User Tools

Site Tools


keynote:lesson02

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
keynote:lesson02 [2010/06/26 14:22]
10921021
keynote:lesson02 [2021/04/13 21:35] (current)
Line 169: Line 169:
 ==== 2.5.1 Boosting 算法概述 ==== ==== 2.5.1 Boosting 算法概述 ====
  
-Boosting算法的形式多种多样,通常都是由多个弱分类器在一定的分布下通过循环迭代,最后组形成一个强分类器的。当这些弱分类器被组合在一起的时候,它们总是会根据各自的准确度而在组合中占一定的权重。当一个弱分类器被加进来时,所有的数据都被重新赋予权重:那些被分错的点的权重会上升,而分对的点的权重则会下降。因此,接下来,分类器会着重注意对待之前被分错类的点。+Boosting算法的形式多种多样,通常都是由多个弱分类器在一定的分布下通过循环迭代,最后组形成一个强分类器的。当这些弱分类器被组合在一起的时候,它们总是会根据各自的准确度而在组合中占一定的权重。当一个弱分类器被加进来时,所有的数据都被重新赋予权重:那些被分错的点的权重会上升,而分对的点的权重则会下降。因此,接下来,分类器会着重注意对待之前被分错类的点。
  
 ==== 2.5.2 AdaBoost 算法介绍 ==== ==== 2.5.2 AdaBoost 算法介绍 ====
keynote/lesson02.1277533371.txt.gz · Last modified: 2021/04/13 21:34 (external edit)