of support of S_{0}), Principal Component Pursuit (1.1) with $\lambda=1 / \sqrt{n}$ is exact, i.e. $\hat{L}=L_{0}$ and $\hat{S}=S_{0}$, provided that

$$
\begin{equation*}
\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2} \quad \text { and } \quad m \leq \rho_{s} n^{2} . \tag{1.4}
\end{equation*}
$$

Above, ρ_{r} and ρ_{s} are positive numerical constants. In the general rectangular case where L_{0} is

Brief remarks

- in [5], they prove even if:

1. the rank of L grows proportional to $\mathrm{O}\left(\mathrm{n} / \log ^{2} \mathrm{n}\right)$
2. noise in S are of order $\mathrm{O}\left(\mathrm{n}^{2}\right)$
exact decomposition is feasible

- Part II: numerical algorithm

Convex optimization

- In order to solve the original problem, it is reformulated into optimization problem.
- A straightforward propose is

$$
\min _{A, E} \operatorname{rank}(A)+\gamma\|E\|_{0} \quad \text { subj } \quad A+E=D
$$

but it's not convex and intractable

- Recent advances in understanding of the nuclear norm heuristic for low-rank solutions and the L1 heuristic for sparse solutions suggest

$$
\min _{A, E}\|A\|_{*}+\lambda\|E\|_{1} \quad \text { subj } \quad A+E=D
$$

which is convex, i.e. exists a unique minima

numerical algorithm

- During just two years, a series of algorithms have been proposed, [4] provides all comparisons, and most codes available at
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
- They include:

1. Interior point method [1]
2. iterative thresholding algorithm
3. Accelerated Proximal Gradient (APG) [2]
4. A dual approach [4]
5. (latest \& best) Augmented Lagrange Multiplier (ALM)
[3,4]or Alternating Directions Method (ADM) [3,5]

- Problem $\begin{aligned} & \min _{A, B} \\ & \text { s.t. } \\ & \text { - } \gamma\|A\|_{l}+\|=C, \\ & A+B \|_{*}\end{aligned}$
- The corresponding Augmented Lagrangian function is

$$
L(A, B, Z):=\gamma\|A\|_{l_{1}}+\|B\|_{*}-\langle Z, A+B-C\rangle+\frac{\beta}{2}\|A+B-C\|^{2}
$$

- $z \in \mathcal{R}^{m \times n}$ is the multiplier of the linear constraint. < > is trace inner product for matrix $\langle X, Y\rangle=$ trace $\left(\mathrm{X}^{\top} \mathrm{Y}\right)$
- Then, the iterative scheme of ADM is

$$
\left\{\begin{array}{l}
A^{k+1} \in \operatorname{argmin}_{A \in R^{m \times n}}\left\{L\left(A, B^{k}, Z^{k}\right)\right\} \\
B^{k+1} \in \operatorname{argmin}_{B \in \mathcal{R}^{m \times n}}\left\{L\left(A^{k+1}, B, Z^{k}\right)\right\} \\
Z^{k+1}=Z^{k}-\beta\left(A^{k+1}+B^{k+1}-C\right)
\end{array}\right.
$$

Two established facts

- To approach the optimization, two well known facts is needed

1. $S_{\varepsilon}[W]=\arg \min _{X} \varepsilon\|X\|_{1}+\frac{1}{2}\|X-W\|_{F}^{2}$
2. $U \mathcal{S}_{\varepsilon}[S] V^{T}=\underset{\arg }{\min } \underset{X}{\varepsilon}\|X\| *+\frac{1}{2}\|X-W\|_{T}^{2}$
$\mathcal{S}_{\varepsilon}$ is the soft thresholding operator

$$
\mathcal{S}_{\varepsilon}[x]= \begin{cases}x-\varepsilon, \text { if } x>\varepsilon, \\ x+\varepsilon, \text { if } x<-\varepsilon, \\ 0, & \text { otherwise },\end{cases}
$$

USV^{\top} is SVD of W

Optimization solution

- Sparse A with L1 norm

$$
\begin{gathered}
A^{k+1}=\frac{1}{\beta} Z^{k}-B^{k}+C-P_{\Omega_{\infty}^{\gamma / \beta}}\left[\frac{1}{\beta} Z^{k}-B^{k}+C\right] \\
\Omega_{\infty}^{\gamma / \beta}:=\left\{X \in \mathbf{R}^{n \times n} \mid-\gamma / \beta \leq X_{i j} \leq \gamma / \beta\right\}
\end{gathered}
$$

- Low-rank B with nuclear norm. Reformulate the objective so that previous fact can be used: $B^{k+1}=\operatorname{argmin}_{B \in R_{m \times n}}\left\{\|B\|_{*}+\frac{\beta}{2}\left\|B-\left[C-A^{k+1}+\frac{1}{\beta} Z^{k}\right]\right\|^{2}\right\}$

$$
B^{k+1}=U^{k+1} \operatorname{diag}\left(\max \left\{\sigma_{i}^{k+1}-\frac{1}{\beta}, 0\right\}\right)\left(V^{k+1}\right)^{T}
$$

$C-A^{k+1}+\frac{1}{\beta} Z^{k}=U^{k+1} \Sigma^{k+1}\left(V^{k+1}\right)^{T} \quad$ with $\quad \Sigma^{k+1}=\operatorname{diag}\left(\left\{\sigma_{i}^{k+1}\right\}_{i=1}^{r}\right)$

Final algorithm of ADM

Algorithm: the ADM for SLRMD problem:

Step 1. Generate A^{k+1} :

$$
A^{k+1}=\frac{1}{\beta} Z^{k}-B^{k}+C-P_{\Omega_{\infty}^{\gamma / \beta}}\left[\frac{1}{\beta} Z^{k}-B^{k}+C\right] .
$$

Step 2 Generate B^{k+1} :

$$
B^{k+1}=U^{k+1} \operatorname{diag}\left(\max \left\{\sigma_{i}^{k+1}-\frac{1}{\beta}, 0\right\}\right)\left(V^{k+1}\right)^{T}
$$

where U^{k+1}, V^{k+1} and $\left\{\sigma_{i}^{k+1}\right\}$ are generated by the singular values decomposition of $C-A^{k+1}+\frac{1}{\beta} Z^{k}$, i.e.,

$$
C-A^{k+1}+\frac{1}{\beta} Z^{k}=U^{k+1} \Sigma^{k+1}\left(V^{k+1}\right)^{T}, \text { with } \Sigma^{k+1}=\operatorname{diag}\left(\left\{\sigma_{i}^{k+1}\right\}_{i=1}^{r}\right)
$$

Step 3. Update the multiplier:

$$
Z^{k+1}=Z^{k}-\beta\left(A^{k+1}+B^{k+1}-C\right)
$$

- Part III: application

Applications [5]

(1) background modeling from surveillance videos
(1) Airport video
(2) Lobby video with varying illumination
(2) removing shadows and specularities from face images

Airport video

- a video of 200 frames (resolution $176 \times 144=25344$ pixels) has a static background, but significant foreground variations
- reshape each frame as a column vector (25344×1) and stack them into a matrix M (25344×200)
- Objective: recover the low-rank and sparse components of M

(a) Original frames

(b) Low-rank \hat{L}

(c) Sparse \hat{S}

Lobby video

- a video of 250 frames (resolution $168 \times 120=20160$ pixels) with several drastic illumination changes
- reshape each frame as a column vector (20160×1) and stack them into a matrix M (20160×250)
- Objective: recover the low-rank and sparse components of M

(a) Original frames
(b) Low-rank \hat{L}
(c) Sparse \hat{S}

