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S research trends

« Appear in the latest 2008-2009

 Theories are guaranteed and still refining;
numerical algorithms are practical for
1000 X 1000 matrix (12 second) and still

iImproving; applications not yet expand
 Research background: comes from
(D matrix completion problem

2) L1 norm and nuclear norm convex
optimization
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* Part I: theory
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» Part lll: applications



» Part I theory



s PCA

e Given a data matrix M, assume i = L, + N,

L, Is a Low-rank matrix
N, Is a small and 1.i.d. Gaussian noise matrix

» Classical PCA seeks the best (in an L2

norm sense) rank-k estimate of L, by

solving  minimize  ||M = L||,
subject to rank(L) < k

* |t can be solved by SVD



‘s PCA example

 When noise are small Gaussian, PCA
does well

Samples (red) from a one-dimensional subspace (blue) corrupted by small Gaussian
noise. The output of classical PCA (green) is very close to the true subspace despite all
samiples being noisy.



g Defect of PCA

* When noise are not Gaussian, but appear
like spike, I.e. data contains outliers, PCA
fails .

:
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Samples (red) from a one-dimensional subspace (blue) corrupted by sparse, large errors. The principal
component (green) is guite far from the true subspace even when over three-fourths of the samples are
uncorrupted.



%  RPCA

* When noise are sparse spikes, another robust
model (RPCA) should be built
e ASssume i/ =171,+ S,

L, IS a Low-rank matrix
Sy IS a Sparse spikes noise matrix

* Problem: we know M is composed by a low rank
and a sparse matrix. Now, we are given M and
asked to recover its original two components

It's purely a matrix decomposition problem



€ ll-posed problem

« We only observe M, it's impossible to know
which two matrices add up to be it. So without
further assumptions, it can’t be solved:

1. let A* be any sparse matrix and let B* = EIE?, another Valid

sparse-plus-low-rank decomposition might be A = A* + ¢, ej and B =0
Thus, the low-rank matrix should be assumed to be not 100 sparse

2. B*is any low-rank matrix and A* = —wve! , with v being the
first column of B* . A reasonable sparse-plus-low-rank

decomposition in this case mightbe B = B* + A*and A = 0
Thus, the sparse matrix should be assumed to not be low-rank



Assumptions about how L and
are generated

1. Low-rank matrix L:

Random orthogonal model . A rank-k matrix B* € R"*" with SVD B* =
UXV' is constructed as follows: The singular vectors U, V € R™"** are drawn uniformly
at random from the collection of rank-k partial isometries in BR"**. The choices of
U and V need not be mutually independent. No restriction is placed on the singular

values.

2. Sparse matrix S:

Random sparsity model. The matrix A* 1s such that support(A4*} 15 chosen uni-
formly at random from the collection of all support sets of size m. There 15 no
assumption made about the values of A* at locations specified by support{A*).



correctly decomposed ?

Let the matrices with rank < r(L) and with either the
same row-space or column-space as L live in a matrix
space denoted by T(L)

Let the matrices with the same support as S and
number of nonzero entries < those of S live in a matrix

space denoted by O(S)
hen, if T(L) NO(S)=null, M can be
correctly decomposed.
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g Detalled conditions

 Various work in 2009 proposed different
detailed conditions. They improved on
each other, being more and more relaxed.

* Under each of these conditions, they
proved that matrix can be precisely or
even exactly decomposed.




onditions involving probability
distributions

COROLLARY 4. Suppose that a rank-k matriz B™ € BR™™" is drawn from the
random orthogonal model, and that A™ € BR™*™ is draun from the random sparsity
model with m non-zero entries. Given C = A™ + B*, there erists a range of values
for ~ (given by 4.8/) so that [__.:L ff'} = (A*. B*) is the unique optimum of the SDP
{1.3) with high probability provided

1.5
n
m=

logn\/max(k. log n)

e for B with rank k smaller than n, exact

recovery Is possible with high probabillity
even when m Is super-linear in n



 The work of [1] and [2] are parallel, latest

[5] improved on them and yields the ‘best’

141 minimize |L||« + Al|S]1
CondItIOn subject to L+5=M

max |LT*EI' |E < E max |‘[,"*EI. |2 < E [J.E\l
T n]_ 1 ﬂ.g

|LT'E/,?* |:,: E I.'II |”'T- II:J..E\I

V ning '

Theorem 1.1 Suppose Ly is n x n, obeys (1.2)=(1.3). and that the support set of Sy is uniformly
distributed among all sets of cardinality m. Then there is a numerical constant ¢ such that with
probability at least 1 —en™'V (over the choice of support of Sy). Principal Component Pursuit (1.1)
with A = 1/y/n is exact, i.e. L = Ly and S = Sy, provided that

rank(Lp) < ppnp” tlogn)™®  and m < psn’. (1.4)

Above, p. and ps are positive numerical constants. In the general rectangular case where Ly is



Brief remarks

In [5], they prove even If:

the rank of L grows proportional to
O(n/log?n)

. hoise in S are of order O(n?)

exact decomposition is feasible




» Part Il: numerical algorithm
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5 Convex optimization

 In order to solve the original problem, it is
reformulated into optimization problem.

A straightforward propose is
min rank(A) +y||Efle subj A+FE =D

1,1

but it's not convex and intractable

* Recent advances in understanding of the
nuclear norm heuristic for low-rank solutions and
the L1 heuristic for sparse solutions suggest

min ||All. + A||E||1 subj A+E=D

1.

which is convex, I.e. exists a unigue minima
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numerical algorithm

During just two years, a series of algorithms have been
proposed, [4] provides all comparisons, and most
codes available at

http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html

They include:

Interior point method [1]

iterative thresholding algorithm
Accelerated Proximal Gradient (APG) [2]
A dual approach [4]

(latest & best) Augmented Lagrange Multiplier (ALM)
[3,4]or Alternating Directions Method (ADM) [3,5]



http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html
http://watt.csl.illinois.edu/~perceive/matrix-rank/sample_code.html

» Problem a5 1AL = 15

* The corresponding Augmented
Lagrangian function Is

3 :
L(A.B. Z) =~||Al;, + |IB|l« = (Z. A+ B-C) + E||4 +B-C|

« z e R™m |s the multiplier of the linear

constraint. < > Is trace inner product for
matrix <X,Y>=trace(X'Y)
* Then, the iterative scheme of ADM Is
{ A%l € argmin 4 - gmxn{ L(A. B*, Z%)},

B**! € argmin popmxn{ L(AF1, B, ZF)},
ZEtl = ZF — B(AFTL L BT (),



¥ Two established facts

* To approach the optimization, two well

known facts Is heeded
[ 7 . . — _]_ T 9
1. SW] = argmine X 1+ 5 X -W|%
US:[SIVT = arg minz|| X *—_i Y — 14
2. S| g mi 2 2

s. Is the soft thresholding operator

0 otherwise,

USVT is SVD of W




“¥”  Optimization solution

« Sparse A with L1 norm

1
AH:%Z B*+C-P, 3§Zk B* +C]

0P = {X eR™"| —~v/3< X;; <7/8)

DC

* Low-rank B with nuclear norm. Reformulate
the objective so that previous fact can be

. N . 3 . N 1 :
used: B! = argming.p {| B« + EIIB — [C = AT+ —Z%])1%}

3
1
BF = UF+! diag(max{ot ! — E,D}}(v‘f-l}T

1
C — AFL 4 gzk = RIS (VAL with ©F = diag({o 1)



“’  Final algorithm of ADM

Algorithm: the ADNM for SLRMD problem:
Ak+1;

Step 1. Generate

1 1
AR — Ez‘f — BF + C — Pﬂgﬂ[ﬁz‘f — B* + (1.

Step 2 Generate BF+1:

1
3’

where UF*1, VF+1 and {gF ™!} are generated by the singular values decompo-
sition of C' — AkF+1 %Z‘ﬂ ie..

1
N k rk k k+1T : K : k r
C — A+l 4 §Z = UFHIF (VRO YD with T = diag({of T ).

Step 3. Update the multiplier:

Z.ﬁ:-l—l — Z.Ff . .S(&’i-l'-k-'-l _|_Bk‘+1 . C\f)




* Part Ill: application



pplicions ]

(1) background modeling from survelllance
videos

(D Airport video
@ Lobby video with varying illumination

(2) removing shadows and specularities
from face images
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s Airport video

» a video of 200 frames (resolution

176 X144=25344 pixels) has a static
background, but significant foreground
variations

* reshape each frame as a column vector
(25344 X 1) and stack them into a matrix M
(25344 X 200)

* Objective: recover the low-rank and
sparse components of M



-~ ~

(a) Original frames (b) Low-rank L (c) Sparse S



s Lobby video

* a video of 250 frames (resolution
168 X120=20160 pixels) with several
drastic illumination changes

* reshape each frame as a column vector
(20160 X 1) and stack them into a matrix M
(20160 X 250)

* Objective: recover the low-rank and
sparse components of M
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(a) Original frames (b) Low-rank L (c) Sparse S



