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Rudolf Emil Kalman

 Born 1930 in Hungary

 BS and MS from MIT

 PhD 1957 from Columbia 

 Filter developed in 1960-61 

 Now retired



What is a Kalman Filter?

 Just some applied math. 

 A linear system: f(a+b) = f(a) + f(b). 

 Noisy data in :: hopefully less noisy out. 

 But delay is the price for filtering... 

 Pure KF does not even adapt to the data.

 An “optimal recursive data processing 

algorithm”



What is it used for?

 Tracking missiles

 Tracking heads/hands/drumsticks

 Extracting lip motion from video

 Fitting Bezier patches to point data

 Economics

 Navigation



A really simple example



The Process to be Estimated

 Discrete-time controlled process

 State estimation:

 Measurement:

 Process noise covariance: Q

 Measurement noise covariance: R
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The computational Origins of 

the Filters

 Priori state estimation error at step k

 Posteriori estimation error

 Posteriori as a linear combination of a Priori
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The computational Origins of 

the Filters

 The gain or blending factor that minimizes the 

a posteriori error covariance 
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The Probabilistic Origins of 

the Filter

 The a posteriori state estimate                                         

reflects the mean of the state distribution

 The a posteriori state estimate error covariance               

reflects the variance of the state distribution
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The Discrete Kalman Filter 

Algorithm

 Time update equations

 Measurement update equations
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Filter Parameters and Tuning

 The measurement noise covariance R is usually measured prior 
to operation of the filter.

 Q and R are generally constants during filtering. Superior filter 
performance can be obtained by tuning them, referred to as 
system identification.



Example: 2D Position-Only

 Apparatus: 2D Tablet



Process Model
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Measurement Model
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Preparation

State Transition
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Initialization
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Predict
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Correct
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Results: XY Track



Y Track: Moving then Still



Motion-Dependent Performance



The Extended Kalman Filter

 Nonlinear Process (Model)

 Process dynamics: A becomes a(x)

 Measurement: H becomes h(x)

 Filter Reformulation

 Use functions instead of matrices

 Use Jacobians to project forward, and to relate 

measurement to state
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Jacobian?

 Partial derivative of measurement with respect to 

state

 If measurement is a vector of length M and state has 

length N

 Jacobian of measurement function will be MxN matrix of 

numbers (not equations)

 Evaluating h(x) and Jacobian(h(x)) at the same time 

mostly only cost a little additional computing time. 



New Approaches

 Several extensions are available that work 

better than the EKF in some circumstances



Summary

 A set of mathematical equations that provides an 
efficient computational (recursive) means to 
estimate the state of a process.

 Minimizes the mean of the squared error

 Powerful:
 supports estimations of past, present, and even future 

states,

 can do so even when the precise nature of the modeled 
system is unknown



The End of 

Kalman Filter



Before the end of this course

 Many techniques I cannot mention yet:

 Neural network

 Graphical model

 Genetic methods

 …

 It is just a beginning …


