User Tools

Site Tools


Multivariate Analysis

The study of learning from data is commercially and scientifically important. This one month short course is designed to give first year Ph.D. students a thorough grounding in the methodologies, technologies, mathematics and algorithms currently needed by people who do research in learning and data mining or who may need to apply learning or data mining techniques to a target problem. The topics of the course draw from classical statistics, from machine learning, from data mining, from Bayesian statistics and from statistical algorithmics.
Students entering the class should have a pre-existing working knowledge of probability, statistics and algorithms, though the class has been designed to allow students with a strong numerate background to catch up and fully participate.


Topic Date Slides note
Introduction 2011.02.24 Introduction =>
Why data driven
Point estimation
Component Analysis 2011.03.03 PCA and its related techniques =>
Distance and similarity 2011.03.10 Distance, similarity and clustering =>
Graphical Models 2011.03.17 Graphical Models =>
Course talk (Ibrar Hussain) 2011.03.17 Clustering in Machine Learning

Text books

Reference website

2011/mva.txt · Last modified: 2021/04/13 21:35 (external edit)