User Tools

Site Tools


keynote:lesson02

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
keynote:lesson02 [2010/05/24 15:37]
10921038 微小改变,Bayes公式错了
keynote:lesson02 [2021/04/13 21:35] (current)
Line 16: Line 16:
 |4        |Sunny ​ |Warm      |High     ​|Strong ​ |Cool   ​|Change ​   |Yes     | |4        |Sunny ​ |Warm      |High     ​|Strong ​ |Cool   ​|Change ​   |Yes     |
 **实例空间X**:概念是定义在一个实例集合上的,本例中X是所有可能的日子,而Sky,​AirTemp之类是日子的属性;​\\ **实例空间X**:概念是定义在一个实例集合上的,本例中X是所有可能的日子,而Sky,​AirTemp之类是日子的属性;​\\
-**目标函数C**:学习的函数,可以是定义在实例集X上的任意布尔函数,​形式化为C:​X->​{0,​1};​\\+**目标函数C**:学习的函数,可以是定义在实例集X上的任意布尔函数,​形式化为C:​X->​{0,​1};​\\
 **训练样本D**:是为学习概念而提供的训练实例,训练样本中的每一个条目为X中的一个实例加上此实例对应的目标函数的值C(x);​\\ **训练样本D**:是为学习概念而提供的训练实例,训练样本中的每一个条目为X中的一个实例加上此实例对应的目标函数的值C(x);​\\
 **假设空间H**:所有可能假设的集合,它中的每一个假设h表示X上定义的布尔函数,即h:X->​{0,​1};​\\ **假设空间H**:所有可能假设的集合,它中的每一个假设h表示X上定义的布尔函数,即h:X->​{0,​1};​\\
Line 169: Line 169:
 ==== 2.5.1 Boosting 算法概述 ==== ==== 2.5.1 Boosting 算法概述 ====
  
-Boosting算法的形式多种多样,通常都是由多个弱分类器在一定的分布下通过循环迭代,最后组形成一个强分类器的。当这些弱分类器被组合在一起的时候,它们总是会根据各自的准确度而在组合中占一定的权重。当一个弱分类器被加进来时,所有的数据都被重新赋予权重:那些被分错的点的权重会上升,而分对的点的权重则会下降。因此,接下来,分类器会着重注意对待之前被分错类的点。+Boosting算法的形式多种多样,通常都是由多个弱分类器在一定的分布下通过循环迭代,最后组形成一个强分类器的。当这些弱分类器被组合在一起的时候,它们总是会根据各自的准确度而在组合中占一定的权重。当一个弱分类器被加进来时,所有的数据都被重新赋予权重:那些被分错的点的权重会上升,而分对的点的权重则会下降。因此,接下来,分类器会着重注意对待之前被分错类的点。
  
 ==== 2.5.2 AdaBoost 算法介绍 ==== ==== 2.5.2 AdaBoost 算法介绍 ====
keynote/lesson02.1274686649.txt.gz · Last modified: 2021/04/13 21:34 (external edit)